• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Tian Qian, Liu Shuangwei, Niu Shihui, Li Wei. Development of SNP molecular markers of Pinus bungeana based on SLAF-seq technology[J]. Journal of Beijing Forestry University, 2021, 43(8): 1-8. DOI: 10.12171/j.1000-1522.20200211
Citation: Tian Qian, Liu Shuangwei, Niu Shihui, Li Wei. Development of SNP molecular markers of Pinus bungeana based on SLAF-seq technology[J]. Journal of Beijing Forestry University, 2021, 43(8): 1-8. DOI: 10.12171/j.1000-1522.20200211

Development of SNP molecular markers of Pinus bungeana based on SLAF-seq technology

More Information
  • Received Date: July 12, 2020
  • Revised Date: September 09, 2020
  • Available Online: July 09, 2021
  • Published Date: August 30, 2021
  •   Objective  This paper aims to develop a large number of specific SNP molecular markers in the whole genome of Pinus bungeana, and provide enough resources of molecular markers for key gene mapping, marker assisted selection and germplasm resource evaluation of P. bungeana.
      Method  In this study, 52 P. bungeana resources from five populations were used as materials, and the genome of P. taeda was selected as reference genome. A large number of specific SNP sites were developed on polymorphic SLAF tags using specific length amplification fragment sequencing (SLAF-seq), and a batch of high-quality SNP sites were filtered out for genetic diversity analysis of different populations of P. bungeana.
      Result  Through sequence comparative analysis, 23 597 049 SLAF tags were obtained, including 370 659 polymorphic SLAF tags and 1 291 290 SNPs of P. bungeana population were developed. Under the condition of missing rate was less than 20% and minor gene frequency (MAF) was greater than 5%, a total of 346 840 SNPs with high consistency were obtained, accounting for 26.9% of the total SNPs, including 9 SNP loci with mutation only in Jiufeng, Beijing (JF) population, 148 SNP loci with mutation only in Lantian, Shaanxi (LT) population, 425 SNP loci with mutation only in Maiji Mountain, Gansu (MJS) population, 1 466 SNP loci with mutation only in Wuzi Mountain, Shaanxi (WZS) population, 4 SNP loci with mutation only in Baiwa Mountain, Shanxi (BWS) population. Genetic diversities of 5 P. bungeana populations were analyzed based on 346 840 SNPs, and the results showed that there were significant differences in genetic diversity among different populations of P. bungeana, among which the level of genetic diversity was relatively high in MJS and WZS population, and relatively low in JF population.
      Conclusion  The results showed that SLAF-seq technology can be used to develop a large number of SNP markers in the whole genome, and the developed SNP markers showed abundant genetic polymorphisms in different populations of P. bungeana. The results of this study lay a foundation for the identification of germplasm resources, QTL mapping, construction of genetic linkage map and association analysis of important traits of P. bungeana, and are of great significance for the protection of germplasm resources and molecular marker assisted breeding of P. bungeana in the future.
  • [1]
    赵焱, 张学忠, 王孝安. 白皮松天然林地理分布规律研究[J]. 西北植物学报, 1995, 15(2):161−166. doi: 10.3321/j.issn:1000-4025.1995.02.015

    Zhao Y, Zhang X Z, Wang X A. A study on the geographical distribution law of Pinus bungeana natural forests in China[J]. Acta Botanica Boreali-Occidentalia Sinica, 1995, 15(2): 161−166. doi: 10.3321/j.issn:1000-4025.1995.02.015
    [2]
    李斌, 顾万春. 白皮松分布特点与研究进展[J]. 林业科学研究, 2003, 16(2):225−232. doi: 10.3321/j.issn:1001-1498.2003.02.017

    Li B, Gu W C. Distribution characteristics and research progress of Pinus bungeana[J]. Forest Research, 2003, 16(2): 225−232. doi: 10.3321/j.issn:1001-1498.2003.02.017
    [3]
    李斌. 白皮松遗传多样性及其核心种质保护策略研究[D]. 北京: 北京林业大学, 2002.

    Li B. Genetic diversity of Pinus bungeana and its core germplasm conservation strategy[D]. Beijing: Beijing Forestry University, 2002.
    [4]
    李斌, 顾万春, 周世良. 白皮松的保育遗传学研究(Ⅰ): 基因保护分析[J]. 生物多样性, 2003, 11(1):28−36. doi: 10.3321/j.issn:1005-0094.2003.01.004

    Li B, Gu W C, Zhou S L. Conservation genetics of Pinus bungeana (I): gene protection analysis[J]. Biodiversity, 2003, 11(1): 28−36. doi: 10.3321/j.issn:1005-0094.2003.01.004
    [5]
    赵罕. 白皮松遗传资源评价及保存策略研究[D]. 北京: 中国林业科学研究院, 2012.

