• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Cui Yanhong, Bi Huaxing, Hou Guirong, Wang Ning, Wang Shanshan, Zhao Danyang, Ma Xiaozhi, Yun Huiya. Soil infiltration characteristics and influencing factors of Robinia pseudoacacia plantation in the loess gully region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2021, 43(1): 77-87. DOI: 10.12171/j.1000-1522.20200122
Citation: Cui Yanhong, Bi Huaxing, Hou Guirong, Wang Ning, Wang Shanshan, Zhao Danyang, Ma Xiaozhi, Yun Huiya. Soil infiltration characteristics and influencing factors of Robinia pseudoacacia plantation in the loess gully region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2021, 43(1): 77-87. DOI: 10.12171/j.1000-1522.20200122

Soil infiltration characteristics and influencing factors of Robinia pseudoacacia plantation in the loess gully region of western Shanxi Province, northern China

More Information
  • Received Date: April 27, 2020
  • Revised Date: October 04, 2020
  • Available Online: December 13, 2020
  • Published Date: February 04, 2021
  •   Objective  This paper aims to study the soil infiltration characteristics and its influencing factors of Robinia pseudoacacia forest in the loess gully region of western Shanxi Province of northern China, which could provide functional guidance for the precise improvement of stand structure.
      Method  We selected the stand age of 15, 25, and 35 years and the density of 800, 1 200, 1 600, 1 800, and 2 200 plant/ha Robinia pseudoacacia forest for double-ring infiltration test. Correlation between the physical and chemical properties of soil, such as soil porosity, bulk density, organic matter, and soil infiltration rate, was analyzed.
      Result  (1) To some extent, the steady infiltration rate increased with the increase of forest age and stand density. The initial infiltration rate and average infiltration rate increased with the increase of stand age. (2) Four models (Horton, Kostiakov, Philip, and general empirical model) were used to simulate the infiltration process of Robinia pseudoacacia forest in different stand ages and densities. The results showed that the average regression coefficient of general empirical model (0.977) > Horton model (0.958) > Kostiakov model (0.953) > Philip model (0.945). Therefore, the fitting effect of general empirical model was best. (3) According to principal component and correlation analysis, the soil infiltration performance was significantly correlated with the soil bulk density, organic matter, and water-stable aggregates. The initial soil moisture content was the main factor affecting the initial infiltration rate. The 1−2 mm water-stable aggregates, soil bulk density, and capillary porosity were the main factors affecting stable infiltration rate. The main factors affecting average infiltration rate were the initial soil moisture content and 0.5−1 mmwater-stable aggregates.
      Conclusion  In a certain range (800−2 200 plant/ha), with the increase of age and density of Robinia pseudoacacia forest, the soil structure is improved, and the soil infiltration performance is gradually improved. Under the same stand density, the 35-year Robinia pseudoacacia forest shows better infiltration performance than others.
  • [1]
    Chen Y P, Wang K B, Lin Y S, et al. Balancing green and grain trade[J]. Nature Geoscience, 2015, 10(8): 739−741.
    [2]
    Shao M A, Wang Y Q, Xia Y Q, et al. Soil drought and water carrying capacity for vegetation in the critical zone of the Loess Plateau: a review[J]. Vadose Zone Journal, 2018, 17(1): 1−8. doi: 10.2136/vzj2018.01.0021.
    [3]
    Wang Y Q, Shao M A, Liu Z P, et al. Investigation of factors controlling the regional-scale distribution of dried soil layers under forestland on the Loess Plateau, China[J]. Surveys in Geophysics, 2012, 33(2): 311−330. doi: 10.1007/s10712-011-9154-y.
    [4]
    Babaei F, Zolfaghari A A, Yazdani M R, et al. Spatial analysis of infiltration in agricultural lands in arid areas of Iran[J]. Catena, 2018, 170: 25−35. doi: 10.1016/j.catena.2018.05.039.
    [5]
    Dashtaki S G, Homaee M, Mahdian M H, et al. Site-dependence performance of infiltration models[J]. Water Resources Management, 2009, 23(13): 2777−2790. doi: 10.1007/s11269-009-9408-3.
    [6]
    吕振豫, 刘姗姗, 秦天玲, 等. 土壤入渗研究进展及方向评述[J]. 中国农村水利水电, 2019(7):1−5. doi: 10.3969/j.issn.1007-2284.2019.07.001.

