• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Han Changzhi, Zhu Youpeng. Advances in research on RGS of phytopathogenic filamentous fungi[J]. Journal of Beijing Forestry University, 2021, 43(4): 150-157. DOI: 10.12171/j.1000-1522.20200196
Citation: Han Changzhi, Zhu Youpeng. Advances in research on RGS of phytopathogenic filamentous fungi[J]. Journal of Beijing Forestry University, 2021, 43(4): 150-157. DOI: 10.12171/j.1000-1522.20200196

Advances in research on RGS of phytopathogenic filamentous fungi

More Information
  • Received Date: June 24, 2020
  • Revised Date: February 24, 2021
  • Available Online: March 07, 2021
  • Published Date: April 29, 2021
  • Regulators of G-protein signaling are important negative regulatory factors in G protein signaling pathway, which plays an important role in the realization of mycelial development, sporulation, secondary metabolites, pigment synthesis, pathogenicity and sexual reproduction regulation of fungi. In recent years, with the deepening of research on RGS of plant pathogenic filamentous fungi, a large number of academic reports have been produced. However, systematic comparative analysis of RGS in model fungi and phytopathogenic filamentous fungi has not been reported. In this study, the structure, classification and function of RGS of model fungi and plant pathogenic filamentous fungi were compared and analyzed. At the same time, through SMART conservative domain, secondary structure composition and genetic relationship analysis, RGS proteins in plant pathogenic filamentous fungi and model fungi were confirmed to have conservative RGS domain and similar secondary structure composition, also RGS proteins were divided into 6 categories according to sequence homology, and RGS proteins with different domains were clustered, respectively. The results showed that RGS proteins had certain conservativeness in functional performance in different fungi. In addition, the number and types of RGS in plant pathogenic filamentous fungi were found to be more than that of model organisms. The results show that RGS proteins have certain uniqueness in the functions in different fungi. The above research provides an important theoretical basis for further research on the mechanism of RGS in plant pathogenic filamentous fungi and the relationship between RGS in plant pathogenic filamentous fungi and other model organisms.
  • [1]
    Wilkinson S W, Magerøy M H, Sánchez A L, et al. Surviving in a hostile world: plant strategies to resist pests and diseases[J]. Annual Review of Phytopathology, 2019, 57: 505−529. doi: 10.1146/annurev-phyto-082718-095959
    [2]
    韩长志. 植物病原丝状真菌G蛋白偶联受体的研究进展[J]. 微生物学通报, 2015, 42(2):374−383.

    Han C Z. Advance in functional research of G protein-coupled receptors in phytopathogenic filamentous fungi[J]. Microbiology China, 2015, 42(2): 374−383.
    [3]
    McPherson K B, Leff E R, Li M H, et al. Regulators of G-protein signaling (RGS) proteins promote receptor coupling to G-protein-coupled inwardly rectifying potassium (GIRK) channels[J]. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2018, 38(41): 8737−8744. doi: 10.1523/JNEUROSCI.0516-18.2018
    [4]
    Chan R K, Otte C A. Isolation and genetic analysis of Saccharomyces cerevisiae mutants supersensitive to G1 arrest by a factor and alpha factor pheromones[J]. Molecular and Cellular Biology, 1982, 2(1): 11−20. doi: 10.1128/MCB.2.1.11
    [5]
    Dixit G, Kelley J B, Houser J R, et al. Cellular noise suppression by the regulator of G protein signaling Sst2[J]. Molecular Cell, 2014, 55(1): 85−96. doi: 10.1016/j.molcel.2014.05.019
    [6]
    Venkatapurapu S P, Kelley J B, Dixit G, et al. Modulation of receptor dynamics by the regulator of G protein signaling Sst2[J]. Molecular Biology of the Cell, 2015, 26(22): 4124−4134. doi: 10.1091/mbc.E14-12-1635
    [7]
    Kwon N J, Park H S, Jung S, et al. The putative guanine nucleotide exchange factor RicA mediates upstream signaling for growth and development in aspergillus[J]. Eukaryotic Cell, 2012, 11(11): 1399−1412. doi: 10.1128/EC.00255-12
    [8]
    Whittington A, Wang P. The RGS protein Crg2 is required for establishment and progression of murine pulmonary cryptococcosis[J]. Medical Mycology, 2011, 49(3): 263−275. doi: 10.3109/13693786.2010.512618
    [9]
    张海峰. 稻瘟病菌G蛋白及MAPK信号途径相关基因的功能分析[D]. 南京: 南京农业大学, 2011.

