• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Li Wannian, Huang Zeyue, Zhao Chunmei, Yang Mei. Characteristics of soil microbial biomass C, N and nutrients in young plantations of Parashorea chinensis[J]. Journal of Beijing Forestry University, 2020, 42(12): 51-62. DOI: 10.12171/j.1000-1522.20200191
Citation: Li Wannian, Huang Zeyue, Zhao Chunmei, Yang Mei. Characteristics of soil microbial biomass C, N and nutrients in young plantations of Parashorea chinensis[J]. Journal of Beijing Forestry University, 2020, 42(12): 51-62. DOI: 10.12171/j.1000-1522.20200191

Characteristics of soil microbial biomass C, N and nutrients in young plantations of Parashorea chinensis

More Information
  • Received Date: July 10, 2020
  • Revised Date: August 24, 2020
  • Available Online: November 22, 2020
  • Published Date: January 06, 2021
  •   Objective  Parashorea chinensis is a tropical rainforest species and a national first class endangered tree species, and the artificial cultivation is an important way to expand its population size. This study analyzed the soil physicochemical properties, soil microbial biomass carbon (SMBC), nitrogen (SMBN) and soil nutrient contents with their stoichiometric characteristics in different stands and soil layers of the young P. chinensis plantation, providing referable evidence for the optimal selection of mixed tree species and soil management.
      Method  The standard sites were set up in P. chinensis artificial pure and mixed plantations and the soil samples of different soil layers were collected by diagonal method. The soil pH value, organic matter and nutrient content, SMBC and SMBN content were measured, further it was discussed about the effects of different stands and soil layers on the contents of SMBC and SMBN and the soil quality by ecological stoichiometry and principal component analysis.
      Result  (1) The vertical distribution characteristics of SMBC, SMBN and soil nutrient content decreased with the deepening of soil depth, different stand types had no obvious effect on its vertical distribution. (2) The average soil C∶N∶P of P. chinensis plantation was 35∶2∶1, average SMBC∶SMBN was 8∶1. The composition of different tree species significantly affected the changes of soil nutrients, SMBC, SMBN and their stoichiometric ratio, the mixed plantation of P. chinensis and Eucalyptus grandis × E. urophylla could improve the soil microbial activity, soil texture and microenvironment. (3) Correlation and principal component analysis revealed that: the soil microorganism in Parashorea chinensis plantation could maintain a certain internal stability through self-regulation, and SMBC, SMBN might be used as early biological indicators of changes in soil nutrient reserves and C, N sources. The mixed P. chinensis and Eucalyptus grandis × E. urophylla plantation had the most significant effect on soil microecological function, quality and fertility, which suggested that this stand type could be more favorable for the growth of soil microorganism and the development of soil nutrients in young Parashorea chinensis forest land.
      Conclusion  The contents of SMBC, SMBN and nutrients with their stoichiometric characteristics of P. chinensis plantation show obvious surface accumulation effect, and the composition of tree species has no obvious effect on its vertical distribution. Compared with the pure plantation, the P. chinensis mixed plantation has more significant effect on soil microbial environment and soil quality. Particularly, the mixed plantation of P. chinensis and Eucalyptus grandis × E. urophylla better improve the function of microorganism and soil structure as well as the activation of nutrients, indicating that this mixed pattern can be selected as the appropriate choice for young P. chinensis plantation and one of the suitable transformation ways for pure Eucalyptus plantation.
  • [1]
    Arunachalam K, Arunachalam A, Melkania N P. Influence of soil properties on microbial populations, activity and biomass in humid subtropical mountainous ecosystems of India[J]. Biology & Fertility of Soils, 1999, 30(3): 217−223.
    [2]
    Wardle D A. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil[J]. Biological Reviews, 2008, 67(3): 321−358.
    [3]
    Kononen M, Jauhiainen J, Straková P, et al. Deforested and drained tropical peatland sites show poorer peat substrate quality and lower microbial biomass and activity than unmanaged swamp forest[J]. Soil Biology & Biochemistry, 2018, 123: 229−241.
    [4]
    Torres I F, Bastida F, Hernández T, et al. The role of lignin and cellulose in the carbon-cycling of degraded soils under semiarid climate and their relation to microbial biomass[J]. Soil Biology & Biochemistry, 2014, 75: 152−160.
    [5]
    He Z L, Yang X E, Baligar V C, et al. Microbiological and biochemical indexing systems for assessing quality of acid soils[J]. Advances in Agronomy, 2003, 78(2): 89−138.
    [6]
    任璐璐, 张炳学, 韩凤朋, 等. 黄土高原不同年限刺槐土壤化学计量特征分析[J]. 水土保持学报, 2017, 31(2):339−344.