    Lü Z Y, Liu S S, Qin T L, et al. Comment on the progress and major direction of soil infiltration research[J]. Journal of Rural Water Conservancy and Hydropower in China, 2019(7): 1−5. doi: 10.3969/j.issn.1007-2284.2019.07.001.
    [7]
    Huang L, Zhang P, Hu T G, et al. Vegetation succession and soil infiltration characteristics under different aged refuse dumps at the Heidaigou opencast coal mine[J]. Global Ecology and Conservation, 2015, 4: 255−263. doi: 10.1016/j.gecco.2015.07.006.
    [8]
    李平, 王冬梅, 丁聪, 等. 黄土高寒区典型植被类型土壤入渗特征及其影响因素[J]. 生态学报, 2020, 40(5):1−11.

    Li P, Wang D M, Ding C, et al. Soil infiltration characteristics and its influencing factors of typical vegetation type in loess alpine region[J]. Acta Ecologica Sinica, 2020, 40(5): 1−11.
    [9]
    阿茹·苏里坦. 天山林区不同群落土壤水分入渗特性的对比分析与模拟[D]. 乌鲁木齐: 新疆大学, 2019.

    Sulitan A. Comparative analysis and simulation of soil moisture infiltration characteriscs in different communities in the forests of Tianshan Mountains, China[D]. Urumqi: Xinjiang University, 2019.
    [10]
    阿茹·苏里坦, 常顺利, 张毓涛. 天山林区不同群落土壤水分入渗特性的对比分析与模拟[J]. 生态学报, 2019, 39(24):1−8.

    Sulitan A, Chang S L, Zhang Y T. Comparative analysis and simulation of soil moisture infiltration characteriscs in different communities in the forests of Tianshan Mountains, China[J]. Acta Ecologica Sinica, 2019, 39(24): 1−8.
    [11]
    勃海锋, 刘国彬, 王国梁. 黄土丘陵区退耕地植被恢复过程中土壤入渗特征的变化[J]. 水土保持通报, 2007, 27(3):1−5. doi: 10.3969/j.issn.1000-288X.2007.03.001.

    Bo H F, Liu G B, Wang G L. Changes of infiltration characteristics of abandoned cropland with plant restoration in loess hilly region[J]. Bulletin of Soil and Water Conservation, 2007, 27(3): 1−5. doi: 10.3969/j.issn.1000-288X.2007.03.001.
    [12]
    Deng L, Shangguan Z P, Li R. Effects of the grain-for-green program on soil erosion in China[J]. International Journal of Sediment Research, 2012, 27: 120−127. doi: 10.1016/S1001-6279(12)60021-3.
    [13]
    Hou G R, Bi H X, Wei X, et al. Optimal configuration of stand structures in a low-efficiency Robinia pseudoacacia forest based on a comprehensive index of soil and water conservation ecological benefits[J/OL]. Ecological Indicators, 2020, 114: 106308 [2020−03−22]. https://www.sciencedirect.com/science/article/pii/S1470160X20302454.
    [14]
    杨亚辉. 黄土丘陵沟壑区植被恢复对土壤理化性质影响分析[D]. 北京: 中国科学院大学, 2017.

    Yang Y H. Impacts of vegetation restoration on soil physical and chemical properties in the loess hilly gully region of Loess Plateau[D]. Beijing: University of Chinese Academy of Sciences, 2017.
    [15]
    赵小婵, 高楠, 李紫恬,等. 不同林分密度对林地土壤物理性质的影响: 以华北土石山区油松人工林为例[J]. 安徽农业科学, 2015, 43(34):211−214. doi: 10.3969/j.issn.0517-6611.2015.34.079.

