• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Bai Haifeng, Liu Xiaodong, Niu Shukui, He Yadong. Construction of forest fire prediction model based on Bayesian model averaging method: taking Dali Prefecture, Yunnan Province of southwestern China as an example[J]. Journal of Beijing Forestry University, 2021, 43(5): 44-52. DOI: 10.12171/j.1000-1522.20200173
Citation: Bai Haifeng, Liu Xiaodong, Niu Shukui, He Yadong. Construction of forest fire prediction model based on Bayesian model averaging method: taking Dali Prefecture, Yunnan Province of southwestern China as an example[J]. Journal of Beijing Forestry University, 2021, 43(5): 44-52. DOI: 10.12171/j.1000-1522.20200173

Construction of forest fire prediction model based on Bayesian model averaging method: taking Dali Prefecture, Yunnan Province of southwestern China as an example

More Information
  • Received Date: June 18, 2020
  • Revised Date: January 06, 2021
  • Available Online: April 04, 2021
  • Published Date: May 26, 2021
  •   Objective  Based on the Bayesian model averaging method and binomial Logistic regression model, this paper constructs a forest fire prediction model in Dali Prefecture, Yunnan Province of southwestern China, so as to improve the prediction accuracy of forest fire and provide technical support for forest fire management in the study area.
      Method  Using the forest fire data and corresponding meteorological data of Dali Prefecture from 2000 to 2013, the binomial Logistic regression model and the Bayesian model averaging method were used to empirically analyze the response of forest fires to meteorological factors in this area. The binomial Logistic regression model is a single model. Before modeling, the explanatory variables with significant collinearity were eliminated by multicollinearity test. Then, the final variables were screened by stepwise regression method and the parameters were fitted. The Bayesian average model is a combined model. When modeling based on the Bayesian model averaging method, the Occam’s window method was used to appropriately adjust the model space, and the posterior probabilities of the five optimal models were used as weights for weighted modeling. In this paper, the all sample data were randomly divided into 80% training samples and 20% test samples. A model was built based on the training samples to predict the test samples. The accuracy of the model was calculated by comparing the observations and predictions.
      Result  Fitting through the binomial Logistic model, the results showed that: the model fitting goodness was 0.783, and the prediction accuracy was 0.718; through the Bayesian average model fitting, the results showed that: the model fitting goodness was 0.868, and the prediction accuracy was 0.807. The comparison of the prediction results of the two models showed that: in the training set, the prediction accuracy of the Bayesian average model was 9.3% higher than that of the binomial Logistic regression model; and in the test set, the former was 8.9% higher than the latter.
      Conclusion  In the prediction model of forest fire occurrence in Dali Prefecture based on meteorological factors, the goodness of fit and prediction accuracy of Bayesian average model were higher than that of binomial Logistic model, indicating that the Bayesian model averaging method had certain practical application significance. It can be used to improve the prediction accuracy of forest fire in the study area, which is beneficial to the decision management of forest fire.
  • [1]
    Rigo D D, Giorgio L, Durrant T H, et al. Forest fire danger extremes in Europe under climate change: variability and uncertainty[M]. Luxembourg: Publications Office of the European Union, 2017.
    [2]
    田晓瑞, 宗学政, 舒立福, 等. ENSO事件对中国森林火险天气的影响[J]. 应用生态学报, 2020, 31(5):65−73.

    Tian X R, Zong X Z, Shu L F, et al. Impacts of ENSO events on forest fire weather of China[J]. Chinese Journal of Applied Ecology, 2020, 31(5): 65−73.
    [3]
    白夜, 武英达, 贾宜松, 等. 2019—2020年澳大利亚气候异常与山火爆发的关系分析及应对策略[J]. 中国应急救援, 2020(2):23−27. doi: 10.3969/j.issn.1673-5579.2020.02.006

    Bai Y, Wu Y D, Jia Y S, et al. Link between climate anomaly and Australia bushfires in 2019−2020[J]. China Emergency Rescue, 2020(2): 23−27. doi: 10.3969/j.issn.1673-5579.2020.02.006
    [4]
    赵凤君, 舒立福. 森林草原火灾扑救安全学[M]. 北京: 中国林业出版社, 2015.

    Zhao F J, Shu L F. Forest and grassland fire fighting safety[M]. Beijing: China Forestry Publishing House, 2015.
    [5]
    岳超, 罗彩访, 舒立福, 等. 全球变化背景下野火研究进展[J]. 生态学报, 2020, 40(2):385−401.