    Ren L L, Zhang B X, Han F P, et al. Ecological stoichiometric characteristics of soils in Robinia pseudoacacia forests of different ages on the Loess Plateau[J]. Journal of Soil and Water Conservation, 2017, 31(2): 339−344.
    [7]
    贾培龙, 安韶山, 李程程, 等. 黄土高原森林带土壤养分和微生物量及其生态化学计量变化特征[J]. 水土保持学报, 2020, 34(1):315−321.

    Jia P L, An S S, Li C C, et al. Dynamics of soil nutrients and their ecological stoichiometry characteristics under different longitudes in the east-west forest belt of the Loess Plateau[J]. Journal of Soil and Water Conservation, 2020, 34(1): 315−321.
    [8]
    Anderson T H. Microbial eco-physiological indicators to asses soil quality[J]. Agriculture Ecosystems & Environment, 2003, 98(1): 285−293.
    [9]
    Wardle D A. Controls of temporal variability of the soil microbial biomass: a global-scale synthesis[J]. Soil Biology & Biochemistry, 1998, 30(13): 1627−1637.
    [10]
    李雪, 万晓华, 周富伟, 等. 南亚热带6种人工林土壤微生物生物量和群落结构特征[J]. 亚热带资源与环境学报, 2020, 15(1):33−40.

    Li X, Wan X H, Zhou F W, et al. Characteristics of soil microbial biomass and community structure under six different tree species plantations in southern subtropical of China[J]. Journal of Subtropical Resources and Environment, 2020, 15(1): 33−40.
    [11]
    陈爱国, 吴玉芳, 邹寿青. 望天树育苗技术初报[J]. 西部林业科学, 1992(1):31−32.

    Chen A G, Wu Y F, Zou S Q. A preliminary report on the seedling raising technology of Parashorea chinensis[J]. Journal of West China Forestry Science, 1992(1): 31−32.
    [12]
    李元强, 罗毅敏, 廖鋆章, 等. 望天树人工林营养元素含量、积累与分配特征研究[J]. 广东农业科学, 2014, 41(18):34−38.

    Li Y Q, Luo Y M, Liao J Z, et al. Concentration, accumulation and distribution characteristics of nutrient elements in Parashorea chinensis plantation[J]. Guangdong Agricultural Sciences, 2014, 41(18): 34−38.
    [13]
    刘志龙, 谌红辉, 贾宏炎, 等. 广西望天树优树选择标准和方法研究[J]. 林业实用技术, 2014(9):13−16.

    Liu Z L, Shen H H, Jia H Y, et al. Study on the selection criteria and methods of the superior trees of Parashorea chinensis in Guangxi[J]. Practical Forestry Technology, 2014(9): 13−16.
    [14]
    唐建维, 邹寿青. 望天树人工林林木个体前期生长节律的研究[J]. 西部林业科学, 2008, 37(4):45−48.

    Tang J W, Zou S Q. Study on growth rhythm of Parashorea chinensis individuals in man made forest[J]. Journal of West China Forestry Science, 2008, 37(4): 45−48.
    [15]
    唐建维, 施济普, 张光明, 等. 西双版纳不同斑块望天树种群的密度、结构和生物量[J]. 植物生态学报, 2008, 32(1):45−59.

    Tang J W, Shi J P, Zhang G M, et al. Structure and biomass of Parashorea chinensis populations in different patches in Xishuangbanna, SW China[J]. Chinese Journal of Plant Ecology, 2008, 32(1): 45−59.
    [16]
    宋军平, 郭贤明, 陶庆, 等. 望天树在不同生境条件下自然更新调查[J]. 林业调查规划, 2006, 31(增刊):41−43.

    Song J P, Guo X M, Tao Q, et al. Natural regeneration of Cupressus chinensis in different habitats[J]. Forest Inventory and Planning, 2006, 31(Suppl.): 41−43.
    [17]
    韦中绵, 李婷, 吴敏. 擎天树与桉树萌芽林混交造林效果及经济效益分析[J]. 南方农业学报, 2017, 48(3):488−492.

    Wei Z M, Li T, Wu M. Mixed afforestation effects and economic benefit analysis on Parashorea chinensis-Eucalyptus sprout forest[J]. Journal of Southern Agriculture, 2017, 48(3): 488−492.
    [18]
    鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.

