• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Han Changzhi, Zhu Youpeng. Advances in research on RGS of phytopathogenic filamentous fungi[J]. Journal of Beijing Forestry University, 2021, 43(4): 150-157. DOI: 10.12171/j.1000-1522.20200196
Citation: Han Changzhi, Zhu Youpeng. Advances in research on RGS of phytopathogenic filamentous fungi[J]. Journal of Beijing Forestry University, 2021, 43(4): 150-157. DOI: 10.12171/j.1000-1522.20200196

Advances in research on RGS of phytopathogenic filamentous fungi

More Information
  • Received Date: June 24, 2020
  • Revised Date: February 24, 2021
  • Available Online: March 07, 2021
  • Published Date: April 29, 2021
  • Regulators of G-protein signaling are important negative regulatory factors in G protein signaling pathway, which plays an important role in the realization of mycelial development, sporulation, secondary metabolites, pigment synthesis, pathogenicity and sexual reproduction regulation of fungi. In recent years, with the deepening of research on RGS of plant pathogenic filamentous fungi, a large number of academic reports have been produced. However, systematic comparative analysis of RGS in model fungi and phytopathogenic filamentous fungi has not been reported. In this study, the structure, classification and function of RGS of model fungi and plant pathogenic filamentous fungi were compared and analyzed. At the same time, through SMART conservative domain, secondary structure composition and genetic relationship analysis, RGS proteins in plant pathogenic filamentous fungi and model fungi were confirmed to have conservative RGS domain and similar secondary structure composition, also RGS proteins were divided into 6 categories according to sequence homology, and RGS proteins with different domains were clustered, respectively. The results showed that RGS proteins had certain conservativeness in functional performance in different fungi. In addition, the number and types of RGS in plant pathogenic filamentous fungi were found to be more than that of model organisms. The results show that RGS proteins have certain uniqueness in the functions in different fungi. The above research provides an important theoretical basis for further research on the mechanism of RGS in plant pathogenic filamentous fungi and the relationship between RGS in plant pathogenic filamentous fungi and other model organisms.
  • [1]
    Wilkinson S W, Magerøy M H, Sánchez A L, et al. Surviving in a hostile world: plant strategies to resist pests and diseases[J]. Annual Review of Phytopathology, 2019, 57: 505−529. doi: 10.1146/annurev-phyto-082718-095959
    [2]
    韩长志. 植物病原丝状真菌G蛋白偶联受体的研究进展[J]. 微生物学通报, 2015, 42(2):374−383.

    Han C Z. Advance in functional research of G protein-coupled receptors in phytopathogenic filamentous fungi[J]. Microbiology China, 2015, 42(2): 374−383.
    [3]
    McPherson K B, Leff E R, Li M H, et al. Regulators of G-protein signaling (RGS) proteins promote receptor coupling to G-protein-coupled inwardly rectifying potassium (GIRK) channels[J]. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2018, 38(41): 8737−8744. doi: 10.1523/JNEUROSCI.0516-18.2018
    [4]
    Chan R K, Otte C A. Isolation and genetic analysis of Saccharomyces cerevisiae mutants supersensitive to G1 arrest by a factor and alpha factor pheromones[J]. Molecular and Cellular Biology, 1982, 2(1): 11−20. doi: 10.1128/MCB.2.1.11
    [5]
    Dixit G, Kelley J B, Houser J R, et al. Cellular noise suppression by the regulator of G protein signaling Sst2[J]. Molecular Cell, 2014, 55(1): 85−96. doi: 10.1016/j.molcel.2014.05.019
    [6]
    Venkatapurapu S P, Kelley J B, Dixit G, et al. Modulation of receptor dynamics by the regulator of G protein signaling Sst2[J]. Molecular Biology of the Cell, 2015, 26(22): 4124−4134. doi: 10.1091/mbc.E14-12-1635
    [7]
    Kwon N J, Park H S, Jung S, et al. The putative guanine nucleotide exchange factor RicA mediates upstream signaling for growth and development in aspergillus[J]. Eukaryotic Cell, 2012, 11(11): 1399−1412. doi: 10.1128/EC.00255-12
    [8]
    Whittington A, Wang P. The RGS protein Crg2 is required for establishment and progression of murine pulmonary cryptococcosis[J]. Medical Mycology, 2011, 49(3): 263−275. doi: 10.3109/13693786.2010.512618
    [9]
    张海峰. 稻瘟病菌G蛋白及MAPK信号途径相关基因的功能分析[D]. 南京: 南京农业大学, 2011.

