Citation: | Bai Haifeng, Liu Xiaodong, Niu Shukui, He Yadong. Construction of forest fire prediction model based on Bayesian model averaging method: taking Dali Prefecture, Yunnan Province of southwestern China as an example[J]. Journal of Beijing Forestry University, 2021, 43(5): 44-52. DOI: 10.12171/j.1000-1522.20200173 |
[1] |
Rigo D D, Giorgio L, Durrant T H, et al. Forest fire danger extremes in Europe under climate change: variability and uncertainty[M]. Luxembourg: Publications Office of the European Union, 2017.
|
[2] |
田晓瑞, 宗学政, 舒立福, 等. ENSO事件对中国森林火险天气的影响[J]. 应用生态学报, 2020, 31(5):65−73.
Tian X R, Zong X Z, Shu L F, et al. Impacts of ENSO events on forest fire weather of China[J]. Chinese Journal of Applied Ecology, 2020, 31(5): 65−73.
|
[3] |
白夜, 武英达, 贾宜松, 等. 2019—2020年澳大利亚气候异常与山火爆发的关系分析及应对策略[J]. 中国应急救援, 2020(2):23−27. doi: 10.3969/j.issn.1673-5579.2020.02.006
Bai Y, Wu Y D, Jia Y S, et al. Link between climate anomaly and Australia bushfires in 2019−2020[J]. China Emergency Rescue, 2020(2): 23−27. doi: 10.3969/j.issn.1673-5579.2020.02.006
|
[4] |
赵凤君, 舒立福. 森林草原火灾扑救安全学[M]. 北京: 中国林业出版社, 2015.
Zhao F J, Shu L F. Forest and grassland fire fighting safety[M]. Beijing: China Forestry Publishing House, 2015.
|
[5] |
岳超, 罗彩访, 舒立福, 等. 全球变化背景下野火研究进展[J]. 生态学报, 2020, 40(2):385−401.
Yue C, Luo C F, Shu L F, et al. A review on wildfire studies in the context of global change[J]. Acta Ecologica Sinica, 2020, 40(2): 385−401.
|
[6] |
Marlon J R, Bartlein P J, Gavin D G, et al. Long-term perspective on wildfires in the western USA[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(9): 3203−3204.
|
[7] |
Westerling A L. Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring[J]. Philosophical Transactions of the Royal Society of London (Series B): Biological Sciences, 2016, 371: 1−10.
|
[8] |
潘登, 郁培义, 吴强. 基于气象因子的随机森林算法在湘中丘陵区林火预测中的应用[J]. 西北林学院学报, 2018, 33(3):175−183.
Pan D, Yu P Y, Wu Q. Application of random forest algorithm on the forest fire prediction based on meteorological factors in the hilly area, central Hunan Province[J]. Journal of Northwest Forestry University, 2018, 33(3): 175−183.
|
[9] |
North M P, Stephens S L, Collins B M, et al. Reform forest fire management[J]. Science, 2015, 349: 1280−1281. doi: 10.1126/science.aab2356
|
[10] |
Fischer A P, Spies T A, Steelman T A, et al. Wildfire risk as a socioecological pathology[J]. Frontiers in Ecology and the Environment, 2016, 14(5): 276−284. doi: 10.1002/fee.1283
|
[11] |
Zhang G, Wang M, Liu K. Forest fire susceptibility modeling using a convolutional neural network for Yunnan Province of China[J]. International Journal of Disaster Risk Science, 2019, 10(3): 386−403. doi: 10.1007/s13753-019-00233-1
|
[12] |
Murphy T E, Tsang S W, Leo L S, et al. Bayesian model averaging for selection of a risk prediction model for death within thirty days of discharge: the silver-ami study[J]. International Journal of Statistics in Medical Research, 2019, 8: 1−7. doi: 10.6000/1929-6029.2019.08.01
|
[13] |
Huang H, Liang Z, Li B, et al. Combination of multiple data-driven models for long-term monthly runoff predictions based on Bayesian model averaging[J]. Water Resources Management, 2019, 33(9): 3321−3338. doi: 10.1007/s11269-019-02305-9
|
[14] |
王倩, 师鹏飞, 宋培兵, 等. 基于贝叶斯模型平均法的洪水集合概率预报[J]. 水电能源科学, 2016(6):64−66.
Wang Q, Shi P F, Song P B, et al. Multi-model ensemble flood probability forecasting based on BMA[J]. Water Resources and Power, 2016(6): 64−66.
|
[15] |
张畅, 陈新军. 海洋环境因子对澳洲鲐亲体补充量关系的影响: 基于贝叶斯模型平均法的研究[J]. 海洋学报, 2019, 41(2):99−106.
Zhang C, Chen X J. The effect of environmental factors on stock-recruitment relationship of spotted mackerel-based on Bayesian model averaging method[J]. Haiyang Xuebao, 2019, 41(2): 99−106.
|
[16] |
李丽琴. 云南省森林火灾发生与气象因子之间的关系研究[D]. 北京: 北京林业大学, 2010.
