Loading [MathJax]/extensions/MathMenu.js
  • Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Tian Qian, Liu Shuangwei, Niu Shihui, Li Wei. Development of SNP molecular markers of Pinus bungeana based on SLAF-seq technology[J]. Journal of Beijing Forestry University, 2021, 43(8): 1-8. DOI: 10.12171/j.1000-1522.20200211
Citation: Tian Qian, Liu Shuangwei, Niu Shihui, Li Wei. Development of SNP molecular markers of Pinus bungeana based on SLAF-seq technology[J]. Journal of Beijing Forestry University, 2021, 43(8): 1-8. DOI: 10.12171/j.1000-1522.20200211

Development of SNP molecular markers of Pinus bungeana based on SLAF-seq technology

More Information
  • Received Date: July 12, 2020
  • Revised Date: September 09, 2020
  • Available Online: July 09, 2021
  • Published Date: August 30, 2021
  •   Objective  This paper aims to develop a large number of specific SNP molecular markers in the whole genome of Pinus bungeana, and provide enough resources of molecular markers for key gene mapping, marker assisted selection and germplasm resource evaluation of P. bungeana.
      Method  In this study, 52 P. bungeana resources from five populations were used as materials, and the genome of P. taeda was selected as reference genome. A large number of specific SNP sites were developed on polymorphic SLAF tags using specific length amplification fragment sequencing (SLAF-seq), and a batch of high-quality SNP sites were filtered out for genetic diversity analysis of different populations of P. bungeana.
      Result  Through sequence comparative analysis, 23 597 049 SLAF tags were obtained, including 370 659 polymorphic SLAF tags and 1 291 290 SNPs of P. bungeana population were developed. Under the condition of missing rate was less than 20% and minor gene frequency (MAF) was greater than 5%, a total of 346 840 SNPs with high consistency were obtained, accounting for 26.9% of the total SNPs, including 9 SNP loci with mutation only in Jiufeng, Beijing (JF) population, 148 SNP loci with mutation only in Lantian, Shaanxi (LT) population, 425 SNP loci with mutation only in Maiji Mountain, Gansu (MJS) population, 1 466 SNP loci with mutation only in Wuzi Mountain, Shaanxi (WZS) population, 4 SNP loci with mutation only in Baiwa Mountain, Shanxi (BWS) population. Genetic diversities of 5 P. bungeana populations were analyzed based on 346 840 SNPs, and the results showed that there were significant differences in genetic diversity among different populations of P. bungeana, among which the level of genetic diversity was relatively high in MJS and WZS population, and relatively low in JF population.
      Conclusion  The results showed that SLAF-seq technology can be used to develop a large number of SNP markers in the whole genome, and the developed SNP markers showed abundant genetic polymorphisms in different populations of P. bungeana. The results of this study lay a foundation for the identification of germplasm resources, QTL mapping, construction of genetic linkage map and association analysis of important traits of P. bungeana, and are of great significance for the protection of germplasm resources and molecular marker assisted breeding of P. bungeana in the future.
  • [1]
    赵焱, 张学忠, 王孝安. 白皮松天然林地理分布规律研究[J]. 西北植物学报, 1995, 15(2):161−166. doi: 10.3321/j.issn:1000-4025.1995.02.015

    Zhao Y, Zhang X Z, Wang X A. A study on the geographical distribution law of Pinus bungeana natural forests in China[J]. Acta Botanica Boreali-Occidentalia Sinica, 1995, 15(2): 161−166. doi: 10.3321/j.issn:1000-4025.1995.02.015
    [2]
    李斌, 顾万春. 白皮松分布特点与研究进展[J]. 林业科学研究, 2003, 16(2):225−232. doi: 10.3321/j.issn:1001-1498.2003.02.017

    Li B, Gu W C. Distribution characteristics and research progress of Pinus bungeana[J]. Forest Research, 2003, 16(2): 225−232. doi: 10.3321/j.issn:1001-1498.2003.02.017
    [3]
    李斌. 白皮松遗传多样性及其核心种质保护策略研究[D]. 北京: 北京林业大学, 2002.