    Zhang H F. Functional analysis of G protein and MAPK signaling pathway associated genes in Magnaporthe oryzae[D]. Nanjing: Nanjing Agricultural University, 2011.
    [10]
    Mukherjee M, Kim J E, Park Y S, et al. Regulators of G-protein signalling in Fusarium verticillioides mediate differential host-pathogen responses on nonviable versus viable maize kernels[J]. Molecular Plant Pathology, 2011, 12(5): 479−491. doi: 10.1111/j.1364-3703.2010.00686.x
    [11]
    Park A R, Cho A R, Seo J A, et al. Functional analyses of regulators of G protein signaling in Gibberella zeae[J]. Fungal Genetics and Biology, 2012, 49(7): 511−520. doi: 10.1016/j.fgb.2012.05.006
    [12]
    Wang Y C, Geng Z Y, Jiang D W, et al. Characterizations and functions of regulator of G protein signaling (RGS) in fungi[J]. Applied Microbiology and Biotechnology, 2013, 97(18): 7977−7987. doi: 10.1007/s00253-013-5133-1
    [13]
    乐鑫怡. 稻瘟病菌RGS家族蛋白RGS结构域的功能解析及Dynamin家族蛋白MoDnm2、MoDnm3的生物学功能研究[D]. 南京: 南京农业大学, 2017.

    Le X Y. Functional analysis of RGS domain in RGS protein family and dynamin protein MoDnm2, MoDnm3 in Magnaporthe oryzae during development and pathogenicity[D]. Nanjing: Nanjing Agricultural University, 2017.
    [14]
    徐爽, 柯智健, 张凯, 等. 胶孢炭疽菌G蛋白信号调控因子CgRGS3的生物学功能[J]. 植物保护学报, 2018, 45(4):827−835.

    Xu S, Ke Z J, Zhang K, et al. Biological function of a regulator of G-protein signaling CgRGS3 in Colletotrichum gloeosporioides[J]. Journal of Plant Protection, 2018, 45(4): 827−835.
    [15]
    吴曼莉, 李晓宇, 张楠, 等. 胶孢炭疽菌CgRGS2基因的克隆及生物学功能[J]. 微生物学报, 2017, 57(1):66−76.

    Wu M L, Li X Y, Zhang N, et al. Gene cloning and biological function of CgRGS2 in Colletotrichum gloeosporioides[J]. Acta Microbiologica Sinica, 2017, 57(1): 66−76.
    [16]
    赵勇, 王云川, 蒋德伟, 等. 真菌G蛋白信号调控蛋白的功能研究进展[J]. 微生物学通报, 2014, 41(4):712−718.

    Zhao Y, Wang Y C, Jiang D W, et al. Advances in functional research of RGS proteins in fungi[J]. Microbiology China, 2014, 41(4): 712−718.
    [17]
    邢新婧. 坚粘孢单顶孢MAPK和RGS4蛋白的功能初步研究[D]. 昆明: 云南大学, 2017.

    Xing X J. Preliminary study on functions of MAPK and RGS4 proteins in Dactylellina haptotyla[D]. Kunming: Yunnan University, 2017.
    [18]
    朱小彬, 朱霞, 于一帆, 等. G蛋白信号转导调节蛋白(RGS)研究进展[J]. 中国农学通报, 2014, 30(6):248−253.

    Zhu X B, Zhu X, Yu Y F, et al. Advances of research on regulators of G protein signaling(RGS proteins)[J]. Chinese Agricultural Science Bulletin, 2014, 30(6): 248−253.
    [19]
    O’Brien J B, Wilkinson J C, Roman D L. Regulator of G-protein signaling (RGS) proteins as drug targets: progress and future potentials[J]. Journal of Biological Chemistry, 2019, 294(49): 18571−18585. doi: 10.1074/jbc.REV119.007060
    [20]
    王心睿, 杨红, 廖之君. DEP结构域的结构与功能[J]. 生命的化学, 2015, 35(2):264−271.

    Wang X R, Yang H, Liao Z J. Structure and function of the DEP domain[J]. Chemistry of Life, 2015, 35(2): 264−271.
    [21]
    潘华珍, 许彩民. 蛋白质PX结构域的结构和功能[J]. 生命的化学, 2002(5):395−397.

    Pan H Z, Xu C M. Structure and function of the PX domain[J]. Chemistry of Life, 2002(5): 395−397.
    [22]
    Willars G B. Mammalian RGS proteins: multifunctional regulators of cellular signalling[J]. Seminars in Cell & Developmental Biology, 2006, 17(3): 363−376.
    [23]
    祝友朋, 韩长志. 植物病原丝状真菌寄生性与RGS蛋白的关系研究[J]. 华中农业大学学报, 2020, 39(6):23−29.