Li L Q. Study on the relationship between forest fires and the meteorological factors in Yunnan[D]. Beijing: Beijing Forestry University, 2010.
|
[17] |
周明昆, 王永平, 高月忠. 气象因子对云南大理森林火灾的影响[J]. 四川林业科技, 2012, 33(6):96−99. doi: 10.3969/j.issn.1003-5508.2012.06.022
Zhou M K, Wang Y P, Gao Y Z. Effects of meteorological factors on forest fires in Dali, Yunnan[J]. Journal of Sichuan Forestry Science and Technology, 2012, 33(6): 96−99. doi: 10.3969/j.issn.1003-5508.2012.06.022
|
[18] |
Martell D L, Otukol S, Stocks B J. A logistic model for predicting daily people-caused forest fire occurrence in Ontario[J]. Canadian Journal of Forest Research, 1987, 17(5): 394−401. doi: 10.1139/x87-068
|
[19] |
苏漳文, 刘爱琴, 郭福涛, 等. 福建林火发生的驱动因子及空间格局分析[J]. 自然灾害学报, 2016, 25(2):110−119.
Su Z W, Liu A Q, Guo F T, et al. Driving factors and spatial distribution pattern of forest fire in Fujian Province[J]. Journal of Natural Disasters, 2016, 25(2): 110−119.
|
[20] |
于建龙, 刘乃安. 我国大兴安岭地区森林雷击火发生的火险天气等级研究[J]. 火灾科学, 2010, 19(3):131−137. doi: 10.3969/j.issn.1004-5309.2010.03.004
Yu J L, Liu N A. Lightning-caused wildland fire weather danger rating in Daxing’anling region[J]. Fire Safety Science, 2010, 19(3): 131−137. doi: 10.3969/j.issn.1004-5309.2010.03.004
|
[21] |
Bisquert M, Caselles E, Sánchez J M, et al. Application of artificial neural networks and logistic regression to the prediction of forest fire danger in Galicia using MODIS data[J]. International Journal of Wildland Fire, 2012, 21(8): 1025−1029. doi: 10.1071/WF11105
|
[22] |
Oliveira S, Oehler F, San-Miguel-Ayanz J, et al. Modeling spatial patterns of fire occurrence in Mediterranean Europe using multiple regression and random forest[J]. Forest Ecology and Management, 2012, 275(4): 117−129.
|
[23] |
陈岱. 基于Logistic回归模型的大兴安岭林火预测研究[J]. 林业资源管理, 2019(1):116−122.
Chen D. Prediction of forest fire occurrence in Daxing’an Mountains based on logistic regression model[J]. Forest Resources Management, 2019(1): 116−122.
|
[24] |
Raftery A E, Gneiting T, Balabdaoui F, et al. Using Bayesian model averaging to calibrate forecast ensembles[J]. Monthly Weather Review, 2005, 133(5): 1155−1174. doi: 10.1175/MWR2906.1
|
[25] |
梁慧玲, 林玉蕊, 杨光, 等. 基于气象因子的随机森林算法在塔河地区林火预测中的应用[J]. 林业科学, 2016, 52(1):89−98.
Liang H L, Lin Y R, Yang G, et al. Application of random forest algorithm on the forest fire prediction in Tahe Area based on meteorological factors[J]. Scientia Silvae Sinicae, 2016, 52(1): 89−98.
|
[26] |
顾先丽, 吴志伟, 张宇婧, 等. 气候变化背景下江西省林火空间预测[J]. 生态学报, 2020, 40(2):667−677.
Gu X L, Wu Z W, Zhang Y J, et al. Prediction research of the forest fire in Jiangxi Province in the background of climate change[J]. Acta Ecological Sinica, 2020, 40(2): 667−677.
|
[27] |
Chang Y, Zhu Z L, Bu R C, et al. Predicting fire occurrence patterns with logistic regression in Heilongjiang Province, China[J]. Landscape Ecology, 2013, 28(10): 1989−2004. doi: 10.1007/s10980-013-9935-4
|
[28] |
Guo F T, Su Z W, Wang G Y, et al. Understanding fire drivers and relative impacts in different Chinese forest ecosystems[J]. Science of the Total Environment, 2017, 605: 411−425.
|
[29] |
Flannigan M D, Krawchuk M A, Groot W J D, et al. Implications of changing climate for global wildland fire[J]. International Journal of Wildland Fire, 2009, 18(5): 483−507. doi: 10.1071/WF08187
|
[30] |
Loepfe L, Rodrigo A, Lloret F. Two thresholds determine climatic control of forest fire size in Europe and northern Africa[J]. Regional Environmental Change, 2014, 14(4): 1395−1404. doi: 10.1007/s10113-013-0583-7
|
[31] |
蔡奇均, 曾爱聪, 苏漳文, 等. 基于Logistic回归模型的浙江省林火发生驱动因子分析[J]. 西北农林科技大学学报, 2020, 48(2):108−115.
