Citation: | Xu Xin, Lu Huijun, Wang Yucheng, Wang Zhibo, Ji Xiaoyu. Salt stress tolerance analysis of SAIR6 long non-coding RNA in Tamarix hispida[J]. Journal of Beijing Forestry University, 2021, 43(3): 36-43. DOI: 10.12171/j.1000-1522.20200235 |
[1] |
Alcazar R, Marco F, Cuevas J C, et al. Involvement of polyamines in plant response to abiotic stress[J]. Biotechnology Letters, 2006, 28(23): 1867−1876. doi: 10.1007/s10529-006-9179-3
|
[2] |
Lopez-Perez L, Martinez-Ballesta M C, Maurel C, et al. Changes in plasma membrane lipids, aquaporins and proton pump of broccoli roots, as an adaptation mechanism to salinity[J]. Phytochemistry, 2009, 70(4): 492−500. doi: 10.1016/j.phytochem.2009.01.014
|
[3] |
Yamaguchi A, Abe M. Regulation of reproductive development by non-coding RNA in Arabidopsis: to flower or not to flower[J]. Journal of Plant Research, 2012, 125(6): 693−704. doi: 10.1007/s10265-012-0513-7
|
[4] |
Bardou F, Merchan F, Ariel F, et al. Dual RNAs in plants[J]. Biochimie, 2011, 93(11): 1950−1954. doi: 10.1016/j.biochi.2011.07.028
|
[5] |
Wierzbicki A T. The role of long non-coding RNA in transcriptional gene silencing[J]. Current Opinion in Plant Biology, 2012, 15(5): 517−522. doi: 10.1016/j.pbi.2012.08.008
|
[6] |
Chen L L, Carmichael G G. Decoding the function of nuclear long non-coding RNAs[J]. Current Opinion in Cell Biology, 2010, 22(3): 357−364. doi: 10.1016/j.ceb.2010.03.003
|
[7] |
Bai Y, Dai X, Harrison A P, et al. RNA regulatory networks in animals and plants: a long noncoding RNA perspective[J]. Briefings in Functional Genomics, 2015, 14(2): 91−101. doi: 10.1093/bfgp/elu017
|
[8] |
Begcy K, Dresselhaus T. Epigenetic responses to abiotic stresses during reproductive development in cereals[J]. Plant Reproduction, 2018, 31(4): 343−355. doi: 10.1007/s00497-018-0343-4
|
[9] |
Liu J, Jung C, Xu J, et al. Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis[J]. The Plant Cell, 2012, 24(11): 4333−4345. doi: 10.1105/tpc.112.102855
|
[10] |
Qin T, Zhao H, Cui P, et al. A nucleus-localized long non-coding RNA enhances drought and salt stress tolerance[J]. Plant Physiology, 2017, 175(3): 1321−1336. doi: 10.1104/pp.17.00574
|
[11] |
Li S, Yu X, Lei N, et al. Genome-wide identification and functional prediction of cold and/or drought-responsive lncRNAs in cassava[J/OL]. Scientific Reports, 2017, 7: 45981 (2017−04−07) [2018−12−11]. https://www.nature.com/articles/srep45981.
|
[12] |
Karlik E, Gozukirmizi N. Expression analysis of lncRNA AK370814 involved in the barley vitamin B6 salvage pathway under salinity[J]. Molecular Biology Reports, 2018, 45(6): 1597−1609. doi: 10.1007/s11033-018-4289-2
|
[13] |
Livak K, Schmittgen T. Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆Ct Method[J]. Methods, 2001, 25(4): 402−408. doi: 10.1006/meth.2001.1262
|
[14] |
Ji X, Zheng L, Liu Y, et al. A transient transformation system for the functional characterization of genes involved in stress response[J]. Plant Molecular Biology Reporter, 2014, 32(3): 732−739. doi: 10.1007/s11105-013-0683-z
|
[15] |
王关林, 方宏荺. 植物基因工程实验技术指南[M]. 2版. 北京: 科学出版社, 2016.
Wang G L, Fang H J. Laboratory guide for plant genetic engineering[M]. 2nd ed. Beijing: Science Press, 2016.
|
[16] |
Zhang X, Wang L, Meng H, et al. Maize ABP9 enhances tolerance to multiple stresses in transgenic Arabidopsis by modulating ABA signaling and cellular levels of reactive oxygen species[J]. Plant Molecular Biology, 2011, 75(4−5): 365−378. doi: 10.1007/s11103-011-9732-x
|
[17] |
Kim M, Ahn J W, Jin U H, et al. Activation of the programmed cell death pathway by inhibition of proteasome function in plants[J]. Journal of Biological Chemistry, 2003, 278: 19406−19415. doi: 10.1074/jbc.M210539200
|
[18] |
毋若楠, 王红, 杨成成, 等. 拟南芥lncRNA-At5NC056820过表达载体构建及其转基因植株的抗旱性研究[J]. 西北植物学报, 2017, 37(10):22−27.
Wu R N, Wang H, Yang C C, et al. Construction of lncRNA-At5NC056820 Overexpression vector in Arabidopsis thaliana and study on drought resistance of transgenic plants[J]. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(10): 22−27.
|
[19] |
Wu J, Liu C, Liu Z, et al. Pol III-dependent cabbage BoNR8 long ncRNA affects seed germination and growth in Arabidopsis[J]. Plant & Cell Physiology, 2019, 60(2): 421−435.
|
[20] |
Yan Q, Wu F, Yan Z, et al. Differential co-expression networks of long non-coding RNAs and mRNAs in Cleistogenes songorica under water stress and during recovery[J/OL]. BMC Plant Biology, 2019, 19(1): 23 (2019−01−11)[2019−06−23]. https://doi.org/10.1186/s12870-018-1626-5.
|
[21] |
Gai Y P, Yuan S S, Zhao Y N, et al. A novel LncRNA, MuLnc1, associated with environmental stress in mulberry (Morus multicaulis) [J/OL]. Frontiers in Plant Science, 2018, 9: 669 (2018−05−29) [2019−04−21]. https://doi.org/10.3389/fpls.2018.00669.
|
[22] |
卢惠君, 李子义, 梁瀚予,等. 刚毛柽柳NAC24基因的表达及抗逆功能分析[J]. 林业科学, 2019, 55(3):57−66.