    Yue C, Luo C F, Shu L F, et al. A review on wildfire studies in the context of global change[J]. Acta Ecologica Sinica, 2020, 40(2): 385−401.
    [6]
    Marlon J R, Bartlein P J, Gavin D G, et al. Long-term perspective on wildfires in the western USA[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(9): 3203−3204.
    [7]
    Westerling A L. Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring[J]. Philosophical Transactions of the Royal Society of London (Series B): Biological Sciences, 2016, 371: 1−10.
    [8]
    潘登, 郁培义, 吴强. 基于气象因子的随机森林算法在湘中丘陵区林火预测中的应用[J]. 西北林学院学报, 2018, 33(3):175−183.

    Pan D, Yu P Y, Wu Q. Application of random forest algorithm on the forest fire prediction based on meteorological factors in the hilly area, central Hunan Province[J]. Journal of Northwest Forestry University, 2018, 33(3): 175−183.
    [9]
    North M P, Stephens S L, Collins B M, et al. Reform forest fire management[J]. Science, 2015, 349: 1280−1281. doi: 10.1126/science.aab2356
    [10]
    Fischer A P, Spies T A, Steelman T A, et al. Wildfire risk as a socioecological pathology[J]. Frontiers in Ecology and the Environment, 2016, 14(5): 276−284. doi: 10.1002/fee.1283
    [11]
    Zhang G, Wang M, Liu K. Forest fire susceptibility modeling using a convolutional neural network for Yunnan Province of China[J]. International Journal of Disaster Risk Science, 2019, 10(3): 386−403. doi: 10.1007/s13753-019-00233-1
    [12]
    Murphy T E, Tsang S W, Leo L S, et al. Bayesian model averaging for selection of a risk prediction model for death within thirty days of discharge: the silver-ami study[J]. International Journal of Statistics in Medical Research, 2019, 8: 1−7. doi: 10.6000/1929-6029.2019.08.01
    [13]
    Huang H, Liang Z, Li B, et al. Combination of multiple data-driven models for long-term monthly runoff predictions based on Bayesian model averaging[J]. Water Resources Management, 2019, 33(9): 3321−3338. doi: 10.1007/s11269-019-02305-9
    [14]
    王倩, 师鹏飞, 宋培兵, 等. 基于贝叶斯模型平均法的洪水集合概率预报[J]. 水电能源科学, 2016(6):64−66.

    Wang Q, Shi P F, Song P B, et al. Multi-model ensemble flood probability forecasting based on BMA[J]. Water Resources and Power, 2016(6): 64−66.
    [15]
    张畅, 陈新军. 海洋环境因子对澳洲鲐亲体补充量关系的影响: 基于贝叶斯模型平均法的研究[J]. 海洋学报, 2019, 41(2):99−106.

    Zhang C, Chen X J. The effect of environmental factors on stock-recruitment relationship of spotted mackerel-based on Bayesian model averaging method[J]. Haiyang Xuebao, 2019, 41(2): 99−106.
    [16]
    李丽琴. 云南省森林火灾发生与气象因子之间的关系研究[D]. 北京: 北京林业大学, 2010.

    Li L Q. Study on the relationship between forest fires and the meteorological factors in Yunnan[D]. Beijing: Beijing Forestry University, 2010.
    [17]
    周明昆, 王永平, 高月忠. 气象因子对云南大理森林火灾的影响[J]. 四川林业科技, 2012, 33(6):96−99. doi: 10.3969/j.issn.1003-5508.2012.06.022

    Zhou M K, Wang Y P, Gao Y Z. Effects of meteorological factors on forest fires in Dali, Yunnan[J]. Journal of Sichuan Forestry Science and Technology, 2012, 33(6): 96−99. doi: 10.3969/j.issn.1003-5508.2012.06.022
    [18]
    Martell D L, Otukol S, Stocks B J. A logistic model for predicting daily people-caused forest fire occurrence in Ontario[J]. Canadian Journal of Forest Research, 1987, 17(5): 394−401. doi: 10.1139/x87-068
    [19]
    苏漳文, 刘爱琴, 郭福涛, 等. 福建林火发生的驱动因子及空间格局分析[J]. 自然灾害学报, 2016, 25(2):110−119.

