Loading [MathJax]/jax/output/SVG/jax.js
  • Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Xu Xin, Lu Huijun, Wang Yucheng, Wang Zhibo, Ji Xiaoyu. Salt stress tolerance analysis of SAIR6 long non-coding RNA in Tamarix hispida[J]. Journal of Beijing Forestry University, 2021, 43(3): 36-43. DOI: 10.12171/j.1000-1522.20200235
Citation: Xu Xin, Lu Huijun, Wang Yucheng, Wang Zhibo, Ji Xiaoyu. Salt stress tolerance analysis of SAIR6 long non-coding RNA in Tamarix hispida[J]. Journal of Beijing Forestry University, 2021, 43(3): 36-43. DOI: 10.12171/j.1000-1522.20200235

Salt stress tolerance analysis of SAIR6 long non-coding RNA in Tamarix hispida

More Information
  • Received Date: August 09, 2020
  • Revised Date: September 13, 2020
  • Available Online: March 01, 2021
  • Published Date: April 15, 2021
  •   Objective  Long non-coding RNA (lncRNA) is a class of transcripts, which are larger than 200 nt in length and have extremely low protein-coding ability or without protein-coding ability. LncRNA is one of the key regulators of plant stress response. In this study, we studied the salt-tolerant physiological indexes under the salt stress of transiently overexpressing lncRNA of Tamarix hispida, and analyzed whether it had the ability to improve the salt tolerance and enrich the molecular mechanism of woody plant lncRNA in response to stress. It laid a foundation for the molecular regulation mechanism of lncRNA in T. hispida in response to salt stress.
      Method  In this study, a differential expression lncRNA-224223.1 was selected and named ThSAIR6 from transcriptomes of T. hispida under salt stress. The quantitative real-time PCR (qRT-PCR) was used to analyze the expression pattern of ThSAIR6 in leaf tissues of wild type T. hispida under salt stress. It could initially identify whether it responded to salt stress or not. Overexpression vectors (pROKII-ThSAIR6) were constructed in order to further study the stress tolerance. Overexpression (OE) and control T. hispida plants were obtained by agrobacterium-mediated high-efficient transient transformation system. Physiologic indexes related to salt tolerance of OE and control T. hispida plants under salt stress were measured in order to judge whether it could improve the salt tolerance of T. hispida plants.
      Result  The results of qRT-PCR showed that the expression quantity of ThSAIR6 in wild type plants significantly increased after salt stress for 24 h (P < 0.05), indicating that it could response to salt stress. The results showed that overexpression of ThSAIR6 in T. hispida plants significantly decreased the contents of H2O2 and O2 (P < 0.05), enhanced the POD and SOD activities (P < 0.05), and lowered the amount of dead cells, the electrolyte leakage and water loss rate of T. hispida tissues at the same time.
      Conclusion  In conclusion, lncRNA ThSAIR6 of T. hispida can response to salt stress. Overexpression of ThSAIR6 in plants significantly decreases the contents of H2O2 and O2, enhances the POD and SOD activities, improves ROS scavenging, and reduces cell damage of plant tissues under salt stress, thus effectively improves its salt tolerance.
  • [1]
    Alcazar R, Marco F, Cuevas J C, et al. Involvement of polyamines in plant response to abiotic stress[J]. Biotechnology Letters, 2006, 28(23): 1867−1876. doi: 10.1007/s10529-006-9179-3
    [2]
    Lopez-Perez L, Martinez-Ballesta M C, Maurel C, et al. Changes in plasma membrane lipids, aquaporins and proton pump of broccoli roots, as an adaptation mechanism to salinity[J]. Phytochemistry, 2009, 70(4): 492−500. doi: 10.1016/j.phytochem.2009.01.014
    [3]
    Yamaguchi A, Abe M. Regulation of reproductive development by non-coding RNA in Arabidopsis: to flower or not to flower[J]. Journal of Plant Research, 2012, 125(6): 693−704. doi: 10.1007/s10265-012-0513-7
    [4]
    Bardou F, Merchan F, Ariel F, et al. Dual RNAs in plants[J]. Biochimie, 2011, 93(11): 1950−1954. doi: 10.1016/j.biochi.2011.07.028
    [5]
    Wierzbicki A T. The role of long non-coding RNA in transcriptional gene silencing[J]. Current Opinion in Plant Biology, 2012, 15(5): 517−522. doi: 10.1016/j.pbi.2012.08.008
    [6]
    Chen L L, Carmichael G G. Decoding the function of nuclear long non-coding RNAs[J]. Current Opinion in Cell Biology, 2010, 22(3): 357−364. doi: 10.1016/j.ceb.2010.03.003
    [7]
    Bai Y, Dai X, Harrison A P, et al. RNA regulatory networks in animals and plants: a long noncoding RNA perspective[J]. Briefings in Functional Genomics, 2015, 14(2): 91−101. doi: 10.1093/bfgp/elu017
    [8]
    Begcy K, Dresselhaus T. Epigenetic responses to abiotic stresses during reproductive development in cereals[J]. Plant Reproduction, 2018, 31(4): 343−355. doi: 10.1007/s00497-018-0343-4
    [9]
    Liu J, Jung C, Xu J, et al. Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis[J]. The Plant Cell, 2012, 24(11): 4333−4345. doi: 10.1105/tpc.112.102855
    [10]
    Qin T, Zhao H, Cui P, et al. A nucleus-localized long non-coding RNA enhances drought and salt stress tolerance[J]. Plant Physiology, 2017, 175(3): 1321−1336. doi: 10.1104/pp.17.00574
    [11]
    Li S, Yu X, Lei N, et al. Genome-wide identification and functional prediction of cold and/or drought-responsive lncRNAs in cassava[J/OL]. Scientific Reports, 2017, 7: 45981 (2017−04−07) [2018−12−11]. https://www.nature.com/articles/srep45981.
    [12]
    Karlik E, Gozukirmizi N. Expression analysis of lncRNA AK370814 involved in the barley vitamin B6 salvage pathway under salinity[J]. Molecular Biology Reports, 2018, 45(6): 1597−1609. doi: 10.1007/s11033-018-4289-2
    [13]
    Livak K, Schmittgen T. Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆Ct Method[J]. Methods, 2001, 25(4): 402−408. doi: 10.1006/meth.2001.1262
    [14]
    Ji X, Zheng L, Liu Y, et al. A transient transformation system for the functional characterization of genes involved in stress response[J]. Plant Molecular Biology Reporter, 2014, 32(3): 732−739. doi: 10.1007/s11105-013-0683-z
    [15]
    王关林, 方宏荺. 植物基因工程实验技术指南[M]. 2版. 北京: 科学出版社, 2016.

