• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Li Hui, Yang Hua, Xie Rong. Canopy characteristics in gaps and its relationship with seedlings and saplings in a spruce-fir forest in the Changbai Mountain area of northeastern China[J]. Journal of Beijing Forestry University, 2021, 43(7): 54-62. DOI: 10.12171/j.1000-1522.20200131
Citation: Li Hui, Yang Hua, Xie Rong. Canopy characteristics in gaps and its relationship with seedlings and saplings in a spruce-fir forest in the Changbai Mountain area of northeastern China[J]. Journal of Beijing Forestry University, 2021, 43(7): 54-62. DOI: 10.12171/j.1000-1522.20200131

Canopy characteristics in gaps and its relationship with seedlings and saplings in a spruce-fir forest in the Changbai Mountain area of northeastern China

More Information
  • Received Date: May 04, 2020
  • Revised Date: November 16, 2020
  • Available Online: June 15, 2021
  • Published Date: July 24, 2021
  •   Objective  The formation of gaps plays an important role in the forest renewal cycle. The relationship between structure and light factors of canopy in the gap and its relationship with the number and growth indicators of seedlings and saplings were analyzed. In order to explore the impact of characteristics of the gap canopy on seedlings and saplings, the measures to promote the natural renewal of spruce-fir forests were put forward to provide scientific basis for the sustainable management and sustainable use of spruce-fir forests.
      Method  This study investigated the canopy structure, light factors, seedlings and saplings of 48 gaps in the spruce-fir heterogeneous mixed forest of Changbai Mountain in Jingouling Forest Farm, Jilin Province of northeastern China in August 2019. Pearson correlation analysis was used to analyze the canopy structure and light factors in gaps of different sizes and their relationship with seedlings and saplings.
      Result  (1) The main distribution intervals of canopy openness (CO), leaf area index (LAI) and trans total radiation (Tot) were 12%−20%, 2−3 and 11%−21%, respectively. (2) CO, LAI and light factors were significantly different in gaps of different sizes (P < 0.05), CO and trans diffuse radiation (TDF) increased with the increase of forest gap, Tot and trans direct radiation (TDR) first decreased and then increased with the increase of gap. (3) The number of seedlings and saplings of each tree species increased first and then decreased with the increase of CO and Tot. The most suitable CO and Tot for the survival of seedlings and saplings were 12%−20% and 11%−21%, respectively. (4) The gap less than 120 m2 was most suitable for the growth of fir seedlings and saplings; while the gap less than 90 m2 was the most suitable for the growth of Acer seedlings and saplings; spruce seedlings and saplings grew best in gaps less than 30 m2 and 60−90 m2; the most suitable gap area for the growth of Korean pine seedlings and saplings was 60−90 m2.
      Conclusion  The main canopy distribution interval of the forest is more suitable for the growth of seedlings and saplings of the four tree species, but when the CO and Tot exceed a certain range, the number of seedlings and saplings decreases. Therefore, the number of seedlings and saplings in the gap can be reduced according to the needs of forest management, or the area of gap can be appropriately adjusted to release growth space for the target tree species and promote its regeneration.
  • [1]
    Watt A S. Pattern and process in the plant community[J]. Journal of Ecology, 1947, 35(1/2): 1−22. doi: 10.2307/2256497
    [2]
    郑云峰, 尹准生, 唐孝甲. 树种天然更新影响因素研究[J]. 华东森林经理, 2020, 34(2):1−4. doi: 10.3969/j.issn.1004-7743.2020.02.001