    Zhang H F. Functional analysis of G protein and MAPK signaling pathway associated genes in Magnaporthe oryzae[D]. Nanjing: Nanjing Agricultural University, 2011.
    [10]
    Mukherjee M, Kim J E, Park Y S, et al. Regulators of G-protein signalling in Fusarium verticillioides mediate differential host-pathogen responses on nonviable versus viable maize kernels[J]. Molecular Plant Pathology, 2011, 12(5): 479−491. doi: 10.1111/j.1364-3703.2010.00686.x
    [11]
    Park A R, Cho A R, Seo J A, et al. Functional analyses of regulators of G protein signaling in Gibberella zeae[J]. Fungal Genetics and Biology, 2012, 49(7): 511−520. doi: 10.1016/j.fgb.2012.05.006
    [12]
    Wang Y C, Geng Z Y, Jiang D W, et al. Characterizations and functions of regulator of G protein signaling (RGS) in fungi[J]. Applied Microbiology and Biotechnology, 2013, 97(18): 7977−7987. doi: 10.1007/s00253-013-5133-1
    [13]
    乐鑫怡. 稻瘟病菌RGS家族蛋白RGS结构域的功能解析及Dynamin家族蛋白MoDnm2、MoDnm3的生物学功能研究[D]. 南京: 南京农业大学, 2017.

    Le X Y. Functional analysis of RGS domain in RGS protein family and dynamin protein MoDnm2, MoDnm3 in Magnaporthe oryzae during development and pathogenicity[D]. Nanjing: Nanjing Agricultural University, 2017.
    [14]
    徐爽, 柯智健, 张凯, 等. 胶孢炭疽菌G蛋白信号调控因子CgRGS3的生物学功能[J]. 植物保护学报, 2018, 45(4):827−835.

    Xu S, Ke Z J, Zhang K, et al. Biological function of a regulator of G-protein signaling CgRGS3 in Colletotrichum gloeosporioides[J]. Journal of Plant Protection, 2018, 45(4): 827−835.
    [15]
    吴曼莉, 李晓宇, 张楠, 等. 胶孢炭疽菌CgRGS2基因的克隆及生物学功能[J]. 微生物学报, 2017, 57(1):66−76.

    Wu M L, Li X Y, Zhang N, et al. Gene cloning and biological function of CgRGS2 in Colletotrichum gloeosporioides[J]. Acta Microbiologica Sinica, 2017, 57(1): 66−76.
    [16]
    赵勇, 王云川, 蒋德伟, 等. 真菌G蛋白信号调控蛋白的功能研究进展[J]. 微生物学通报, 2014, 41(4):712−718.

    Zhao Y, Wang Y C, Jiang D W, et al. Advances in functional research of RGS proteins in fungi[J]. Microbiology China, 2014, 41(4): 712−718.
    [17]
    邢新婧. 坚粘孢单顶孢MAPK和RGS4蛋白的功能初步研究[D]. 昆明: 云南大学, 2017.

    Xing X J. Preliminary study on functions of MAPK and RGS4 proteins in Dactylellina haptotyla[D]. Kunming: Yunnan University, 2017.
    [18]
    朱小彬, 朱霞, 于一帆, 等. G蛋白信号转导调节蛋白(RGS)研究进展[J]. 中国农学通报, 2014, 30(6):248−253.

    Zhu X B, Zhu X, Yu Y F, et al. Advances of research on regulators of G protein signaling(RGS proteins)[J]. Chinese Agricultural Science Bulletin, 2014, 30(6): 248−253.
    [19]
    O’Brien J B, Wilkinson J C, Roman D L. Regulator of G-protein signaling (RGS) proteins as drug targets: progress and future potentials[J]. Journal of Biological Chemistry, 2019, 294(49): 18571−18585. doi: 10.1074/jbc.REV119.007060
    [20]
    王心睿, 杨红, 廖之君. DEP结构域的结构与功能[J]. 生命的化学, 2015, 35(2):264−271.