    Li B. Genetic diversity of Pinus bungeana and its core germplasm conservation strategy[D]. Beijing: Beijing Forestry University, 2002.
    [4]
    李斌, 顾万春, 周世良. 白皮松的保育遗传学研究(Ⅰ): 基因保护分析[J]. 生物多样性, 2003, 11(1):28−36. doi: 10.3321/j.issn:1005-0094.2003.01.004

    Li B, Gu W C, Zhou S L. Conservation genetics of Pinus bungeana (I): gene protection analysis[J]. Biodiversity, 2003, 11(1): 28−36. doi: 10.3321/j.issn:1005-0094.2003.01.004
    [5]
    赵罕. 白皮松遗传资源评价及保存策略研究[D]. 北京: 中国林业科学研究院, 2012.

    Zhao H. Study on genetic resources evaluation and conservation strategy of Pinus bungeana[D]. Beijing: Chinese Academy of Forestry, 2012.
    [6]
    王小平, 刘晶岚, 王九龄, 等. 白皮松种子及球果形态特征的地理变异[J]. 北京林业大学学报, 1998, 20(3):28−34.

    Wang X P, Liu J L, Wang J L, et al. Geographic variation of morphological characteristics of Pinus bungeana seeds and cones[J]. Journal of Beijing Forestry University, 1998, 20(3): 28−34.
    [7]
    丁小飞, 杨桂芳, 董梅. 白皮松天然群体遗传多样性的等位酶分析[J]. 广东林业科技, 2011, 27(1):8−12.

    Ding X F, Yang G F, Dong M. Allenzyme analysis of genetic diversity of natural population of Pinus bungeana[J]. Guangdong Forestry Science and Technology, 2011, 27(1): 8−12.
    [8]
    Bříza J, Phillips R L, Vasil I K. DNA-based markers in plants[J]. Biologia Plantarum, 1997, 39(2): 250. doi: 10.1023/A:1000660831741
    [9]
    赵罕, 郑勇奇, 李斌, 等. 白皮松天然群体遗传结构的地理变异分析[J]. 植物遗传资源学报, 2013, 14(3):395−401.

    Zhao H, Zheng Y Q, Li B, et al. Geographic variation analysis of genetic structure of natural population of Pinus bungeana[J]. Journal of Plant Genetic Resources, 2013, 14(3): 395−401.
    [10]
    李昕蔓, 金卓颖, 苏安然, 等. 白皮松EST-SSR序列分布特征及引物开发[J]. 林业与生态科学, 2019, 34(3):266−272.

    Li X M, Jin Z Y, Su A R, et al. Distribution characteristics and primer development of EST-SSR sequence of Pinus bungeana[J]. Forestry and Ecological Sciences, 2019, 34(3): 266−272.
    [11]
    Zhang X X, Liu B G, Li Y, et al. Landscape genetics reveals that adaptive genetic divergence in Pinus bungeana (Pinaceae) is driven by environmental variables relating to ecological habitats[J]. BMC Evolutionary Biology, 2019, 19(1): 1−13. doi: 10.1186/s12862-018-1333-8
    [12]
    张雪霞. 基于SCoT标记的白皮松景观基因组学研究[D]. 郑州: 河南农业大学, 2019.

    Zhang X X. Study on landscape genomics of Pinus bungeana based on SCoT markers[D]. Zhengzhou: Henan Agricultural University, 2019.
    [13]
    周琳, 段玉, 文博, 等. SNP分子标记及其在木本植物遗传育种的应用[J]. 亚热带植物科学, 2018, 47(2):187−193. doi: 10.3969/j.issn.1009-7791.2018.02.018

    Zhou L, Duan Y, Wen B, et al. SNP molecular markers and their application in woody plant genetic breeding[J]. Subtropical Plant Science, 2018, 47(2): 187−193. doi: 10.3969/j.issn.1009-7791.2018.02.018
    [14]
    Holliday J A, Aitken S N, Cooke J E, et al. Advances in ecological genomics in forest trees and applications to genetic resources conservation and breeding[J]. Molecular Ecology, 2016, 26(3): 706.
    [15]
    杨新笋. 基于SSR、SNP和形态学标记的甘薯种质资源遗传多样性研究[D]. 北京: 中国农业大学, 2016.

