• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Peng Jieying, Xie Yuanming, Liu Wenzhen, Yan Yan. Relationship between tree species richness and productivity of Quercus aliena var. acutiserrata forest in Xiaolongshan Mountain, Gansu Province of northwestern China[J]. Journal of Beijing Forestry University, 2021, 43(11): 11-19. DOI: 10.12171/j.1000-1522.20200192
Citation: Peng Jieying, Xie Yuanming, Liu Wenzhen, Yan Yan. Relationship between tree species richness and productivity of Quercus aliena var. acutiserrata forest in Xiaolongshan Mountain, Gansu Province of northwestern China[J]. Journal of Beijing Forestry University, 2021, 43(11): 11-19. DOI: 10.12171/j.1000-1522.20200192

Relationship between tree species richness and productivity of Quercus aliena var. acutiserrata forest in Xiaolongshan Mountain, Gansu Province of northwestern China

More Information
  • Received Date: June 22, 2020
  • Revised Date: March 02, 2021
  • Available Online: October 07, 2021
  • Published Date: November 29, 2021
  •   Objective  The relationship between species richness and productivity (PDR) is the theoretical basis of biodiversity conservation for natural forests and maintenance of ecosystem functions. Species richness indirectly covers functional diversity, system development diversity and genetic diversity; therefore, the study of the diversity-productivity relationship could analyze the effect of other diversity factors on the productivity of vegetation. Previous studies about PDR mostly focused on the community level. Responses of single species productivity to neighboring biodiversity could affect the relationship between species richness and productivity at the community level. The studies focusing on this topic are rarely conducted.
      Method  This study conducted regression analysis, the index of association (AI) model and heterogeneous Poisson model on inventory data from the Quercus aliena var. acutiserrata natural forest in Xiaolongshan Mountain, Gansu Province of northwestern China to discuss the relationship between species richness and productivity at community and species levels.
      Result  The diversity-productivity relationship had significant scale dependence at the community level. At the 10 m × 10 m sampling scale, a quartic correlation (the hump curve first increased and then decreased) was found between species richness and productivity. At the 20 m × 20 m scale, species richness had no significant effect on productivity. At the species level, the species that behave neutrally in the diversity-productivity relationship had the highest proportion, and accounted for 68.8%−81.3% of total target species; followed by accumulators (i.e., the species increase diversity); and repellers (i.e., the species decrease diversity) had the smallest proportion. A fraction of the species in the study area showed a clear deviation from the neutral relationship. This indicated that the interaction between interspecific promotion or inhibition had an important impact on the diversity-productivity relationship.
      Conclusion  Species richness and species attributes can both affect the productivity of Q. aliena var. acutiserrata forests in Xiaolongshan Mountain of northwestern China.
  • [1]
    马克平. 生物多样性与生态系统功能的实验研究[J]. 生物多样性, 2010, 21(3):247−248.

    Ma K P. Studies on biodiversity and ecosystem function via manipulation experiments[J]. Biodiversity Science, 2010, 21(3): 247−248.
    [2]
    Cardinale B J, Duffy J E, Gonzalez A, et al. Biodiversity loss and its impact on humanity[J]. Nature, 2012, 489: 9−67.
    [3]
    Loreau M, Naeem S, Inchausti P, et al. Biodiversity and ecosystem functioning: current knowledge and future challenges[J]. Science, 2001, 294: 804−808. doi: 10.1126/science.1064088
    [4]
    Mensah S, Veldtman R, Assogbadjo A E, et al. Tree species diversity promotes aboveground carbon storage through functional diversity and functional dominance[J]. Ecology and Evolution, 2016, 6(20): 7546−7557. doi: 10.1002/ece3.2525
    [5]
    Ruiz-Benito P, Gómez-Aparicio L, Paquette A, et al. Diversity increases carbon storage and tree productivity in Spanish forests[J]. Global Ecology and Biogeography, 2014, 23(3): 311−322. doi: 10.1111/geb.12126
    [6]
    车盈, 金光泽. 物种多样性和系统发育多样性对阔叶红松林生产力的影响[J]. 应用生态学报, 2019, 30(7):2241−2248.