    Zheng Y F, Yin Z S, Tang X J. Study on influencing factors of natural regeneration of tree species[J]. East China Forest Management, 2020, 34(2): 1−4. doi: 10.3969/j.issn.1004-7743.2020.02.001
    [3]
    He Z S, Wang L J, Jiang L. Effect of microenvironment on species distribution patterns in the regeneration layer of forest gaps and non-gaps in a subtropical natural forest, China[J]. Forests, 2019, 10(2): 90−102. doi: 10.3390/f10020090
    [4]
    Zhang T, Yan Q L, Wang J. Restoring temperate secondary forests by promoting sprout regeneration: effects of gap size and within-gap position on the photosynthesis and growth of stump sprouts with contrasting shade tolerance[J]. Forest Ecology and Management, 2018, 429: 267−277. doi: 10.1016/j.foreco.2018.07.025
    [5]
    Moghimian N, Habashi H, Kooch Y. Influence of wind throw events on soil carbon sequestration and fertility status at local scales: a case study in Hyrcanian forest[J]. European Journal of Experimental Biology, 2013, 3: 160−167.
    [6]
    Vitousek P M, Denslow J S. Nitrogen and phosphorus availability in treefall gaps of a lowland tropical rainforest[J]. Journal of Ecology, 1986, 74(4): 1167−1178. doi: 10.2307/2260241
    [7]
    Kostrakiewicz G K. The impact of time of gap origin on microsite conditions and seedling recruitment in Molinietum caeruleae meadows[J]. International Journal of Conservation Science, 2015, 6(1): 111−124.
    [8]
    Meer P J V D, Dignan P, Saveneh A G. Effect of gap size on seedling establishment, growth and survival at three years in mountain ash (Eucalyptus regnans F. Muell.) forest in Victoria, Australia[J]. Forest Ecology and Management, 1999, 117(1/3): 33−42.
    [9]
    Zhu J J, Matsuzaki T, Lee F Q, et al. Effect of gap size created by thinning on seedling emergency, survival and establishment in a coastal pine forest[J]. Forest Ecology and Management, 2003, 182(1): 339−354.
    [10]
    Wang Z B, Yang H J, Dong B Q, et al. Effects of canopy gap size on growth and spatial patterns of Chinese pine (Pinus tabulaeformis) regeneration[J]. Forest Ecology and Management, 2017, 385: 46−56. doi: 10.1016/j.foreco.2016.11.022
    [11]
    胡振宇, 孙楠, 梁晓东. 长白落叶松人工林不同林隙间伐对林下更新生长的影响[J]. 林业科技, 2016, 41(1):11−13. doi: 10.3969/j.issn.1001-9499.2016.01.004

    Hu Z Y, Sun N, Liang X D. Effects of different gap thinning on undergrowth of larch plantation in Changbai Mountain[J]. Forestry Science and Technology, 2016, 41(1): 11−13. doi: 10.3969/j.issn.1001-9499.2016.01.004
    [12]
    Huth F, Wagner S. Gap structure and establishment of silver birch regeneration (Betula pendula Roth.) in Norway spruce stands (Picea abies L. Karst.)[J]. Forest Ecology and Management, 2006, 229(1/2/3): 314−324.
    [13]
    李谭宝, 李淑静, 王彩云. 黄龙山白皮松林林隙物种多样性动态[J]. 西北林学院学报, 2015, 30(4):66−72. doi: 10.3969/j.issn.1001-7461.2015.04.11

    Li T B, Li S J, Wang C Y. Gap dynamics of species diversity in Pinus bungeana forest in Huanglong Mountain[J]. Journal of Northwest Forestry University, 2015, 30(4): 66−72. doi: 10.3969/j.issn.1001-7461.2015.04.11
    [14]
    王永强, 蔡燕茹, 曾焕忱, 等. 不同林冠开度下亚热带林下植物的组成和多样性[J]. 西北农林科技大学学报(自然科学版), 2016, 44(5):64−72.

    Wang Y Q, Cai Y R, Zeng H C, et al. Composition and diversity of understory plant species in subtropical forests under different canopy openness[J]. Journal of Northwest A&F University (Natural Science Edition), 2016, 44(5): 64−72.
    [15]
    Zerbe S. Restoration of natural broad-leaved woodland in Central Europe on sites with coniferous forest plantations[J]. Forest Ecology and Management, 2002, 167(1): 27−42.
    [16]
    陈圣宾, 宋爱琴, 李振基. 森林幼苗更新对光环境异质性的响应研究进展[J]. 应用生态学报, 2005, 16(2):365−370. doi: 10.3321/j.issn:1001-9332.2005.02.034

    Chen S B, Song A Q, Li Z J. Research advance in response of forest seedling regeneration to light environmental heterogeneity[J]. Chinese Journal of Applied Ecology, 2005, 16(2): 365−370. doi: 10.3321/j.issn:1001-9332.2005.02.034
    [17]
    Runkle J R. Patterns of disturbance in some old-growth mesic forests of eastern North America[J]. Ecology, 1983, 64(4): 623.
    [18]
    罗桂生, 马履一, 贾忠奎, 等. 油松人工林林隙天然更新及与环境相关性分析[J]. 北京林业大学学报, 2019, 41(9):59−68.