    Wang X R, Yang H, Liao Z J. Structure and function of the DEP domain[J]. Chemistry of Life, 2015, 35(2): 264−271.
    [21]
    潘华珍, 许彩民. 蛋白质PX结构域的结构和功能[J]. 生命的化学, 2002(5):395−397.

    Pan H Z, Xu C M. Structure and function of the PX domain[J]. Chemistry of Life, 2002(5): 395−397.
    [22]
    Willars G B. Mammalian RGS proteins: multifunctional regulators of cellular signalling[J]. Seminars in Cell & Developmental Biology, 2006, 17(3): 363−376.
    [23]
    祝友朋, 韩长志. 植物病原丝状真菌寄生性与RGS蛋白的关系研究[J]. 华中农业大学学报, 2020, 39(6):23−29.

    Zhu Y P, Han C Z. Relationship between parasitism and RGS protein in plant pathogenic filamentous fungi[J]. Journal of Huazhong Agricultural University, 2020, 39(6): 23−29.
    [24]
    Dohlman H G, Song J, Ma D, et al. Sst2, a negative regulator of pheromone signaling in the yeast Saccharomyces cerevisiae: expression, localization, and genetic interaction and physical association with Gpa1 (the G-protein alpha subunit)[J]. Molecular and Cellular Biology, 1996, 16(9): 5194−5209. doi: 10.1128/MCB.16.9.5194
    [25]
    Chasse S A, Flanary P, Parnell S C, et al. Genome-scale analysis reveals Sst2 as the principal regulator of mating pheromone signaling in the yeast Saccharomyces cerevisiae[J]. Eukaryotic Cell, 2006, 5(2): 330−346. doi: 10.1128/EC.5.2.330-346.2006
    [26]
    Versele M, de Winde J H, Thevelein J M. A novel regulator of G protein signalling in yeast, Rgs2, downregulates glucose-activation of the cAMP pathway through direct inhibition of Gpa2[J]. The EMBO Journal, 1999, 18(20): 5577−5591. doi: 10.1093/emboj/18.20.5577
    [27]
    Fujita A, Lord M, Hiroko T, et al. Rax1, a protein required for the establishment of the bipolar budding pattern in yeast[J]. Gene, 2004, 327(2): 161−169. doi: 10.1016/j.gene.2003.11.021
    [28]
    Fisk H A, Yaffe M P. Mutational analysis of Mdm1p function in nuclear and mitochondrial inheritance[J]. The Journal of Cell Biology, 1997, 138(3): 485−494. doi: 10.1083/jcb.138.3.485
    [29]
    McConnell S J, Yaffe M P. Intermediate filament formation by a yeast protein essential for organelle inheritance[J]. Science, 1993, 260: 687−689. doi: 10.1126/science.8480179
    [30]
    Lee B N, Adams T H. Overexpression of flbA, an early regulator of Aspergillus asexual sporulation, leads to activation of brlA and premature initiation of development[J]. Molecular Microbiology, 1994, 14(2): 323−334. doi: 10.1111/j.1365-2958.1994.tb01293.x
    [31]
    Molnár Z, Mészáros E, Szilágyi Z, et al. Influence of fadAG203R and ΔflbA mutations on morphology and physiology of submerged Aspergillus nidulans cultures[J]. Applied Biochemistry and Biotechnology, 2004, 118: 349−360. doi: 10.1385/ABAB:118:1-3:349
    [32]
    Shin K S, Park H S, Kim Y H, et al. Comparative proteomic analyses reveal that FlbA down-regulates gliT expression and SOD activity in Aspergillus fumigatus[J]. Journal of Proteomics, 2013, 87: 40−52. doi: 10.1016/j.jprot.2013.05.009
    [33]
    Han K H, Seo J A, Yu J H. Regulators of G-protein signalling in Aspergillus nidulans: RgsA downregulates stress response and stimulates asexual sporulation through attenuation of GanB (Galpha) signalling[J]. Molecular Microbiology, 2004, 53(2): 529−540. doi: 10.1111/j.1365-2958.2004.04163.x
    [34]
    Zhang H F, Tang W, Liu K Y, et al. Eight RGS and RGS-like proteins orchestrate growth, differentiation, and pathogenicity of Magnaporthe oryzae[J]. PLoS Pathogens, 2011, 7(12): e1002450. doi: 10.1371/journal.ppat.1002450
    [35]
    Li X, Zhong K L, Yin Z Y, et al. The seven transmembrane domain protein MoRgs7 functions in surface perception and undergoes coronin MoCrn1-dependent endocytosis in complex with Gα subunit MoMagA to promote cAMP signaling and appressorium formation in Magnaporthe oryzae[J]. PLoS Pathogens, 2019, 15(2): e1007382. doi: 10.1371/journal.ppat.1007382
    [36]
    韩长志. 禾谷炭疽菌RGS蛋白生物信息学分析[J]. 微生物学通报, 2014, 41(8):1582−1594.