    Zhao X C, Gao N, Li Z T, et al. Soil physical properties of pine forest under different forest management in rocky mountain area of northern China[J]. Journal of Anhui Agri Sci, 2015, 43(34): 211−214. doi: 10.3969/j.issn.0517-6611.2015.34.079.
    [16]
    Zhang X, Zhang L, Mcvicar T, et al. Modelling the impact of afforestation on average annual streamflow in the Loess Plateau[J]. Hydrological Processes, 2008, 22: 1996−2004. doi: 10.1002/hyp.6784.
    [17]
    王高敏. 晋西黄土区退耕16—20年间不同林地土壤理化性质和水文功能研究[D]. 北京: 北京林业大学, 2015.

    Wang G M. Research on the soil physical and chemical properties and water capacity of forestlands converted of farmland during 16−20 years in western Shanxi Province[D]. Beijing: Beijing Forestry University, 2015.
    [18]
    茹豪. 晋西黄土区典型林地水文特征及功能分析[D]. 北京: 北京林业大学, 2015.

    Ru H. Analysis of hydrological characteristics and functions of typical forest stands in the Loss Plateau area of western Shanxi Province[D]. Beijing: Beijing Forestry University, 2015.
    [19]
    张孝中. 黄土高原土壤颗粒组成及质地分区研究[J]. 中国水土保持, 2002(3):11−13. doi: 10.3969/j.issn.1000-0941.2002.03.005.

    Zhang X Z. Study on the composition of soil particles and texture zoning of the Loess Plateau[J]. Soil and Water Conservation in China, 2002(3): 11−13. doi: 10.3969/j.issn.1000-0941.2002.03.005.
    [20]
    侯贵荣, 毕华兴, 魏曦, 等. 黄土残塬沟壑区刺槐林枯落物水源涵养功能综合评价[J]. 水土保持学报, 2019, 33(2):251−257.

    Hou G R, Bi H X, Wei X, et al. Comprehensive evaluation of water conservation function of litters of Robinia pseudoacacia forest lands in gully region on Loess Plateau[J]. Journal of Soil and Water Conservation, 2019, 33(2): 251−257.
    [21]
    刘春成, 李毅, 任鑫, 等. 四种入渗模型对斥水土壤入渗规律的适用性[J]. 农业工程学报, 2011, 27(5):62−67. doi: 10.3969/j.issn.1002-6819.2011.05.010.

    Liu C C, Li Y, Ren X, et al. Applicability of four infiltration models to infiltration characteristics of water repellent soils[J]. Transactions of the CSAE, 2011, 27(5): 62−67. doi: 10.3969/j.issn.1002-6819.2011.05.010.
    [22]
    徐敬华. 黄土丘陵区人工植被恢复对土壤水力性质的影响[D]. 杨凌: 西北农林科技大学, 2008.

    Xu J H. The impact of artificial vegetation restoration on soil hydraulic and hydrolgical properties in loess hilly region[D]. Yangling: Northwest A&F University, 2008.
    [23]
    刘江, 吕涛, 张立欣, 等. 基于主成分分析的不同种植年限甘草地土壤质量评价[J]. 草业学报, 2020, 29(6):162−171.

    Liu J, Lü T, Zhang L X, et al. Soil quality assessment by principal component analysis in Glycyrrhiza uralensis stands of differing ages[J]. Acta Prataculturae Sinica, 2020, 29(6): 162−171.
    [24]
    吴思萱, 刘卉芳, 陈彩虹, 等. 晋西黄土区土壤水分入渗的时空分布研究[J]. 泥沙研究, 2019, 44(4):60−65.