Cai Q J, Zeng A C, Su Z W, et al. Driving factors of forest fire in Zhejiang Province based on logistic regression model[J]. Journal of Northwest A&F University, 2020, 48(2): 108−115.
|
[1] | Deng Xiangpeng, Xu Fangze, Zhao Shanchao, Xiang Wei. Tree height-DBH model for Picea schrenkiana in Tianshan Mountain, Xinjiang of northwestern China based on Bayesian method[J]. Journal of Beijing Forestry University, 2023, 45(1): 11-20. DOI: 10.12171/j.1000-1522.20220318 |
[2] | Liang Ruiting, Sun Yujun, Zhou Lai. Modeling variable exponential taper function for Cunninghamia lanceolata based on quantile regression[J]. Journal of Beijing Forestry University, 2021, 43(7): 70-78. DOI: 10.12171/j.1000-1522.20200253 |
[3] | Ge Huishuo, Song Yuepeng, Su Xuehui, Zhang Deqiang, Zhang Xiaoyu. Optimal growth model of Populus simonii seedling combination based on Logistic and Gompertz models[J]. Journal of Beijing Forestry University, 2020, 42(5): 59-70. DOI: 10.12171/j.1000-1522.20190296 |
[4] | Yao Dandan, Xu Qigang, Yan Xiaowang, Li Yutang. Individual-tree mortality model of Mongolian oak forests based on Bayesian method[J]. Journal of Beijing Forestry University, 2019, 41(9): 1-8. DOI: 10.13332/j.1000-1522.20180260 |
[5] | Gong Da-peng, Kang Feng-feng, Liu Xiao-dong. Spatial and temporal distribution patterns of grassland fire and its response to meteorological factors in XinBarag Prairie of northwestern China[J]. Journal of Beijing Forestry University, 2018, 40(2): 82-89. DOI: 10.13332/j.1000-1522.20170402 |
[6] | YAO Dan-dan, LEI Xiang-dong, ZHANG Ze-lu. Bayesian parameter estimation of dominant height growth model for Changbai larch (Larix olgensis Henry) plantations[J]. Journal of Beijing Forestry University, 2015, 37(3): 94-100. DOI: 10.13332/j.1000-1522.20140221 |
[7] | YAN Wei, ZONG Shi-xiang, LUO You-qing, CAO Chuan-jian, , LI Zhan-wen, GUO Qi-lin. Application of stepwise regression model in predicting the movement of Artemisia ordosica boring insects.[J]. Journal of Beijing Forestry University, 2009, 31(3): 140-144. |
[8] | MA You-ping, , FENG Zhong-ke, DONG Bin, AI Xun-ru. Genetic algorithm solution for Logistic model parameters.[J]. Journal of Beijing Forestry University, 2008, 30(增刊1): 192-195. |
[9] | XIANG Wei, LEI Xiang-dong, LIU Gang, XU Guang, CHEN Guang-fa. Individual tree mortality models for seminatural larchsprucefir forests in Jilin Province, northeastern China.[J]. Journal of Beijing Forestry University, 2008, 30(6): 90-98. |
[10] | TIAN Yong-chen, LIU Shao-gang, ZHAO Gang, CHEN Jie-yuan, LI Wen-bin. Intelligent decision-making model for forest fire suppression[J]. Journal of Beijing Forestry University, 2007, 29(4): 46-48. DOI: 10.13332/j.1000-1522.2007.04.011 |
1. |
任超,岳韦霆,梁星勇,梁月吉,梁洁玉,林小棋. 基于XGBoost和组合权重方法的桂林市野火灾害风险性评估. 安全与环境学报. 2024(02): 423-432 .
![]() | |
2. |
郗婕,傅微. 基于机器学习的流域尺度森林火灾灾害风险预测. 自然灾害学报. 2024(01): 89-98 .
![]() | |
3. |
张恒,李慧,赵鹏武. 内蒙古森林火灾发生风险及其驱动因素. 生态学报. 2024(13): 5669-5683 .
![]() | |
4. |
莫凡,郭慧,裴顺祥,吴迪,吴莎,辛学兵. 野外-城市界域森林火险时空演变趋势及火险等级划分. 生态学报. 2024(14): 6232-6242 .
![]() | |
5. |
周庆,张恒,张秋良,赵鹏武,诺敏,王嘉夫,高健,赵梦玉,杨泽华. 内蒙古大兴安岭林火驱动因素识别及预测模型. 北京林业大学学报. 2024(12): 114-125 .
![]() | |
6. |
贾勃,王新杰. 应用贝叶斯模型平均法建立东北云冷杉针阔混交林蓄积生长模型. 东北林业大学学报. 2023(01): 1-5 .
![]() | |
7. |
杜秋洋,张国琛,宋博,胡旭坤,殷继艳. 森林火灾预测模型研究. 亚热带资源与环境学报. 2023(01): 87-93 .
![]() | |
8. |
任静,沈才明,刘芳,叶燎原. 2011—2020年云南西双版纳MODIS火点的时空动态特征. 生态学杂志. 2023(08): 1953-1962 .
![]() | |
9. |
张文文,王劲,王秋华,张曦妍,曹恒茂,龙腾腾. 基于MODIS的云南省2001—2020年林火发生时空特征分析. 南京林业大学学报(自然科学版). 2023(05): 73-79 .
![]() |