    Luo G S, Ma L Y, Jia Z K, et al. Correlation analysis between natural regeneration and environment in canopy gap of Chinese pine (Pinus tabuliformis) plantation[J]. Journal of Beijing Forestry University, 2019, 41(9): 59−68.
    [19]
    蔡杨新, 黄梅珍, 许鲁东, 等. 闽粤栲天然林种群数量与结构的林隙边缘效应[J]. 四川农业大学学报, 2017, 35(1):31−36.

    Cai Y X, Huang M Z, Xu L D, et al. Gap edge effects on population size and structure in Castanopis fissa natural forest[J]. Journal of Sichuan Agricultural University, 2017, 35(1): 31−36.
    [20]
    Macfarlane C. Classification method of mixed pixels does not affect canopy metrics from digital images of forest overstorey[J]. Agricultural and Forest Meteorology, 2011, 151(7): 833−840. doi: 10.1016/j.agrformet.2011.01.019
    [21]
    刘志理, 金光泽. 小兴安岭白桦次生林叶面积指数的估测[J]. 生态学报, 2013, 33(8):2505−2513. doi: 10.5846/stxb201201120065

    Liu Z L, Jin G Z. Estimation of leaf area index of secondary Betula platyphylla forest in Xiaoxing’ an Mountains[J]. Acta Ecology Sinica, 2013, 33(8): 2505−2513. doi: 10.5846/stxb201201120065
    [22]
    马泽清, 刘琪璟, 曾慧卿, 等. 南方人工林叶面积指数的摄影测量[J]. 生态学报, 2008, 28(5):1971−1980. doi: 10.3321/j.issn:1000-0933.2008.05.011

    Ma Z Q, Liu Q J, Zeng H Q, et al. Estimation of leaf area index of planted forests in subtropical China by photogrammetry[J]. Acta Ecology Sinica, 2008, 28(5): 1971−1980. doi: 10.3321/j.issn:1000-0933.2008.05.011
    [23]
    Gardiner E S, Hodges J D. Growth and biomass distribution of cherry bark oak (Quercus pagoda Raf.) seedlings as influenced by light availability[J]. Forest Ecology and Management, 1998, 108: 127−134. doi: 10.1016/S0378-1127(98)00220-5
    [24]
    班宏娜. 樟子松人工林树冠层光分布规律及对生长影响的研究[D]. 哈尔滨: 东北林业大学, 2010.

    Ban H N. The research on canopy light distribution law and growth in fluence on Pinus sylverstris artificial stand [D]. Harbin: Northeast Forestry University, 2010.
    [25]
    方怡然, 潘澜, 薛立. 冰雪灾害后的杉木人工林冠层结构与林下光照及土壤生化特性的关系[J]. 生态环境学报, 2018, 27(4):609−616.

    Fang Y R, Pan L, Xue L. Relationships between canopy structure and understory light and soil biochemical property in a Cunninghamia lanceolata stand suffering from ice-snow damage[J]. Ecology and Environmental Sciences, 2018, 27(4): 609−616.
    [26]
    刘少冲, 段文标, 陈立新. 小兴安岭阔叶红松林不同大小林隙光照时空分布特征[J]. 东北林业大学学报, 2014, 42(8):46−51. doi: 10.3969/j.issn.1000-5382.2014.08.010

    Liu S C, Duan W B, Chen L X. Spatiotemporal distribution characteristics of light in different size gaps in the mixed broad-leaved Korean pine forest in Xiaoxing’an Mountains[J]. Journal of Northeast Forestry University, 2014, 42(8): 46−51. doi: 10.3969/j.issn.1000-5382.2014.08.010
    [27]
    Grubb P J, Bellingham P J, Kohyama T S, et al. Disturbance regimes, gap-demanding trees and seed mass related to tree height in warm temperate rain forests worldwide[J]. Biological Reviews, 2013, 88(3): 701−744. doi: 10.1111/brv.12029
    [28]
    区余端, 苏志尧. 粤北山地常绿阔叶林自然干扰后冠层结构空间异质性动态[J]. 植物科学学报, 2012, 30(3):223−229.

    Qu Y D, Su Z Y. Spatial heterogeneity dynamics of canopy structure in a montane evergreen broadleaved forest following a natural disturbance in north Guangdong[J]. Piant Science Journal, 2012, 30(3): 223−229.
    [29]
    陈龙斌, 孙昆, 张旭, 等. 林隙干扰对森林生态系统的影响[J]. 应用生态学报, 2021, 32(2):701−710.