    Su Z W, Liu A Q, Guo F T, et al. Driving factors and spatial distribution pattern of forest fire in Fujian Province[J]. Journal of Natural Disasters, 2016, 25(2): 110−119.
    [20]
    于建龙, 刘乃安. 我国大兴安岭地区森林雷击火发生的火险天气等级研究[J]. 火灾科学, 2010, 19(3):131−137. doi: 10.3969/j.issn.1004-5309.2010.03.004

    Yu J L, Liu N A. Lightning-caused wildland fire weather danger rating in Daxing’anling region[J]. Fire Safety Science, 2010, 19(3): 131−137. doi: 10.3969/j.issn.1004-5309.2010.03.004
    [21]
    Bisquert M, Caselles E, Sánchez J M, et al. Application of artificial neural networks and logistic regression to the prediction of forest fire danger in Galicia using MODIS data[J]. International Journal of Wildland Fire, 2012, 21(8): 1025−1029. doi: 10.1071/WF11105
    [22]
    Oliveira S, Oehler F, San-Miguel-Ayanz J, et al. Modeling spatial patterns of fire occurrence in Mediterranean Europe using multiple regression and random forest[J]. Forest Ecology and Management, 2012, 275(4): 117−129.
    [23]
    陈岱. 基于Logistic回归模型的大兴安岭林火预测研究[J]. 林业资源管理, 2019(1):116−122.

    Chen D. Prediction of forest fire occurrence in Daxing’an Mountains based on logistic regression model[J]. Forest Resources Management, 2019(1): 116−122.
    [24]
    Raftery A E, Gneiting T, Balabdaoui F, et al. Using Bayesian model averaging to calibrate forecast ensembles[J]. Monthly Weather Review, 2005, 133(5): 1155−1174. doi: 10.1175/MWR2906.1
    [25]
    梁慧玲, 林玉蕊, 杨光, 等. 基于气象因子的随机森林算法在塔河地区林火预测中的应用[J]. 林业科学, 2016, 52(1):89−98.

    Liang H L, Lin Y R, Yang G, et al. Application of random forest algorithm on the forest fire prediction in Tahe Area based on meteorological factors[J]. Scientia Silvae Sinicae, 2016, 52(1): 89−98.
    [26]
    顾先丽, 吴志伟, 张宇婧, 等. 气候变化背景下江西省林火空间预测[J]. 生态学报, 2020, 40(2):667−677.

    Gu X L, Wu Z W, Zhang Y J, et al. Prediction research of the forest fire in Jiangxi Province in the background of climate change[J]. Acta Ecological Sinica, 2020, 40(2): 667−677.
    [27]
    Chang Y, Zhu Z L, Bu R C, et al. Predicting fire occurrence patterns with logistic regression in Heilongjiang Province, China[J]. Landscape Ecology, 2013, 28(10): 1989−2004. doi: 10.1007/s10980-013-9935-4
    [28]
    Guo F T, Su Z W, Wang G Y, et al. Understanding fire drivers and relative impacts in different Chinese forest ecosystems[J]. Science of the Total Environment, 2017, 605: 411−425.
    [29]
    Flannigan M D, Krawchuk M A, Groot W J D, et al. Implications of changing climate for global wildland fire[J]. International Journal of Wildland Fire, 2009, 18(5): 483−507. doi: 10.1071/WF08187
    [30]
    Loepfe L, Rodrigo A, Lloret F. Two thresholds determine climatic control of forest fire size in Europe and northern Africa[J]. Regional Environmental Change, 2014, 14(4): 1395−1404. doi: 10.1007/s10113-013-0583-7
    [31]
    蔡奇均, 曾爱聪, 苏漳文, 等. 基于Logistic回归模型的浙江省林火发生驱动因子分析[J]. 西北农林科技大学学报, 2020, 48(2):108−115.

    Cai Q J, Zeng A C, Su Z W, et al. Driving factors of forest fire in Zhejiang Province based on logistic regression model[J]. Journal of Northwest A&F University, 2020, 48(2): 108−115.
  • Related Articles