    Che Y, Jin G Z. Effects of species diversity and phylogenetic diversity on productivity of a mixed broadleaved-Korean pine forest[J]. Chinese Journal of Applied Ecology, 2019, 30(7): 2241−2248.
    [7]
    Lasky J R, Uriarte M, Boukili V K, et al. The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession[J]. Ecology Letters, 2014, 17(9): 1158−1167. doi: 10.1111/ele.12322
    [8]
    Fridley J D. Diversity effects on production in different light and fertility environments: an experiment with communities of annual plants[J]. Journal of Ecology, 2003, 91(3): 396−406. doi: 10.1046/j.1365-2745.2003.00775.x
    [9]
    Tilman D, Wedin D A, Knops J M H. Productivity and sustainability influenced by biodiversity in grassland ecosystems[J]. Nature, 1996, 379: 718−720. doi: 10.1038/379718a0
    [10]
    Wang J, Cheng Y, Zhang C, et al. Relationships between tree biomass productivity and local species diversity[J/OL]. Ecosphere, 2016, 7(11): e01562 [2020−08−22]. https://doi.org/10.1002/ecs2.1562.
    [11]
    Liang J, Crowther T W, Picard N, et al. Positive biodiversity-productivity relationship predominant in global forests[J/OL]. Science, 2016, 354: aaf8957 [2020−08−19]. https://www.science.org/doi/10.1126/science.aaf8957.
    [12]
    Morin X, Fahse L, Scherer-Lorenzen M, et al. Tree species richness promotes productivity in temperate forests through strong complementarity between species[J]. Ecology Letters, 2014, 14(12): 1211−1219.
    [13]
    Zhang Y, Chen H Y H, Taylor A R. Positive species diversity and above-ground biomass relationships are ubiquitous across forest strata despite interference from overstorey trees[J]. Functional Ecology, 2017, 31(2): 419−426. doi: 10.1111/1365-2435.12699
    [14]
    谭凌照, 范春雨, 范秀华. 吉林蛟河阔叶红松林木本植物物种多样性及群落结构与生产力的关系[J]. 植物生态学报, 2017, 41(11):1149−1156. doi: 10.17521/cjpe.2016.0321

    Tan L Z, Fan C Y, Fan X H. Relationships between species diversity or community structure and productivity of woody-plants in a broad-leaved Korean pine forest in Jiaohe, Jilin, China[J]. Chinese Journal of Plant Ecology, 2017, 41(11): 1149−1156. doi: 10.17521/cjpe.2016.0321
    [15]
    吴初平, 韩文娟, 江波, 等. 浙江定海次生林内物种丰富度与生物量和生产力关系的环境依赖性[J]. 生物多样性, 2018, 26(6):545−553. doi: 10.17520/biods.2017320

    Wu C P, Han W J, Jiang B, et al. Relationships between species richness and biomass/productivity depend on environmental factors in secondary forests of Dinghai, Zhejiang Province[J]. Biodiversity Science, 2018, 26(6): 545−553. doi: 10.17520/biods.2017320
    [16]
    Adler P B, Seabloom E W, Borer E T, et al. Productivity is a poor predictor of plant species richness[J]. Science, 2011, 333: 1750−1753. doi: 10.1126/science.1204498
    [17]
    张全国, 张大勇. 生物多样性与生态系统功能: 进展与争论[J]. 生物多样性, 2002, 10(1):49−60. doi: 10.3321/j.issn:1005-0094.2002.01.008

    Zhang Q G, Zhang D Y. Biodiversity and ecosystem functioning: recent advances and controversies[J]. Biodiversity Science, 2002, 10(1): 49−60. doi: 10.3321/j.issn:1005-0094.2002.01.008
    [18]
    Kirwan L, Connolly J, Finn J A, et al. Diversity-interaction modeling: estimating contributions of species identities and interactions to ecosystem function[J]. Ecology, 2009, 90(8): 2032−2038. doi: 10.1890/08-1684.1
    [19]
    Huston M A. Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity[J]. Oecologia, 1997, 110(4): 449−460. doi: 10.1007/s004420050180
    [20]
    Fox J W. The long-term relationship between plant diversity and total plant biomass depends on the mechanism maintaining diversity[J]. Oikos, 2003, 102(3): 630−640. doi: 10.1034/j.1600-0706.2003.12618.x
    [21]
    Tilman D, Lehman C L, Thomson K T. Plant diversity and ecosystem productivity: theoretical considerations[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(5): 1857−1861.
    [22]
    Tilman D, Reich P B, Knops J M H, et al. Diversity and productivity in a long-term grassland experiment[J]. Science, 2001, 294: 843−845. doi: 10.1126/science.1060391
    [23]
    Thompson K, Askew A P, Grime J P, et al. Biodiversity, ecosystem function and plant traits in mature and immature plant communities[J]. Functional Ecology, 2005, 19(2): 355−358. doi: 10.1111/j.0269-8463.2005.00936.x
    [24]
    Roscher C, Tempertonb V M, Buchmannd N, et al. Community assembly and biomass production in regularly and never weeded experimental grasslands[J]. Acta Oecologica-international Journal of Ecology, 2009, 35(2): 206−217. doi: 10.1016/j.actao.2008.10.003
    [25]
    Zhang Y, Chen H Y H, Reich P B. Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis[J]. Journal of Ecology, 2012, 100(3): 742−749. doi: 10.1111/j.1365-2745.2011.01944.x
    [26]
    Jacob M, Leuschner C, Thomas F M. Productivity of temperate broad-leaved forest stands differing in tree species diversity[J]. Annals of Forest Science, 2010, 67(5): 503−513. doi: 10.1051/forest/2010005
    [27]
    Seidel D, Leuschner C, Scherber C, et al. The relationship between tree species richness, canopy space exploration and productivity in a temperate broad-leaf mixed forest[J]. Forest Ecology and Management, 2013, 310: 366−374. doi: 10.1016/j.foreco.2013.08.058
    [28]
    Finegan B, Penaclaros M, de Oliveira A A, et al. Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses[J]. Journal of Ecology, 2015, 103(1): 191−201. doi: 10.1111/1365-2745.12346
    [29]
    雷羚洁, 孔德良, 李晓明, 等. 植物功能性状、功能多样性与生态系统功能: 进展与展望[J]. 生物多样性, 2016, 24(8):922−931. doi: 10.17520/biods.2015295