    Lu R K. Agrochemical analysis of soil[M]. Beijing: China Agricultural Science and Technology Press, 2000.
    [19]
    Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C[J]. Soil Biology & Biochemistry, 1987, 19(6): 703−707.
    [20]
    Brookes P C, Landman A, Pruden G, et al. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil[J]. Soil Biology & Biochemistry, 1985, 17(6): 837−842.
    [21]
    Devi N B, Yadava P S. Seasonal dynamics in soil microbial biomass C, N and P in a mixed-oak forest ecosystem of Manipur, Northeast India[J]. Applied Soil Ecology, 2005, 31(3): 220−227.
    [22]
    Sterner R W, Elser J J, Vitousek P. Ecological stoichiometry: the biology of elements from molecules to the biosphere[M]. Proclamation: Proclamation University Press, 2017.
    [23]
    刘秉儒. 贺兰山东坡典型植物群落土壤微生物量碳、氮沿海拔梯度的变化特征[J]. 生态环境学报, 2010, 19(4):883−888.

    Liu B R. Changes in soil microbial biomass carbon and nitrogen under typical plant communies along an altitud[J]. Ecology and Environmental Sciences, 2010, 19(4): 883−888.
    [24]
    施福军, 黄则月, 李婷, 等. 望天树天然林土壤微生物生物量碳氮垂直分布及相关性分析[J]. 林业与环境科学, 2018, 34(6):72−76.

    Shi F J, Huang Z Y, Li T, et al. Vertical changes of the soil microbial biomass and the correlation analysis in Parashorea chinensis natural forest[J]. Forestry and Environmental Science, 2018, 34(6): 72−76.
    [25]
    刘爽, 王传宽. 五种温带森林土壤微生物生物量碳氮的时空格局[J]. 生态学报, 2010, 30(12):3135−3143.

    Liu S, Wang C K. Spatio-temporal patterns of soil microbial biomass carbon and nitrogen in five temperate forest ecosystems[J]. Acta Ecologica Sinica, 2010, 30(12): 3135−3143.
    [26]
    钟聪, 李小洁, 何园燕, 等. 广西土壤有机质空间变异特征及其影响因素研究[J]. 地理科学, 2020, 40(3):478−485.

    Zhong C, Li X J, He Y Y, et al. Spatial variation of soil organic matter and its influencing factors in Guangxi, China[J]. Scientia Geographica Sinica, 2020, 40(3): 478−485.
    [27]
    Du H, Zeng F P, Song T Q, et al. Spatial pattern of soil organic carbon of the main forest soils and its influencing factors in Guangxi, China[J]. Chinese Journal of Plant Ecology, 2016, 40(4): 282−291. doi: 10.17521/cjpe.2015.0199
    [28]
    陈莉, 兰国玉, 谭正洪, 等. 橡胶树与其他乡土树种混交对土壤微生物生物量碳的影响[J]. 西北林学院学报, 2018, 33(6):26−30.

    Chen L, Lan G Y, Tan Z H, et al. Effects of the mixed cultivation of rubber trees with other indigenous tree species on soil microbial biomass carbon of rubber plantations[J]. Journal of Northwest Forestry University, 2018, 33(6): 26−30.
    [29]
    Cleveland C C, Liptzin D. C: N: P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass?[J]. Biogeochemistry, 2007, 85(3): 235−252. doi: 10.1007/s10533-007-9132-0.
    [30]
    Tian H, Chen G, Zhang C, et al. Pattern and variation of C: N: P ratios in China’s soils: a synthesis of observational data[J]. Biogeochemistry, 2010, 98(1−3): 139−151. doi: 10.1007/s10533-009-9382-0.
    [31]
    宋一凡, 卢亚静, 刘铁军, 等. 荒漠草原不同雨量带土壤-植物-微生物C、N、P及其化学计量特征[J]. 生态学报, 2020, 40(12):4011−4023.

    Song Y F, Lu Y J, Liu T J, et al. Soil-plant-microbial C, N, P and their stoichiometric characteristics in different rainfall zones of desert steppe[J]. Acta Ecologica Sinica, 2020, 40(12): 4011−4023.
    [32]
    Marumoto T, Anderson J P E, Domsch K H. Decomposition of 14C- and 15N-labelled microbial cells in soil[J]. Soil Biol Biochem, 1982, 14(5): 461−467. doi: 10.1016/0038-0717(82)90105-5.
    [33]
    田大伦, 项文化, 闫文德. 马尾松与湿地松人工林生物量动态及养分循环特征[J]. 生态学报, 2004, 24(10):2207−2210.