    Zhao H. Study on genetic resources evaluation and conservation strategy of Pinus bungeana[D]. Beijing: Chinese Academy of Forestry, 2012.
    [6]
    王小平, 刘晶岚, 王九龄, 等. 白皮松种子及球果形态特征的地理变异[J]. 北京林业大学学报, 1998, 20(3):28−34.

    Wang X P, Liu J L, Wang J L, et al. Geographic variation of morphological characteristics of Pinus bungeana seeds and cones[J]. Journal of Beijing Forestry University, 1998, 20(3): 28−34.
    [7]
    丁小飞, 杨桂芳, 董梅. 白皮松天然群体遗传多样性的等位酶分析[J]. 广东林业科技, 2011, 27(1):8−12.

    Ding X F, Yang G F, Dong M. Allenzyme analysis of genetic diversity of natural population of Pinus bungeana[J]. Guangdong Forestry Science and Technology, 2011, 27(1): 8−12.
    [8]
    Bříza J, Phillips R L, Vasil I K. DNA-based markers in plants[J]. Biologia Plantarum, 1997, 39(2): 250. doi: 10.1023/A:1000660831741
    [9]
    赵罕, 郑勇奇, 李斌, 等. 白皮松天然群体遗传结构的地理变异分析[J]. 植物遗传资源学报, 2013, 14(3):395−401.

    Zhao H, Zheng Y Q, Li B, et al. Geographic variation analysis of genetic structure of natural population of Pinus bungeana[J]. Journal of Plant Genetic Resources, 2013, 14(3): 395−401.
    [10]
    李昕蔓, 金卓颖, 苏安然, 等. 白皮松EST-SSR序列分布特征及引物开发[J]. 林业与生态科学, 2019, 34(3):266−272.

    Li X M, Jin Z Y, Su A R, et al. Distribution characteristics and primer development of EST-SSR sequence of Pinus bungeana[J]. Forestry and Ecological Sciences, 2019, 34(3): 266−272.
    [11]
    Zhang X X, Liu B G, Li Y, et al. Landscape genetics reveals that adaptive genetic divergence in Pinus bungeana (Pinaceae) is driven by environmental variables relating to ecological habitats[J]. BMC Evolutionary Biology, 2019, 19(1): 1−13. doi: 10.1186/s12862-018-1333-8
    [12]
    张雪霞. 基于SCoT标记的白皮松景观基因组学研究[D]. 郑州: 河南农业大学, 2019.

    Zhang X X. Study on landscape genomics of Pinus bungeana based on SCoT markers[D]. Zhengzhou: Henan Agricultural University, 2019.
    [13]
    周琳, 段玉, 文博, 等. SNP分子标记及其在木本植物遗传育种的应用[J]. 亚热带植物科学, 2018, 47(2):187−193. doi: 10.3969/j.issn.1009-7791.2018.02.018

    Zhou L, Duan Y, Wen B, et al. SNP molecular markers and their application in woody plant genetic breeding[J]. Subtropical Plant Science, 2018, 47(2): 187−193. doi: 10.3969/j.issn.1009-7791.2018.02.018
    [14]
    Holliday J A, Aitken S N, Cooke J E, et al. Advances in ecological genomics in forest trees and applications to genetic resources conservation and breeding[J]. Molecular Ecology, 2016, 26(3): 706.
    [15]
    杨新笋. 基于SSR、SNP和形态学标记的甘薯种质资源遗传多样性研究[D]. 北京: 中国农业大学, 2016.

    Yang X S. Studies on genetic diversity of a sweetpotato (Ipomoea batatas (L.) Lam.) germplasm collection based on SSR, SNP and morphological markers[D]. Beijing: China Agricultural University, 2016.
    [16]
    谭炎宁, 余东, 盛夏冰, 等. SLAF-seq BSA定位水稻黄叶转绿基因grc2的效果研究[J]. 农业生物技术学报, 2020, 28(3):381−388.