    Lei L J, Kong D L, Li X M, et al. Plant functional traits, functional diversity, and ecosystem functioning: current knowledge and perspectives[J]. Biodiversity Science, 2016, 24(8): 922−931. doi: 10.17520/biods.2015295
    [30]
    Liira J, Schmidt T, Aavik T, et al. Plant functional group composition and large-scale species richness in European agricultural landscapes[J]. Journal of Vegetation Science, 2008, 19(1): 3−14. doi: 10.3170/2007-8-18308
    [31]
    侯浩, 张宋智, 关晋宏, 等. 小陇山不同林龄锐齿栎林土壤有机碳和全氮积累特征[J]. 生态学报, 2016, 36(24):8025−8033.

    Hou H, Zhang S Z, Guan J H, et al. Accumulation of soil organic carbon and total nitrogen in Quercus aliena var. acuteserrata forests at different age stages in the Xiaolongshan Mountains, Gansu Province[J]. Acta Ecologica Sinica, 2016, 36(24): 8025−8033.
    [32]
    张岗岗, 刘瑞红, 惠刚盈, 等. 林分空间结构参数N元分布及其诠释: 以小陇山锐齿栎天然混交林为例[J]. 北京林业大学学报, 2019, 41(4):21−31.

    Zhang G G, Liu R H, Hui G Y, et al. N-variate distribution and its annotation on forest spatial structural parameters: a case study of Quercus aliena var. acuteserrata natural mixed forest in Xiaolong Mountains, Gansu Province of northwestern China[J]. Journal of Beijing Forestry University, 2019, 41(4): 21−31.
    [33]
    巨天珍, 郝青, 葛建团, 等. 甘肃小陇山锐齿栎林空间分布格局分析[J]. 林业资源管理, 2010, 8(4):27−30, 44. doi: 10.3969/j.issn.1002-6622.2010.04.007

    Ju T Z, Hao Q, Ge J T, et al. Study on the spatial distribution pattern of Quercus aliena var. acuteserata population in Xiaolongshan, Gansu[J]. Forest Resources Management, 2010, 8(4): 27−30, 44. doi: 10.3969/j.issn.1002-6622.2010.04.007
    [34]
    赵中华, 惠刚盈, 袁士云, 等. 小陇山锐齿栎天然林空间结构特征[J]. 林业科学, 2009, 45(3):1−6. doi: 10.3321/j.issn:1001-7488.2009.03.001

    Zhao Z H, Hui G Y, Yuan S Y, et al. Spatial structure characteristic of Quercus aliena var. acuteserrata natural forest in Xiaolongshan[J]. Scientia Silvae Sinicae, 2009, 45(3): 1−6. doi: 10.3321/j.issn:1001-7488.2009.03.001
    [35]
    程堂仁, 马钦彦, 冯仲科, 等. 甘肃小陇山森林生物量研究[J]. 北京林业大学学报, 2007, 29(1):31−36. doi: 10.3321/j.issn:1000-1522.2007.01.006

    Cheng T R, Ma Q Y, Feng Z K, et al. Research on forest biomass in Xiaolong Mountains, Gansu Province[J]. Journal of Beijing Forestry University, 2007, 29(1): 31−36. doi: 10.3321/j.issn:1000-1522.2007.01.006
    [36]
    刘文桢, 郭小龙, 张宋智, 等. 小陇山林区锐齿栎原始林的径级结构与物种多样性[J]. 西北农林科技大学学报(自然科学版), 2014, 42(10):106−120.