    Tian D L, Xiang W H, Yan W D. Comparison of biomass dynamic and nutrient cycling between Pinus massomiana plantation and Pinus elliottii plantation[J]. Acta Ecologica Sinica, 2004, 24(10): 2207−2210.
    [34]
    董敏慧, 张良成, 文丽, 等. 松树−樟树混交林、纯林土壤微生物量碳、氮及多样性特征研究[J]. 中南林业科技大学学报, 2017, 37(11):146−153.

    Dong M H, Zhang L C, Wen L, et al. Soil microbial biomass C, N and diversity characteristics in pure and mixed forest of Pinus and Cinnamonmun[J]. Journal of Central South University of Forestry & Technology, 2017, 37(11): 146−153.
    [35]
    惠昊, 王亚茹, 林鑫宇, 等. 不同森林经营模式对土壤氮含量及酶活性的影响[J/OL]. 南京林业大学学报(自然科学版), 2020 (2020−04−20) [2020−05−11]. http://kns.cnki.net/kcms/detail/32.1161.s.20200420.1333.006.html.

    Hui H, Wang Y R, Lin X Y, et al. Effects of different forest management modes on soil nitrogen content and enzyme activity[J/OL]. Journal of Nanjing Forestry University (Natural Sciences), 2020 (2020−04−20) [2020−05−11]. http://kns.cnki.net/kcms/detail/32.1161.s.20200420.1333.006.html.
    [36]
    Ushio M, Wagai R, Balser T C, et al. Variations in the soil microbial community composition of a tropical montane forest ecosystem: does tree species matter?[J]. Soil Biology & Biochemistry, 2008, 40(10): 2699−2702.
    [37]
    李若楠, 王政培, Batbayar J, et al. 等有机质塿土有效磷和无机磷形态的关系[J]. 中国农业科学, 2019, 52(21):3852−3865.

    Li R N, Wang Z P, Batbayar J, et al. Relationship between soil available phosphorus and inorganic phosphorus forms under equivalent organic matter condition in a tier soil[J]. Scientia Agricultura Sinica, 2019, 52(21): 3852−3865.
    [38]
    安然, 马风云, 崔浩然, 等. 黄河三角洲刺槐臭椿混交林与纯林土壤细菌群落结构和多样性特征分析[J]. 生态学报, 2019, 39(21):7960−7967.

    An R, Ma F Y, Cui H R, et al. Analysis of bacterial community structure and diversity characteristics of mixed forest of Robinia pseudoacacia and Ailanthus altissima and the pure forest in the Yellow River Delta[J]. Acta Ecologica Sinica, 2019, 39(21): 7960−7967.
    [39]
    王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28(8):3937−3947.

    Wang S Q, Yu G R. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements[J]. Acta Ecologica Sinica, 2008, 28(8): 3937−3947.
    [40]
    吴然, 康峰峰, 韩海荣, 等. 山西太岳山典型植被类型土壤微生物量特征[J]. 应用与环境生物学报, 2016, 22(3):486−493.

    Wu R, Kang F F, Han H R, et al. Soil microbial biomass properties under typical vegetation types in the Taiyue Mountain of China[J]. Chinese Journal of Applied & Environmental Biology, 2016, 22(3): 486−493.
    [41]
    杨凯, 朱教君, 张金鑫, 等. 不同林龄落叶松人工林土壤微生物生物量碳氮的季节变化[J]. 生态学报, 2009, 29(10):5500−5507.

    Yang K, Zhu J J, Zhang J X, et al. Seasonal dynamics of soil microbial biomass C and N in two larch plantation forests with different ages in northeastern China[J]. Acta Ecologica Sinica, 2009, 29(10): 5500−5507.
    [42]
    邓健, 张丹, 张伟, 等. 黄土丘陵区刺槐叶片−土壤−微生物碳氮磷化学计量学及其稳态性特征[J]. 生态学报, 2019, 39(15):5527−5535.

    Deng J, Zhang D, Zhang W, et al. Carbon, nitrogen, and phosphorus stoichiometry and homeostasis characteristics of leaves, soil, and microbial biomass of Robinia pseudoacacia forests in the loess hilly region of China[J]. Acta Ecologica Sinica, 2019, 39(15): 5527−5535.
    [43]
    Wang C J, Wang Q Q, Xu H, et al. Carbon, nitrogen, and phosphorus stoichiometry characteristics of bulk soil, organic matter, and soil microbial biomass under long-term fertilization in cropland[J]. Acta Ecologica Sinica, 2018, 38(11): 3848−3858.
    [44]
    韩光中, 王德彩, 谢贤健. 中国主要土壤类型的土壤容重传递函数研究[J]. 土壤学报, 2016, 53(1):93−102.