    Zhu Y P, Han C Z. Relationship between parasitism and RGS protein in plant pathogenic filamentous fungi[J]. Journal of Huazhong Agricultural University, 2020, 39(6): 23−29.
    [24]
    Dohlman H G, Song J, Ma D, et al. Sst2, a negative regulator of pheromone signaling in the yeast Saccharomyces cerevisiae: expression, localization, and genetic interaction and physical association with Gpa1 (the G-protein alpha subunit)[J]. Molecular and Cellular Biology, 1996, 16(9): 5194−5209. doi: 10.1128/MCB.16.9.5194
    [25]
    Chasse S A, Flanary P, Parnell S C, et al. Genome-scale analysis reveals Sst2 as the principal regulator of mating pheromone signaling in the yeast Saccharomyces cerevisiae[J]. Eukaryotic Cell, 2006, 5(2): 330−346. doi: 10.1128/EC.5.2.330-346.2006
    [26]
    Versele M, de Winde J H, Thevelein J M. A novel regulator of G protein signalling in yeast, Rgs2, downregulates glucose-activation of the cAMP pathway through direct inhibition of Gpa2[J]. The EMBO Journal, 1999, 18(20): 5577−5591. doi: 10.1093/emboj/18.20.5577
    [27]
    Fujita A, Lord M, Hiroko T, et al. Rax1, a protein required for the establishment of the bipolar budding pattern in yeast[J]. Gene, 2004, 327(2): 161−169. doi: 10.1016/j.gene.2003.11.021
    [28]
    Fisk H A, Yaffe M P. Mutational analysis of Mdm1p function in nuclear and mitochondrial inheritance[J]. The Journal of Cell Biology, 1997, 138(3): 485−494. doi: 10.1083/jcb.138.3.485
    [29]
    McConnell S J, Yaffe M P. Intermediate filament formation by a yeast protein essential for organelle inheritance[J]. Science, 1993, 260: 687−689. doi: 10.1126/science.8480179
    [30]
    Lee B N, Adams T H. Overexpression of flbA, an early regulator of Aspergillus asexual sporulation, leads to activation of brlA and premature initiation of development[J]. Molecular Microbiology, 1994, 14(2): 323−334. doi: 10.1111/j.1365-2958.1994.tb01293.x
    [31]
    Molnár Z, Mészáros E, Szilágyi Z, et al. Influence of fadAG203R and ΔflbA mutations on morphology and physiology of submerged Aspergillus nidulans cultures[J]. Applied Biochemistry and Biotechnology, 2004, 118: 349−360. doi: 10.1385/ABAB:118:1-3:349
    [32]
    Shin K S, Park H S, Kim Y H, et al. Comparative proteomic analyses reveal that FlbA down-regulates gliT expression and SOD activity in Aspergillus fumigatus[J]. Journal of Proteomics, 2013, 87: 40−52. doi: 10.1016/j.jprot.2013.05.009
    [33]
    Han K H, Seo J A, Yu J H. Regulators of G-protein signalling in Aspergillus nidulans: RgsA downregulates stress response and stimulates asexual sporulation through attenuation of GanB (Galpha) signalling[J]. Molecular Microbiology, 2004, 53(2): 529−540. doi: 10.1111/j.1365-2958.2004.04163.x
    [34]
    Zhang H F, Tang W, Liu K Y, et al. Eight RGS and RGS-like proteins orchestrate growth, differentiation, and pathogenicity of Magnaporthe oryzae[J]. PLoS Pathogens, 2011, 7(12): e1002450. doi: 10.1371/journal.ppat.1002450
    [35]
    Li X, Zhong K L, Yin Z Y, et al. The seven transmembrane domain protein MoRgs7 functions in surface perception and undergoes coronin MoCrn1-dependent endocytosis in complex with Gα subunit MoMagA to promote cAMP signaling and appressorium formation in Magnaporthe oryzae[J]. PLoS Pathogens, 2019, 15(2): e1007382. doi: 10.1371/journal.ppat.1007382
    [36]
    韩长志. 禾谷炭疽菌RGS蛋白生物信息学分析[J]. 微生物学通报, 2014, 41(8):1582−1594.

    Han C Z. Bioinformatics analysis on regulators of G-protein signaling in Colletotrichum graminicola[J]. Microbiology China, 2014, 41(8): 1582−1594.
    [37]
    韩长志. 希金斯炭疽菌RGS蛋白生物信息学分析[J]. 生物技术, 2014, 24(1):36−41.