    Liu W Z, Guo X L, Zhang S Z, et al. Diameter class and species diversity of Quercus aliena var. acuteserata virgin forest in Xiaolongshan Forest Area[J]. Journal of Northwest A&F University (Natural Science Edition), 2014, 42(10): 106−120.
    [37]
    郭小龙, 刘文桢, 张宋智, 等. 小陇山林区锐齿栎原始林群落的空间结构特征[J]. 西北农林科技大学学报(自然科学版), 2014, 42(11):106−120.

    Guo X L, Liu W Z, Zhang S Z, et al. Spatial structure characteristics of Quercus aliena var. acuteserata primeval forest in Xiaolongshan Forest Area[J]. Journal of Northwest A&F University (Natural Science Edition), 2014, 42(11): 106−120.
    [38]
    Huang Y, Chen Y, Castrozaguirre N, et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment[J]. Science, 2018, 362: 80−83. doi: 10.1126/science.aat6405
    [39]
    Willig M R. Biodiversity and productivity[J]. Science, 2011, 333: 1709−1710. doi: 10.1126/science.1212453
    [40]
    谭珊珊, 王忍忍, 龚筱羚, 等. 群落物种及结构多样性对森林地上生物量的影响及其尺度效应: 以巴拿马BCI样地为例[J]. 生物多样性, 2017, 25(10):1054−1064. doi: 10.17520/biods.2017155

    Tan S S, Wang R R, Gong X L, et al. Scale dependent effects of species diversity and structural diversity on aboveground biomass in a tropical forest on Barro Colorado Island, Panama[J]. Biodiversity Science, 2017, 25(10): 1054−1064. doi: 10.17520/biods.2017155
    [41]
    Zhang Q, Niu J, Buyantuyev A, et al. Productivity-species richness relationship changes from unimodal to positive linear with increasing spatial scale in the Inner Mongolia steppe[J]. Ecological Research, 2011, 26(3): 649−658. doi: 10.1007/s11284-011-0825-4
    [42]
    Shirima D D, Totland O, Munishi P K T, et al. Relationships between tree species richness, evenness and aboveground carbon storage in montane forests and miombo woodlands of Tanzania[J]. Basic and Applied Ecology, 2015, 16(3): 239−249. doi: 10.1016/j.baae.2014.11.008
    [43]
    Hao M H, Zhang C Y, Zhao X H, et al. Functional and phylogenetic diversity determine woody productivity in a temperate forest[J]. Ecology and Evolution, 2018, 8(5): 2395−2406. doi: 10.1002/ece3.3857
    [44]
    鲁君悦, 吴兆飞, 张春雨, 等. 吉林蛟河针阔混交林林层结构对生产力影响研究[J]. 生态学报, 2021, 41(5):1−9.

    Lu J Y, Wu Z F, Zhang C Y, et al. Influence of forest strate structure on productivity of coniferous and broad-leaved mixed forest in Jiaohe, Jilin[J]. Acta Ecologica Sinica, 2021, 41(5): 1−9.
    [45]
    Hooper D U, Chapin F S, Ewel J J, et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge[J]. Ecological Monographs, 2005, 75: 3−35. doi: 10.1890/04-0922
    [46]
    吴兆飞, 张雨秋, 张忠辉, 等. 东北温带森林林分结构与生产力关系研究[J]. 北京林业大学学报, 2019, 41(5):48−55.

    Wu Z F, Zhang Y Q, Zhang Z H, et al. Study on the relationship between forest structure and productivity of temperate forests in Northeast China[J]. Journal of Beijing Forestry University, 2019, 41(5): 48−55.
  • Cited by

    Periodical cited type(3)

    1. 王文君. 小陇山锐齿栎种群数量的动态研究. 南方农业. 2023(07): 233-237 .
    2. 王娜. 小陇山锐齿栎天然林的树种多样性和结构特征. 现代园艺. 2023(14): 173-174+177 .
    3. 黄睿智,王奇,孙婧依,杨绍微,赵倚霈,刘建锋,肖文发. 太白山南北坡栎类林物种组成与群落特征比较. 应用生态学报. 2023(08): 2055-2064 .

    Other cited types(1)

Catalog

    Article views (947) PDF downloads (94) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return