    Han G Z, Wang D C, Xie X J. Pedotransfer functions for prediction of soil bulk density for major types of soils in China[J]. Acta Pedologica Sinica, 2016, 53(1): 93−102.
  • Related Articles

    [1]Xu Fangze, Sun Hailong, Shi Jingning, He Danni, Wang Fuzeng, Xiang Wei. Spatial pattern analysis of dominant tree species saplings in spruce-fir coniferous and broadleaved mixed forests based on Ripley L function[J]. Journal of Beijing Forestry University, 2024, 46(10): 1-10. DOI: 10.12171/j.1000-1522.20230237
    [2]Liu Chang, Lu Qi, Wang Shengcai, Chen Mengyuan, Xing Shaohua, Wang Qingchun, Yang Jun. Effects of forest gaps on spatial distribution and growth of Phellodendron amurense saplings[J]. Journal of Beijing Forestry University, 2024, 46(2): 9-17. DOI: 10.12171/j.1000-1522.20220030
    [3]An Ran, Xu Fangze, Deng Xiangpeng, Zhao Shanchao, Xiang Wei. Effects of gap size on regeneration of saplings in Picea schrenkiana in Xinjiang of northwestern China[J]. Journal of Beijing Forestry University, 2023, 45(11): 23-32. DOI: 10.12171/j.1000-1522.20230116
    [4]Zhou Zeyu, Fu Liyong, Zhang Xiaohong, Zhang Huiru, Lei Xiangdong. Comparison of crown width models and estimation methods of natural spruce fir forest in Jingouling Forest Farm of northeastern China[J]. Journal of Beijing Forestry University, 2021, 43(8): 29-40. DOI: 10.12171/j.1000-1522.20210134
    [5]Li Hui, Yang Hua, Xie Rong. Canopy characteristics in gaps and its relationship with seedlings and saplings in a spruce-fir forest in the Changbai Mountain area of northeastern China[J]. Journal of Beijing Forestry University, 2021, 43(7): 54-62. DOI: 10.12171/j.1000-1522.20200131
    [6]Li Yang, Kang Xingang. Mixed model of forest space utilization in spruce-fir coniferous and broadleaved mixed forest of Changbai Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(5): 71-79. DOI: 10.12171/j.1000-1522.20190112
    [7]Shi Mengmeng, Yang Hua, Wang Quanjun, Yang Chao. Spatial distribution and association of seedlings and saplings in a spruce-fir forest in the Changbai Mountains area of northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(4): 1-11. DOI: 10.12171/j.1000-1522.20190071
    [8]LOU Ming-hua, ZHANG Hui-ru, LEI Xiang-dong, LU Jun. An individual height-diameter model constructed using spatial autoregressive models within natural spruce-fir and broadleaf mixed stands.[J]. Journal of Beijing Forestry University, 2016, 38(8): 1-9. DOI: 10.13332/j.1000-1522.20150491
    [9]ZANG Hao, LEI Xiang-dong, ZHANG Hui-ru, LI Chun-ming, LU Jun. Nonlinear mixed-effects height-diameter model of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2016, 38(6): 8-9. DOI: 10.13332/j.1000-1522.20160008
    [10]FAN Chun-nan, PANG Sheng-jiang, ZHENG Jin-ping, LI Bing, GUO Zhong-ling. Biomass estimating models of saplings for 14 species in Changbaishan Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2013, 35(2): 1-9.
  • Cited by

    Periodical cited type(6)

    1. 姜有军. 探究沙木蓼的引种与栽培技术. 农业灾害研究. 2023(03): 40-42 .
    2. 亓守贺,李昊远,张恒,孔凡克,曲威. 复合酶解耦合微生物发酵制备海藻生物有机液肥的研究. 湖北农业科学. 2022(07): 20-24+30 .
    3. 王冠都,王俊,王慧荣,李胜利,张世柏,孙清华,汪强. 有机种植下液肥施用量对番茄生长及品质的影响. 河南科学. 2022(07): 1062-1070 .
    4. 李思,弓瑶,詹保成,李友丽,王利春,郭文忠. 中国有机液肥的应用现状及发展趋势. 中国农学通报. 2021(21): 75-79 .
    5. 刘晓佩,李鸣晓,戴昕,李雪琪,窦润琪,王勇,贾璇,冯作山,安立超. 不同菌剂制备餐厨垃圾液态有机肥过程物质转化规律研究. 环境工程技术学报. 2021(04): 750-755 .
    6. 张世婷. 浅谈沙木蓼的引种与栽培. 中国林业产业. 2021(08): 49-50 .

    Other cited types(4)

Catalog

    Article views (1412) PDF downloads (105) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return