Lu H J, Li Z Y, Liang H Y, et al. Expression and stress tolerance analysis of NAC24 from Tamarix hispida[J]. Scientia Silvae Sinicae, 2019, 55(3): 57−66.
|
[23] |
He Z, Li Z, Lu H, et al. The NAC protein from Tamarix hispida, ThNAC7, confers salt and osmotic stress tolerance by increasing reactive oxygen species scavenging capability[J]. Plants, 2019, 8(7): 221. doi: 10.3390/plants8070221
|
[1] | Liu Xiaojing, Wen Xin, Zhao Rui, Chen Shaoliang, Zhao Nan, Li Jinke, Zhou Xiaoyang, Yao Jun. Overexpression of Populus euphratica PeCSP1 negatively regulating salt tolerance in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2023, 45(7): 9-17. DOI: 10.12171/j.1000-1522.20220020 |
[2] | Liu Bin, Cao Shangjie, Wang Ying, Cui Ying, Yue Hua, Zhang Yanni. Overexpression of LpNAC6 gene in Lilium pumilum enhancing salt tolerance in transgenic tobacco[J]. Journal of Beijing Forestry University, 2020, 42(4): 69-79. DOI: 10.12171/j.1000-1522.20190342 |
[3] | Yan Wenhua, Wu Dejun, Yan Liping, Wang Yinhua, Ren Fei, Yan Lin, Liu Jie, Yu Linlin. Comprehensive evaluation of salt tolerance of clones of Fraxinusin spp. seedling stage under salt stress[J]. Journal of Beijing Forestry University, 2019, 41(11): 44-53. DOI: 10.13332/j.1000-1522.20180438 |
[4] | Jiang Jing, Li Xiaoyuan, Wang Chu, Wang Fang, Jiang Jing. Evaluation of salt tolerant performance of BpCHS3 transgenic plants in Betula platyphylla[J]. Journal of Beijing Forestry University, 2019, 41(4): 1-7. DOI: 10.13332/j.1000-1522.20180224 |
[5] | Zhang Huilong, Wu Xia, Yao Jun, Zhao Nan, Zhao Rui, Li Jinke, Shen Xin, Chen Shaoliang. Overexpression mechanism of PeREM1.3 from Populus euphratica enhancing salt tolerance in transgenic tobacco[J]. Journal of Beijing Forestry University, 2019, 41(1): 1-9. DOI: 10.13332/j.1000-1522.20180338 |
[6] | ZHANG Yi-nan, WANG Yang, ZHANG Hui-long, YAO Jun, DENG Jia-yin, ZHAO Rui, SHEN Xin, CHEN Shao-liang. Over-expression of PeRIN4 enhanced salinity tolerance through up-regulation of PM H+-ATPase in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2017, 39(11): 1-8. DOI: 10.13332/j.1000-1522.20170124 |
[7] | YANG Chuan-bao, SUN Chao, LI Shan-wen, YAO Jun-xiu, LIU Jing-guo, JIAO Xing-jie. Comprehensive evaluation and screening of salt tolerance for Leuce clones at nursery stage[J]. Journal of Beijing Forestry University, 2017, 39(10): 24-32. DOI: 10.13332/j.1000-1522.20170323 |
[8] | DONG Hui, DUAN Xiao-chun, CHANG Zhi-hui. Effect of exogenous salicylic acid on salt tolerance in perennial ryegrass[J]. Journal of Beijing Forestry University, 2015, 37(2): 128-135. DOI: 10.13332/j.cnki.jbfu.2015.02.001 |
[9] | DUAN Zhong-xin, QIN Yu-rong, XIA Xin-li, YIN Wei-lun. Overexpression of Populus euphratica peuMIR156j gene enhancing salt tolerance in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2011, 33(6): 1-7. |
[10] | WANG Rui-gang, CHEN Shao-liang, LIU Li-yuan, HAO Zhi-yong, WENG Hai-jiao, LI He, YANG Shuang, DUAN Shan. Genotypic differences in antioxidative ability and salt tolerance of three poplars under sact stress[J]. Journal of Beijing Forestry University, 2005, 27(3): 46-52. |
1. |
肖巧云,张瑶锐,林晗,陈灿,范海兰,谢安强,颜欢欢. 铝胁迫下千年桐叶片角度及形态特征的变化. 西北林学院学报. 2024(04): 46-53 .
![]() | |
2. |
张庆源,田野,王淼,翟政,周诗朝. 美洲黑杨与青杨杂交F_1代苗期表型性状的分化及其类型划分. 南京林业大学学报(自然科学版). 2022(05): 40-48 .
![]() | |
3. |
沈浩,饶俊,关莹,张利萍,刘盛全,高慧. 美洲黑杨与欧洲黑杨及其杂交子代材性径向变异规律. 北京林业大学学报. 2020(05): 50-58 .
![]() | |
4. |
于海燕,胡潇予,何春霞,崔艺凡,范思琪,毕泉鑫,王利兵. 文冠果不同种源叶片结构对水分胁迫的差异性响应. 北京林业大学学报. 2019(01): 57-63 .
![]() |