    Yang X S. Studies on genetic diversity of a sweetpotato (Ipomoea batatas (L.) Lam.) germplasm collection based on SSR, SNP and morphological markers[D]. Beijing: China Agricultural University, 2016.
    [16]
    谭炎宁, 余东, 盛夏冰, 等. SLAF-seq BSA定位水稻黄叶转绿基因grc2的效果研究[J]. 农业生物技术学报, 2020, 28(3):381−388.

    Tan Y N, Yu D, Sheng X B, et al. Effects on mapping the gene of green-revertible chlorina 2 (grc2) using SLAF-seq BSA in rice (Oryza sativa)[J]. Journal of Agricultural Biotechnology, 2020, 28(3): 381−388.
    [17]
    Shen C, Jin X, Zhu D, et al. Uncovering SNP and indel variations of tetraploid cottons by SLAF-seq[J]. BMC Genomics, 2017, 18: 247. doi: 10.1186/s12864-017-3643-4
    [18]
    Ayaz A, Shen C, Nie Y C, et al. QTL Mapping for fiber quality and yield traits based on introgression lines derived from Gossypium hirsutum × G. tomentosum[J]. International Journal of Molecular Sciences, 2018, 19(1): 243. doi: 10.3390/ijms19010243
    [19]
    Wei Q, Wang W, Hu T, et al. Construction of a SNP-based genetic map using SLAF-Seq and QTL analysis of morphological traits in eggplant[J]. Front Genet, 2020, 11(11): 178.
    [20]
    Ma B, Liao L, Peng Q, et al. Reduced representation genome sequencing reveals patterns of genetic diversity and selection in apple[J]. Journal of Integrative Plant Biology, 2017, 59(3): 190−204. doi: 10.1111/jipb.12522
    [21]
    陈立杰, 张素勤, 尹杰, 等. 贵阳花溪古茶树遗传进化的SNP分析[J]. 西南大学学报(自然科学版), 2019, 41(8):33−40.

    Chen L J, Zhang S Q, Yin J, et al. SNP analysis of genetic evolution of ancient Camellia sinensis in Huaxi, Guiyang[J]. Journal of Southwest University (Natural Science Edition), 2019, 41(8): 33−40.
    [22]
    Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2009, 25(14): 1754−1760. doi: 10.1093/bioinformatics/btp324
    [23]
    McKenna A, Hanna M, Banks E, et al. The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data[J]. Genome Research, 2010, 20(9): 1297−1303. doi: 10.1101/gr.107524.110
    [24]
    Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools[J]. Bioinformatics, 2009, 25(16): 2078−2079. doi: 10.1093/bioinformatics/btp352
    [25]
    Danecek P, Auton A, Abecasis G, et al. The variant call format and VCFtools[J]. Bioinformatics, 2011, 27(15): 2156−2158. doi: 10.1093/bioinformatics/btr330
    [26]
    Sun X W, Liu D Y, Zhang X F, et al. SLAF-seq: an efficient method of large-scale de novo snp discovery and genotyping using highthroughput sequencing[J/OL]. PLoS ONE, 2013, 8(3): e58700 [2020−06−12]. http://dx.doi.org/10.1371/journal.pone.0058700.
    [27]
    Wang Z, Cheng Y, Yin Y, et al. Genetic linkage map construction and QTL mapping of seedling height, basal diameter and crown width of Taxodium ‘Zhongshanshan 302’×T. mucronatum[J]. SpringerPlus, 2016, 5(1): 936. doi: 10.1186/s40064-016-1701-z
  • Related Articles