    Han C Z. Bioinformatics analysis on regulators of G-protein signaling in Colletotrichum graminicola[J]. Microbiology China, 2014, 41(8): 1582−1594.
    [37]
    韩长志. 希金斯炭疽菌RGS蛋白生物信息学分析[J]. 生物技术, 2014, 24(1):36−41.

    Han C Z. Bioinformatics analysis on regulators of G-protein signaling in Coletotrichum higginsianum[J]. Biotechnology, 2014, 24(1): 36−41.
    [38]
    韩长志. 胶孢炭疽菌RGS蛋白生物信息学分析[J]. 河南师范大学学报(自然科学版), 2015(1):116−122.

    Han C Z. Bioinformatics analysis on regulators of G-protein signaling in Colletotrichum gloeosporioides[J]. Journal of Henan Normal University (Natural Science Edition), 2015(1): 116−122.
    [39]
    吴曼莉. 橡胶树胶孢炭疽菌G蛋白信号调控因子CgRGS1、CgRGS2和CgRGS7的克隆及生物学功能[D]. 海南: 海南大学, 2017.

    Wu M L. Cloning and biological function of G protein signaling factor CgRGS1, CgRGS2 and CgRGS7 in Colletotrichum gloeosporioides[D]. Hainan: Hainan University, 2017.
  • Related Articles

    [1]Fan Chunnan, Liu Qiang, Zheng Jinping, Guo Zhongling, Zhang Wentao, Liu Yinglong, Xie Zunjun, Ren Zengjun. Effects of logging intensity on restoration of carbon density in broadleaved Korean pine forest ecosystem[J]. Journal of Beijing Forestry University, 2022, 44(10): 33-42. DOI: 10.12171/j.1000-1522.20220190
    [2]Song Yuhan, Zhang Chen, Cai Tijiu, Ju Cunyong. Quantitative analysis of spatial structural characteristics of broadleaved Korean pine forest based on Voronoi diagram[J]. Journal of Beijing Forestry University, 2021, 43(1): 20-26. DOI: 10.12171/j.1000-1522.20200056
    [3]Li Minglu, Wu Zhaofei, Qiu Hua, Zhang Chunyu, Zhao Xiuhai. Short-term effects of tending felling on ecological services of mixed broadleaved-Korean pine forests at Jiaohe in Jilin Province, northeastern China[J]. Journal of Beijing Forestry University, 2019, 41(9): 40-49. DOI: 10.13332/j.1000-1522.20180442
    [4]Liu Zhili, Bi Lianzhu, Songx Song Guohua, Wang Quanbo, Liu Qi, Jin Guangze. Spatial heterogeneity of leaf area index in a typical mixed broadleaved-Korean pine forest in Xiaoxing'an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(11): 1-11. DOI: 10.13332/j.1000-1522.20170468
    [5]HAN Da-xiao, JIN Guang-ze. Influences of topography and competition on DBH growth in different growth stages in a typical mixed broadleaved-Korean pine forest, northeastern China[J]. Journal of Beijing Forestry University, 2017, 39(1): 9-19. DOI: 10.13332/j.1000-1522.20160218
    [6]LIU Shuai, XIAO Cui, WANG Jun-wei, HOU Man-man, LIAO Jia-xing, FAN Xiu-hua. Interannual seedling dynamic and influencing factors on seedling survival of tree species in a broadleaved Korean pine (Pinus koraiensis) mixed forest in Changbai Mountains, northeastern China.[J]. Journal of Beijing Forestry University, 2016, 38(11): 57-66. DOI: 10.13332/j.1000-1522.20160012
    [7]SONG Xin-zhang, ZHANG Hui-ling, XIAO Wen-fa, GUO Zhong-ling, HUANG Zhi-lin, LEI Jing-pin. Seed bank in the logging gaps of broadleavedKorean pine mixed forests in Changbai Mountain, northeastern China.[J]. Journal of Beijing Forestry University, 2009, 31(2): 17-24.
    [8]SHI Ting-ting, GUAN De-xin, WU Jia-bing, ZHANG Mi, WANG An-zhi, JIN Chang-jie, HAN Shi-jie. Measurement of evapotranspiration above broadleaved-Korean pine forests in the Changbaishan Mountains with eddy covariance technique[J]. Journal of Beijing Forestry University, 2006, 28(6): 1-8.
    [9]ZHANG Chun-yu, ZHAO Xiu-hai, ZHENG Jing-ming. Size structure of canopy gaps in broadleaved Korean pine forests in the Changbai Mountains[J]. Journal of Beijing Forestry University, 2006, 28(4): 34-38.
    [10]ZHAO Xiao-song, GUAN De-xin, WU Jia-bing, JIN Chang-jie, HAN Shi-jie. Distribution of footprint and flux source area of the mixed forest of broad-leaved and Korean pine in Changbai Mountain[J]. Journal of Beijing Forestry University, 2005, 27(3): 17-23.
  • Cited by