    Wu S X, Liu H F, Chen C H, et al. Study on the temporal and spatial distribution of soil moisture infiltration in the west Shanxi Province[J]. Journal of Sediment Research, 2019, 44(4): 60−65.
    [25]
    陈楚楚, 黄新会, 刘芝芹, 等. 滇西北高原湿地不同植被类型下的土壤入渗特性及其影响因素[J]. 水土保持通报, 2016, 36(2):82−87.

    Chen C C, Huang X H, Liu Z Q, et al. Infiltration characteristics and influencing factors of surface soil in plateau wetland of northwest Yunnan Province[J]. Bulletin of Soil and Water Conservation, 2016, 36(2): 82−87.
    [26]
    刘新平, 张铜会, 赵哈林, 等. 干旱半干旱区沙漠化土地水分动态研究进展[J]. 水土保持研究, 2005, 12(1):63−68. doi: 10.3969/j.issn.1005-3409.2005.01.019.

    Liu X P, Zhang T H, Zhao H L, et al. Research advaaces on moisture dynamic of desertified lands in arid and semi-arid regions[J]. Research of Soil and Water Conservation, 2005, 12(1): 63−68. doi: 10.3969/j.issn.1005-3409.2005.01.019.
    [27]
    Six J, Paustian K, Elliott E T, et al. Soil structure and organic matter (I): distribution of aggregate-size classes and aggregate-associated carbon[J]. Soil Science Society of America Journal, 2000, 64: 681−689. doi: 10.2136/sssaj2000.642681x.
    [28]
    王鑫皓, 王云琦, 马超, 等. 根系构型对土壤渗透性能的影响[J]. 中国水土保持科学, 2018, 16(4):73−82.

    Wang X H, Wang Y Q, Ma C, et al. Effect of root architecture on soil permeability[J]. Science of Soil and Water Conservation, 2018, 16(4): 73−82.
    [29]
    刘秀萍, 陈丽华, 陈吉虎. 刺槐和油松根系密度分布特征研究[J]. 干旱区研究, 2007, 24(5):647−651.

    Liu X P, Chen L H, Chen J H. Study on the distribution of root density of Robinia pseudoacacia L. and Pinus tabuliformis Carr.[J]. Arid Zone Research, 2007, 24(5): 647−651.
    [30]
    李卓, 吴普特, 冯浩, 等. 容重对土壤水分入渗能力影响模拟试验[J]. 农业工程学报, 2009, 9, 25(6):40−45. doi: 10.3969/j.issn.1002-6819.2009.06.007.

    Li Z, Wu P T, Feng H, et al. Simulated experiment on effect of soil bulk density on soil infiltration capacity[J]. Transactions of the CSAE, 2009, 9, 25(6): 40−45. doi: 10.3969/j.issn.1002-6819.2009.06.007.
    [31]
    丁康, 徐学选, 陈文媛, 等. 长武塬边坡不同植被下土壤团聚体及入渗特征[J]. 北京林业大学学报, 2017, 39(12):44−51.

    Ding K, Xu X Y, Chen W Y, et al. Soil aggregates and infiltration characteristics under different vegetation in Changwu tableland slope of northwestern China[J]. Journal of Beijing Forestry University, 2017, 39(12): 44−51.
    [32]
    王意锟, 金爱武, 方升佐. 浙西南毛竹林覆盖对土壤渗透性及生物特征的影响[J]. 应用生态学报, 2017, 28(5):1431−1440.