    Han C Z. Bioinformatics analysis on regulators of G-protein signaling in Coletotrichum higginsianum[J]. Biotechnology, 2014, 24(1): 36−41.
    [38]
    韩长志. 胶孢炭疽菌RGS蛋白生物信息学分析[J]. 河南师范大学学报(自然科学版), 2015(1):116−122.

    Han C Z. Bioinformatics analysis on regulators of G-protein signaling in Colletotrichum gloeosporioides[J]. Journal of Henan Normal University (Natural Science Edition), 2015(1): 116−122.
    [39]
    吴曼莉. 橡胶树胶孢炭疽菌G蛋白信号调控因子CgRGS1、CgRGS2和CgRGS7的克隆及生物学功能[D]. 海南: 海南大学, 2017.

    Wu M L. Cloning and biological function of G protein signaling factor CgRGS1, CgRGS2 and CgRGS7 in Colletotrichum gloeosporioides[D]. Hainan: Hainan University, 2017.
  • Cited by

    Periodical cited type(17)

    1. 袁慧兰,郑甜甜,林佳敏,鲍雪莲,闵凯凯,朱雪峰,解宏图,梁超. 农林土壤置换对植物残体分解过程的影响. 生态学杂志. 2024(04): 1017-1024 .
    2. 李慧璇,马红亮,尹云锋,高人. 亚热带天然阔叶林凋落物分解过程中活性、惰性碳氮的动态特征. 植物生态学报. 2023(05): 618-628 .
    3. 罗国娜,车震宇. 马尾松凋落物对土壤氮循环与微生物的影响. 山东农业大学学报(自然科学版). 2023(04): 553-561 .
    4. 韦昌林,李毅,单立山,解婷婷,张鹏. 降水变化对典型荒漠植物凋落物分解的影响. 草地学报. 2022(05): 1280-1289 .
    5. Hao Qu,XueYong Zhao,XiaoAn Zuo,ShaoKun Wang,XuJun Ma,Xia Tang,XinYuan Wang,Eduardo Medina-Roldán. Litter decomposition in fragile ecosystems: A review. Sciences in Cold and Arid Regions. 2022(03): 151-161 .
    6. 王文秀,栾军伟,王一,杨怀,赵阳,李丝雨,梁昌强,孔祥河,刘世荣. 模拟干旱和磷添加对热带低地雨林叶凋落物分解的影响. 生态学报. 2022(15): 6160-6174 .
    7. 李慧业,林永慧,何兴兵. 4种内源真菌对马尾松凋落叶分解的影响. 西南农业学报. 2021(03): 618-625 .
    8. 王光燚,上官周平,方燕. 氮沉降对细根分解影响的研究进展. 水土保持研究. 2020(02): 383-391 .
    9. 舒韦维,陈琳,刘世荣,曾冀,李华,郑路,陈文军. 减雨对南亚热带马尾松人工林凋落物分解的影响. 生态学报. 2020(13): 4538-4545 .
    10. 叶贺,红梅,赵巴音那木拉,李静,闫瑾,张宇晨,梁志伟. 水氮控制对短花针茅荒漠草原根系分解的影响. 应用与环境生物学报. 2020(05): 1169-1175 .
    11. 杨晶晶,周正立,吕瑞恒,梁继业,王雄. 干旱生境下3种植物叶凋落物分解动态特征. 干旱区研究. 2019(04): 916-923 .
    12. 周书玉,袁川,王景燕,龚伟,唐海龙. 菌剂和外源氮素添加对青花椒采收剩余物分解的影响. 四川农业大学学报. 2019(06): 799-806 .
    13. 王欣,郭延朋,赵辉,孟凡军,刘国萍. 华北落叶松与白桦叶凋落物混合分解及其养分动态. 林业与生态科学. 2018(01): 29-36 .
    14. 郑欣颖,佘汉基,薛立,蔡金桓. 外源性氮和磷添加对马尾松凋落叶分解及土壤特性的影响. 生态环境学报. 2017(10): 1710-1718 .
    15. 佘汉基,蔡金桓,薛立,郑欣颖. 模拟外源性氮磷对尾叶桉和马占相思混合凋落叶分解的影响. 西北林学院学报. 2017(06): 45-52 .
    16. 蔡金桓,郑欣颖,薛立,佘汉基. 外源性氮和磷对杉木和藜蒴锥混合凋落叶分解的影响. 西南林业大学学报(自然科学). 2017(04): 103-112 .
    17. 蔡金桓,王卓敏,薛立,郑欣颖,佘汉基. 外源性氮和磷对藜蒴林凋落叶分解的影响. 中南林业科技大学学报. 2017(07): 105-111 .

    Other cited types(16)

Catalog

    Article views (1428) PDF downloads (111) Cited by(33)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return