    Tan Y N, Yu D, Sheng X B, et al. Effects on mapping the gene of green-revertible chlorina 2 (grc2) using SLAF-seq BSA in rice (Oryza sativa)[J]. Journal of Agricultural Biotechnology, 2020, 28(3): 381−388.
    [17]
    Shen C, Jin X, Zhu D, et al. Uncovering SNP and indel variations of tetraploid cottons by SLAF-seq[J]. BMC Genomics, 2017, 18: 247. doi: 10.1186/s12864-017-3643-4
    [18]
    Ayaz A, Shen C, Nie Y C, et al. QTL Mapping for fiber quality and yield traits based on introgression lines derived from Gossypium hirsutum × G. tomentosum[J]. International Journal of Molecular Sciences, 2018, 19(1): 243. doi: 10.3390/ijms19010243
    [19]
    Wei Q, Wang W, Hu T, et al. Construction of a SNP-based genetic map using SLAF-Seq and QTL analysis of morphological traits in eggplant[J]. Front Genet, 2020, 11(11): 178.
    [20]
    Ma B, Liao L, Peng Q, et al. Reduced representation genome sequencing reveals patterns of genetic diversity and selection in apple[J]. Journal of Integrative Plant Biology, 2017, 59(3): 190−204. doi: 10.1111/jipb.12522
    [21]
    陈立杰, 张素勤, 尹杰, 等. 贵阳花溪古茶树遗传进化的SNP分析[J]. 西南大学学报(自然科学版), 2019, 41(8):33−40.

    Chen L J, Zhang S Q, Yin J, et al. SNP analysis of genetic evolution of ancient Camellia sinensis in Huaxi, Guiyang[J]. Journal of Southwest University (Natural Science Edition), 2019, 41(8): 33−40.
    [22]
    Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2009, 25(14): 1754−1760. doi: 10.1093/bioinformatics/btp324
    [23]
    McKenna A, Hanna M, Banks E, et al. The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data[J]. Genome Research, 2010, 20(9): 1297−1303. doi: 10.1101/gr.107524.110
    [24]
    Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools[J]. Bioinformatics, 2009, 25(16): 2078−2079. doi: 10.1093/bioinformatics/btp352
    [25]
    Danecek P, Auton A, Abecasis G, et al. The variant call format and VCFtools[J]. Bioinformatics, 2011, 27(15): 2156−2158. doi: 10.1093/bioinformatics/btr330
    [26]
    Sun X W, Liu D Y, Zhang X F, et al. SLAF-seq: an efficient method of large-scale de novo snp discovery and genotyping using highthroughput sequencing[J/OL]. PLoS ONE, 2013, 8(3): e58700 [2020−06−12]. http://dx.doi.org/10.1371/journal.pone.0058700.
    [27]
    Wang Z, Cheng Y, Yin Y, et al. Genetic linkage map construction and QTL mapping of seedling height, basal diameter and crown width of Taxodium ‘Zhongshanshan 302’×T. mucronatum[J]. SpringerPlus, 2016, 5(1): 936. doi: 10.1186/s40064-016-1701-z
  • Cited by

    Periodical cited type(9)

    1. 陈婷婷,马均鹏,黄盈萤,梁桂槟,周浩,高乞. 基于流式细胞术的蜘蛛抱蛋属植物倍性检测和核DNA含量测定体系的建立. 西北农业学报. 2024(10): 1948-1957 .
    2. 王莉飞,徐佳洁,黄晓霞,李淑斌,程小毛. 现代月季品种间杂交亲和性评价. 分子植物育种. 2023(12): 3973-3985 .
    3. 马策,阮芳,叶福民,赵小慧,李振涛,李成俊. 中国古老月季的形态多样性分析. 辽宁农业科学. 2022(03): 1-5 .
    4. 王珧,邓逸桐,戴习彬,张安,曹清河,陈艳丽. 甘薯近缘种Ipomoea cordatotriloba基因组大小测定及高通量调查测序. 热带作物学报. 2020(06): 1154-1159 .
    5. 吉乃喆,冯慧,李纳新,赵惠恩,赵世伟. 三倍体古老月季在月季育种中的应用及其子代倍性分析. 分子植物育种. 2019(19): 6424-6433 .
    6. 苏一钧,王珧,戴习彬,赵路宽,张安,曹清河. 25份甘薯登记品种基因组大小测定. 江苏师范大学学报(自然科学版). 2019(03): 31-34 .
    7. 张誉稳,李孟南,赵雁. 月季品种波塞尼娜变异株的发现与初步认定. 黑龙江农业科学. 2018(04): 85-88 .
    8. 尤禄祥,谢梦梦,伊贤贵,王华辰,段一凡,王贤荣. 早樱种系基因组大小的研究. 安徽农业大学学报. 2017(06): 1093-1097 .
    9. 李诗琦,张程,高信芬. 应用流式细胞术测定17种中国野生蔷薇核DNA含量. 植物科学学报. 2017(04): 558-565 .

    Other cited types(6)

Catalog

    Article views (1316) PDF downloads (126) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return