    Wang Y K, Jin A W, Fang S Z. Effects of mulching management of Phyllostachys heterocycla forests on the characteristics of soil infiltration and biometrics in southwest Zhejiang Province, China[J]. Chinese Journal of Applied Ecology, 2017, 28(5): 1431−1440.
  • Related Articles

    [1]Zhao Han, Wang Mingjie, He Linhan, Chen Yao, Gao Jianmin. Preparation and its electrochemical properties of enzymatically hydrolyzed wood-based hierarchical porous carbon[J]. Journal of Beijing Forestry University, 2024, 46(10): 136-143. DOI: 10.12171/j.1000-1522.20240026
    [2]Li Yucheng, Zhu Liyu, Zhao Jingyang, Zheng Dan, Qiu Mengjie, Liu Jing, Lei Jiandu. Synthesis of novel NaNi/C catalyst and selective hydrogenation study of furfural[J]. Journal of Beijing Forestry University, 2023, 45(1): 140-147. DOI: 10.12171/j.1000-1522.20220358
    [3]Cui Han, Hou Kexu, Jiang Weikun, Zhou Hao, Lü Gaojin. Preparation and its properties of sodium lignosulfonate@tannic acid hydrogel[J]. Journal of Beijing Forestry University, 2022, 44(5): 142-149. DOI: 10.12171/j.1000-1522.20210411
    [4]Liu Pengpeng, Zhou Sukun, Wang Chao, You Tingting, Xu Feng. Preparation and properties of mesoporous activated carbons from NaOH-pretreated corncob residues[J]. Journal of Beijing Forestry University, 2018, 40(3): 128-134. DOI: 10.13332/j.1000-1522.20170431
    [5]SUN Ya-jie, ZHAO Tian-qi, ZHANG Chun-lei, FU Yu-jie, LI Shu-jun, MA Yan-li. Adsorption properties of lignin-g-polyacrylic acid hydrogel on Pb2+, Cu2+, Cd2+[J]. Journal of Beijing Forestry University, 2017, 39(12): 102-111. DOI: 10.13332/j.1000-1522.20170309
    [6]LU Qi, MENG Yong-bin, XU Lei, ZHANG Zi-dong, LIU Ying, ZHANG Ying, ZU Yuan-gang.. Technology in preparation of ethanol from the enzymatic hydrolysate of Tara fiber residues.[J]. Journal of Beijing Forestry University, 2015, 37(12): 122-127. DOI: 10.13332/j.1000-1522.20150160
    [7]LIU Yan-hui, HOU Lian-xia, TIAN Jin-ling, REN Shi-xue.. Preparation and performance of hymexazol/lignin based amphoteric surfactant/bentonite slow-release formulation.[J]. Journal of Beijing Forestry University, 2015, 37(9): 101-110. DOI: 10.13332/j.1000-1522.20150142
    [8]AI Qing, SU Ling, ZHANG Qiong, FANG Gui-zhen. Preparation for porous titanium material with dimethylbutylsulfonated lignin ammonium as a template[J]. Journal of Beijing Forestry University, 2013, 35(2): 102-107.
    [9]WANG Chun-hai, LI Zhi-na, ZHAO Yin-feng, BEI Ying, REN Shi-xue, FANG Gui-zhen. Preparation of porous silicon oxide materials by lignin trimethyl quaternary ammonium salt as templates[J]. Journal of Beijing Forestry University, 2011, 33(4): 118-123.
    [10]MU Jun, YU Zhi-ming, LI Li, ZHOU Wen-rui. Preparation and analysis of wood vinegar with wood residues[J]. Journal of Beijing Forestry University, 2008, 30(2): 129-132.
  • Cited by

    Periodical cited type(3)

    1. 肖湘滇,管娇琼. 中药及其复方制剂对皮肤真菌抑菌活性的研究进展. 云南中医药大学学报. 2024(04): 98-105 .
    2. 徐元柳,刘迪迪,王兆丹,肖国生,唐华丽. 植物提取物抑菌机理及联合现代新兴技术在肉类保鲜中的应用进展. 食品与机械. 2024(11): 238-244 .
    3. 刘治廷,王忠娟,张秀娟,杨诗涵,张金山,陈小强,张莹. 马齿苋抑菌活性成分研究进展. 食品科学. 2023(19): 359-371 .

    Other cited types(2)

Catalog

    Article views PDF downloads Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return