    [1]Zhou Kerou, Chen Zhuo, Yu Zhucheng, Zhong Yang, Shang Ce. Population structure and genetic diversity of Bretschneidera sinensis in Xianxialing Nature Reserve, Zhejiang Province of eastern China[J]. Journal of Beijing Forestry University, 2024, 46(11): 76-82. DOI: 10.12171/j.1000-1522.20230211
    [2]Qu Kai, Guo Haoping, Wang Baorui, Zhou Wenling, Hou Lili, Li Qin, Li Jihong, Cheng Tiantian. Genetic diversity analysis of Chionanthus retusus natural population based on SRAP molecular markers[J]. Journal of Beijing Forestry University, 2020, 42(12): 40-50. DOI: 10.12171/j.1000-1522.20200212
    [3]Yao Junxiu, Mao Xiuhong, Li Shanwen, Liu Xueliang, Wu Dejun. Genetic diversity of germplasm resources of Leuce based on SSR fluorescent marker[J]. Journal of Beijing Forestry University, 2018, 40(6): 92-100. DOI: 10.13332/j.1000-1522.20170429
    [4]ZHOU Peng, LIN Wei, ZHU Qin, ZHOU Xiang-bin, WU Lin-ying, CHEN Xiao-yang. Genetic diversity of Machilus pauhoi assessed by SRAP markers.[J]. Journal of Beijing Forestry University, 2016, 38(9): 16-24. DOI: 10.13332/j.1000-1522.20150423
    [5]CHEN Ling-na, MA Qing-guo, ZHANG Jun-pei, ZHOU Bei-bei, PEI Dong. Development of BAC-SSR markers in walnut and its application in genetic diversity analysis[J]. Journal of Beijing Forestry University, 2014, 36(6): 24-29. DOI: 10.13332/j.cnki.jbfu.2014.06.008
    [6]LI Tian, GUO Jun-e, ZHENG Cheng-shu, SUN Xia, SUN Xian-zhi. Genetic diversity and construction of fingerprinting of chrysanthemum cultivars by CDDP markers[J]. Journal of Beijing Forestry University, 2014, 36(4): 94-101. DOI: 10.13332/j.cnki.jbfu.2014.04.018
    [7]YU Xiao-nan, JI Li-jing, WANG Qi. Research advances in molecular genetic diversity of Paeonia L.[J]. Journal of Beijing Forestry University, 2012, 34(3): 130-136.
    [8]LIAO Hui-rong, GU Wan-chun, MING Jun. Determining genetic diversity of natural population of Syringa oblatausing allozyme markers.[J]. Journal of Beijing Forestry University, 2009, 31(5): 84-89.
    [9]LI Lun-guang, HE Ping, HE Wei. Genetic diversity of fiveneedle pine blister rusts detected by random amplified microsatellite (RAMS) in China.[J]. Journal of Beijing Forestry University, 2008, 30(6): 112-118.
    [10]ZHANG Yu-rong, LUO Ju-chun, YU Jin-xiu. Genetic diversity of the endangered plant Abies ziyuanensis detected by ISSR markers[J]. Journal of Beijing Forestry University, 2007, 29(6): 41-46. DOI: 10.13332/j.1000-1522.2007.06.012
  • Cited by

    Periodical cited type(7)

    1. 张玙,史旭龙,吴炳建,杨璟. 油茶间座壳叶枯病菌GZU-Y2生物学特性及防治药剂室内筛选. 中国森林病虫. 2025(01): 23-27 .
    2. 赵杰,田琼金,聂蔓茹,池吉平,马福嵘,赵晓军,郝晓娟. 红芸豆根腐病拮抗内生细菌的筛选和鉴定. 山西农业科学. 2023(10): 1226-1232 .
    3. 周红敏,彭辉,陈杏林,王宏翔,张弓乔. 杉木林转为油茶林对土壤细菌群落结构的影响. 中南林业科技大学学报. 2022(04): 59-67 .
    4. 石杨,吕长平,帅佳琪,毛咪,江莉娜. 牡丹炭疽病菌拮抗内生细菌的分离鉴定及促生作用. 江苏农业科学. 2022(16): 114-120 .
    5. 车建美,刘国红,陈倩倩,刘波. 短短芽胞杆菌FJAT-0809-GLX对龙眼焦腐病菌的生物防治作用. 福建农业学报. 2021(09): 1081-1086 .
    6. 郝亚伦,唐剑泉,柏浩东,郭军,金晨钟,郭开发. 油茶炭疽病生物防治研究进展. 现代农业科技. 2021(22): 87-90 .
    7. 卢丽俐. 不同油茶无性系炭疽病抗性及主要生理指标分析. 亚热带植物科学. 2021(05): 360-365 .

    Other cited types(10)

Catalog

    Article views (1316) PDF downloads (126) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return