    Chen L B, Sun K, Zhang X, et al. Effects of forest gap disturbance on forest ecosystem[J]. Chinese Journal of Applied Ecology, 2021, 32(2): 701−710.
    [30]
    Coble A P, Cavaleri M A. Light drives vertical gradients of leaf morphology in a sugar maple (Acer saccharum) forest[J]. Tree Physiology, 2014, 34(2): 146−158. doi: 10.1093/treephys/tpt126
    [31]
    李兵兵, 秦琰, 刘亚茜, 等. 燕山山地油松人工林林隙大小对更新的影响[J]. 林业科学, 2012, 48(6):147−151. doi: 10.11707/j.1001-7488.20120622

    Li B B, Qin Y, Liu Y Q, et al. Effects of gap size on regeneration of Pinus tabulaeformis plantation in the Yanshan Mountain[J]. Scientia Silvae Sinicae, 2012, 48(6): 147−151. doi: 10.11707/j.1001-7488.20120622
    [32]
    罗大庆, 郭泉水, 薛会英, 等. 西藏色季拉山冷杉原始林林隙更新研究[J]. 林业科学研究, 2002, 15(5):564−569. doi: 10.3321/j.issn:1001-1498.2002.05.010

    Luo D Q, Guo Q S, Xue H Y, et al. A research of gap regeneration of virgin fir forest in Mount Sejila in Tibet[J]. Forest Research, 2002, 15(5): 564−569. doi: 10.3321/j.issn:1001-1498.2002.05.010
    [33]
    周振钊, 范春楠, 郭忠玲, 等. 长白山红松阔叶林林隙及更新特征[J]. 北华大学学报(自然科学版), 2019, 20(2):161−167.

    Zhou Z Z, Fan C N, Guo Z L, et al. Gap and regeneration characteristics of Korean pine broad-leaved forest in Changbai Mountain[J]. Journal of Beihua University (Natural Science), 2019, 20(2): 161−167.
    [34]
    Downey M, Valkonen S, Heikkinen J. Natural tree regeneration and vegetation dynamics across harvest gaps in Norway spruce dominated forests in southern Finland[J]. Canadian Journal of Forest Research, 2018, 48(5): 524−534. doi: 10.1139/cjfr-2017-0358
  • Cited by

    Periodical cited type(10)

    1. 邹玉珍,曾庆伟,武红敢,郑仁高. 变色立木卫星影像样本特征分析及应用. 中国森林病虫. 2023(03): 1-8 .
    2. 焦全军,郑焰锋,黄文江,张兵,张鹤译,史宜梦,吴发云,付安民. 陆地生态系统碳监测卫星松材线虫病变色木识别指数研究. 林业资源管理. 2023(04): 123-131 .
    3. 曾庆伟,武红敢,张静,杨雅菲. 碳卫星在变色立木遥感监测中的应用潜力分析. 卫星应用. 2023(11): 20-25 .
    4. 李炜浩,张硕,刘梓航,苏旻,高浩然,刘善军. 基于光谱指数法的本溪市域红叶提取方法研究. 测绘与空间地理信息. 2022(04): 47-50 .
    5. 戴丽,周席华,罗治建,武红敢,陈亮. 湖北松材线虫病卫星遥感监管技术初探. 湖北林业科技. 2022(04): 60-64 .
    6. 孙红,曾庆伟. “高分七号”数据在松材线虫病松树样木监测中的应用. 林业科技通讯. 2022(09): 27-29 .
    7. 陶欢,李存军,程成,蒋丽雅,胡海棠. 松材线虫病变色松树遥感监测研究进展. 林业科学研究. 2020(03): 172-183 .
    8. 陶欢,李存军,谢春春,周静平,淮贺举,蒋丽雅,李凤涛. 基于HSV阈值法的无人机影像变色松树识别. 南京林业大学学报(自然科学版). 2019(03): 99-106 .
    9. 武红敢,牟晓伟,杨清钰,王成波. 无人机遥感技术在重庆市沙坪坝区松材线虫病监测中的应用. 林业资源管理. 2019(02): 109-115 .
    10. 武红敢,王成波,常原飞. 变色立木的无人机遥感监测技术. 中国森林病虫. 2019(04): 29-32+37 .

    Other cited types(4)

Catalog

    Article views (903) PDF downloads (69) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return