    [1]Deng Xiangpeng, Xu Fangze, Zhao Shanchao, Xiang Wei. Tree height-DBH model for Picea schrenkiana in Tianshan Mountain, Xinjiang of northwestern China based on Bayesian method[J]. Journal of Beijing Forestry University, 2023, 45(1): 11-20. DOI: 10.12171/j.1000-1522.20220318
    [2]Liang Ruiting, Sun Yujun, Zhou Lai. Modeling variable exponential taper function for Cunninghamia lanceolata based on quantile regression[J]. Journal of Beijing Forestry University, 2021, 43(7): 70-78. DOI: 10.12171/j.1000-1522.20200253
    [3]Ge Huishuo, Song Yuepeng, Su Xuehui, Zhang Deqiang, Zhang Xiaoyu. Optimal growth model of Populus simonii seedling combination based on Logistic and Gompertz models[J]. Journal of Beijing Forestry University, 2020, 42(5): 59-70. DOI: 10.12171/j.1000-1522.20190296
    [4]Yao Dandan, Xu Qigang, Yan Xiaowang, Li Yutang. Individual-tree mortality model of Mongolian oak forests based on Bayesian method[J]. Journal of Beijing Forestry University, 2019, 41(9): 1-8. DOI: 10.13332/j.1000-1522.20180260
    [5]Gong Da-peng, Kang Feng-feng, Liu Xiao-dong. Spatial and temporal distribution patterns of grassland fire and its response to meteorological factors in XinBarag Prairie of northwestern China[J]. Journal of Beijing Forestry University, 2018, 40(2): 82-89. DOI: 10.13332/j.1000-1522.20170402
    [6]YAO Dan-dan, LEI Xiang-dong, ZHANG Ze-lu. Bayesian parameter estimation of dominant height growth model for Changbai larch (Larix olgensis Henry) plantations[J]. Journal of Beijing Forestry University, 2015, 37(3): 94-100. DOI: 10.13332/j.1000-1522.20140221
    [7]YAN Wei, ZONG Shi-xiang, LUO You-qing, CAO Chuan-jian, , LI Zhan-wen, GUO Qi-lin. Application of stepwise regression model in predicting the movement of Artemisia ordosica boring insects.[J]. Journal of Beijing Forestry University, 2009, 31(3): 140-144.
    [8]MA You-ping, , FENG Zhong-ke, DONG Bin, AI Xun-ru. Genetic algorithm solution for Logistic model parameters.[J]. Journal of Beijing Forestry University, 2008, 30(增刊1): 192-195.
    [9]XIANG Wei, LEI Xiang-dong, LIU Gang, XU Guang, CHEN Guang-fa. Individual tree mortality models for seminatural larchsprucefir forests in Jilin Province, northeastern China.[J]. Journal of Beijing Forestry University, 2008, 30(6): 90-98.
    [10]TIAN Yong-chen, LIU Shao-gang, ZHAO Gang, CHEN Jie-yuan, LI Wen-bin. Intelligent decision-making model for forest fire suppression[J]. Journal of Beijing Forestry University, 2007, 29(4): 46-48. DOI: 10.13332/j.1000-1522.2007.04.011
  • Cited by

    Periodical cited type(9)

    1. 任超,岳韦霆,梁星勇,梁月吉,梁洁玉,林小棋. 基于XGBoost和组合权重方法的桂林市野火灾害风险性评估. 安全与环境学报. 2024(02): 423-432 .
    2. 郗婕,傅微. 基于机器学习的流域尺度森林火灾灾害风险预测. 自然灾害学报. 2024(01): 89-98 .
    3. 张恒,李慧,赵鹏武. 内蒙古森林火灾发生风险及其驱动因素. 生态学报. 2024(13): 5669-5683 .
    4. 莫凡,郭慧,裴顺祥,吴迪,吴莎,辛学兵. 野外-城市界域森林火险时空演变趋势及火险等级划分. 生态学报. 2024(14): 6232-6242 .
    5. 周庆,张恒,张秋良,赵鹏武,诺敏,王嘉夫,高健,赵梦玉,杨泽华. 内蒙古大兴安岭林火驱动因素识别及预测模型. 北京林业大学学报. 2024(12): 114-125 . 本站查看
    6. 贾勃,王新杰. 应用贝叶斯模型平均法建立东北云冷杉针阔混交林蓄积生长模型. 东北林业大学学报. 2023(01): 1-5 .
    7. 杜秋洋,张国琛,宋博,胡旭坤,殷继艳. 森林火灾预测模型研究. 亚热带资源与环境学报. 2023(01): 87-93 .
    8. 任静,沈才明,刘芳,叶燎原. 2011—2020年云南西双版纳MODIS火点的时空动态特征. 生态学杂志. 2023(08): 1953-1962 .
    9. 张文文,王劲,王秋华,张曦妍,曹恒茂,龙腾腾. 基于MODIS的云南省2001—2020年林火发生时空特征分析. 南京林业大学学报(自然科学版). 2023(05): 73-79 .

    Other cited types(12)

Catalog

    Article views (2106) PDF downloads (176) Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return