    Periodical cited type(11)

    1. 施云凤,李文秀,贺军军,罗萍,张华林,张凤英. 甲基磺酸乙酯诱变对阳春砂仁出苗的影响. 热带农业科学. 2024(10): 47-51 .
    2. 崔晓彤,刘婉婷,张恒月,段乌拉,王君. 杨树派间远缘杂种小胡杨(Populus simonii×P.euphratica)组培快繁体系的构建. 分子植物育种. 2023(07): 2337-2343 .
    3. 王欢,曾琪瑶,王春胜,郭俊杰,曾杰. 油榄仁种胚高质量组培快繁体系. 中南林业科技大学学报. 2023(09): 53-61+88 .
    4. 李春兰. 毛白杨良种繁殖技术研究进展. 安徽农业科学. 2022(10): 22-24+45 .
    5. 王雷,李百和,赵培霞,韩鹏. 蒙古莸(Caryopteris mongholica)组培快繁体系的建立和优化. 分子植物育种. 2022(14): 4745-4754 .
    6. 陈耀兵,罗凯,李美东,黄秀芳,刘汉蓁,王水清,陈圣林. “鄂选1号”山桐子组培繁育体系构建. 北京林业大学学报. 2022(12): 23-31 . 本站查看
    7. 屈超,叶冬梅,郭欣,崔雁敏,朝勒蒙. 互叶醉鱼草茎段组织培养技术研究. 江苏林业科技. 2022(06): 15-19 .
    8. 马秋月,李倩中,李淑顺,朱璐,颜坤元,李淑娴,张斌,闻婧. 元宝枫组织培养及快速繁殖技术研究. 南京林业大学学报(自然科学版). 2021(02): 220-224 .
    9. 石进朝,陈博,陈兰芬,李彦侠. 阳光毛白杨带芽茎段再生体系的构建. 江苏农业科学. 2021(14): 50-55 .
    10. 梁艳,赵雪莹,白雪,刘德强,张妍,潘朋. PVP处理对黑皮油松外植体酚类物质形成及酶活性的影响. 林业科学. 2021(10): 166-174 .
    11. 王建新,吴志茹,冯光惠. 榆林沙区引种波尔卡树莓的组织培养与快速繁殖. 山西农业科学. 2019(12): 2078-2082 .

    Other cited types(2)

Catalog

    Article views (1427) PDF downloads (111) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return