Citation: | Xu Xin, Lu Huijun, Wang Yucheng, Wang Zhibo, Ji Xiaoyu. Salt stress tolerance analysis of SAIR6 long non-coding RNA in Tamarix hispida[J]. Journal of Beijing Forestry University, 2021, 43(3): 36-43. DOI: 10.12171/j.1000-1522.20200235 |
[1] |
Alcazar R, Marco F, Cuevas J C, et al. Involvement of polyamines in plant response to abiotic stress[J]. Biotechnology Letters, 2006, 28(23): 1867−1876. doi: 10.1007/s10529-006-9179-3
|
[2] |
Lopez-Perez L, Martinez-Ballesta M C, Maurel C, et al. Changes in plasma membrane lipids, aquaporins and proton pump of broccoli roots, as an adaptation mechanism to salinity[J]. Phytochemistry, 2009, 70(4): 492−500. doi: 10.1016/j.phytochem.2009.01.014
|
[3] |
Yamaguchi A, Abe M. Regulation of reproductive development by non-coding RNA in Arabidopsis: to flower or not to flower[J]. Journal of Plant Research, 2012, 125(6): 693−704. doi: 10.1007/s10265-012-0513-7
|
[4] |
Bardou F, Merchan F, Ariel F, et al. Dual RNAs in plants[J]. Biochimie, 2011, 93(11): 1950−1954. doi: 10.1016/j.biochi.2011.07.028
|
[5] |
Wierzbicki A T. The role of long non-coding RNA in transcriptional gene silencing[J]. Current Opinion in Plant Biology, 2012, 15(5): 517−522. doi: 10.1016/j.pbi.2012.08.008
|
[6] |
Chen L L, Carmichael G G. Decoding the function of nuclear long non-coding RNAs[J]. Current Opinion in Cell Biology, 2010, 22(3): 357−364. doi: 10.1016/j.ceb.2010.03.003
|
[7] |
Bai Y, Dai X, Harrison A P, et al. RNA regulatory networks in animals and plants: a long noncoding RNA perspective[J]. Briefings in Functional Genomics, 2015, 14(2): 91−101. doi: 10.1093/bfgp/elu017
|
[8] |
Begcy K, Dresselhaus T. Epigenetic responses to abiotic stresses during reproductive development in cereals[J]. Plant Reproduction, 2018, 31(4): 343−355. doi: 10.1007/s00497-018-0343-4
|
[9] |
Liu J, Jung C, Xu J, et al. Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis[J]. The Plant Cell, 2012, 24(11): 4333−4345. doi: 10.1105/tpc.112.102855
|
[10] |
Qin T, Zhao H, Cui P, et al. A nucleus-localized long non-coding RNA enhances drought and salt stress tolerance[J]. Plant Physiology, 2017, 175(3): 1321−1336. doi: 10.1104/pp.17.00574
|
[11] |
Li S, Yu X, Lei N, et al. Genome-wide identification and functional prediction of cold and/or drought-responsive lncRNAs in cassava[J/OL]. Scientific Reports, 2017, 7: 45981 (2017−04−07) [2018−12−11]. https://www.nature.com/articles/srep45981.
|
[12] |
Karlik E, Gozukirmizi N. Expression analysis of lncRNA AK370814 involved in the barley vitamin B6 salvage pathway under salinity[J]. Molecular Biology Reports, 2018, 45(6): 1597−1609. doi: 10.1007/s11033-018-4289-2
|
[13] |
Livak K, Schmittgen T. Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆Ct Method[J]. Methods, 2001, 25(4): 402−408. doi: 10.1006/meth.2001.1262
|
[14] |
Ji X, Zheng L, Liu Y, et al. A transient transformation system for the functional characterization of genes involved in stress response[J]. Plant Molecular Biology Reporter, 2014, 32(3): 732−739. doi: 10.1007/s11105-013-0683-z
|
[15] |
王关林, 方宏荺. 植物基因工程实验技术指南[M]. 2版. 北京: 科学出版社, 2016.
Wang G L, Fang H J. Laboratory guide for plant genetic engineering[M]. 2nd ed. Beijing: Science Press, 2016.
|
[16] |
Zhang X, Wang L, Meng H, et al. Maize ABP9 enhances tolerance to multiple stresses in transgenic Arabidopsis by modulating ABA signaling and cellular levels of reactive oxygen species[J]. Plant Molecular Biology, 2011, 75(4−5): 365−378. doi: 10.1007/s11103-011-9732-x
|
[17] |
Kim M, Ahn J W, Jin U H, et al. Activation of the programmed cell death pathway by inhibition of proteasome function in plants[J]. Journal of Biological Chemistry, 2003, 278: 19406−19415. doi: 10.1074/jbc.M210539200
|
[18] |
毋若楠, 王红, 杨成成, 等. 拟南芥lncRNA-At5NC056820过表达载体构建及其转基因植株的抗旱性研究[J]. 西北植物学报, 2017, 37(10):22−27.
Wu R N, Wang H, Yang C C, et al. Construction of lncRNA-At5NC056820 Overexpression vector in Arabidopsis thaliana and study on drought resistance of transgenic plants[J]. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(10): 22−27.
|
[19] |
Wu J, Liu C, Liu Z, et al. Pol III-dependent cabbage BoNR8 long ncRNA affects seed germination and growth in Arabidopsis[J]. Plant & Cell Physiology, 2019, 60(2): 421−435.
|
[20] |
Yan Q, Wu F, Yan Z, et al. Differential co-expression networks of long non-coding RNAs and mRNAs in Cleistogenes songorica under water stress and during recovery[J/OL]. BMC Plant Biology, 2019, 19(1): 23 (2019−01−11)[2019−06−23]. https://doi.org/10.1186/s12870-018-1626-5.
|
[21] |
Gai Y P, Yuan S S, Zhao Y N, et al. A novel LncRNA, MuLnc1, associated with environmental stress in mulberry (Morus multicaulis) [J/OL]. Frontiers in Plant Science, 2018, 9: 669 (2018−05−29) [2019−04−21]. https://doi.org/10.3389/fpls.2018.00669.
|
[22] |
卢惠君, 李子义, 梁瀚予,等. 刚毛柽柳NAC24基因的表达及抗逆功能分析[J]. 林业科学, 2019, 55(3):57−66.
Lu H J, Li Z Y, Liang H Y, et al. Expression and stress tolerance analysis of NAC24 from Tamarix hispida[J]. Scientia Silvae Sinicae, 2019, 55(3): 57−66.
|
[23] |
He Z, Li Z, Lu H, et al. The NAC protein from Tamarix hispida, ThNAC7, confers salt and osmotic stress tolerance by increasing reactive oxygen species scavenging capability[J]. Plants, 2019, 8(7): 221. doi: 10.3390/plants8070221
|
1. |
王家强,郑锋振. 耐热嗜酸β-甘露聚糖酶TaMan5A在毕赤酵母中高效表达及酶学性质研究. 食品与发酵工业. 2024(03): 52-58 .
![]() | |
2. |
王旭洁,姚三川,雒翠梅,母军,漆楚生. 路易斯酸预处理对木材热降解特性的影响. 北京林业大学学报. 2024(11): 133-140 .
![]() | |
3. |
蔡金澄,雒翠梅,王旭洁,母军. 高温热处理对挪威云杉及泡桐木振动性能和化学组分的影响. 林产工业. 2023(11): 14-20 .
![]() |