    Wang G L, Fang H J. Laboratory guide for plant genetic engineering[M]. 2nd ed. Beijing: Science Press, 2016.
    [16]
    Zhang X, Wang L, Meng H, et al. Maize ABP9 enhances tolerance to multiple stresses in transgenic Arabidopsis by modulating ABA signaling and cellular levels of reactive oxygen species[J]. Plant Molecular Biology, 2011, 75(4−5): 365−378. doi: 10.1007/s11103-011-9732-x
    [17]
    Kim M, Ahn J W, Jin U H, et al. Activation of the programmed cell death pathway by inhibition of proteasome function in plants[J]. Journal of Biological Chemistry, 2003, 278: 19406−19415. doi: 10.1074/jbc.M210539200
    [18]
    毋若楠, 王红, 杨成成, 等. 拟南芥lncRNA-At5NC056820过表达载体构建及其转基因植株的抗旱性研究[J]. 西北植物学报, 2017, 37(10):22−27.

    Wu R N, Wang H, Yang C C, et al. Construction of lncRNA-At5NC056820 Overexpression vector in Arabidopsis thaliana and study on drought resistance of transgenic plants[J]. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(10): 22−27.
    [19]
    Wu J, Liu C, Liu Z, et al. Pol III-dependent cabbage BoNR8 long ncRNA affects seed germination and growth in Arabidopsis[J]. Plant & Cell Physiology, 2019, 60(2): 421−435.
    [20]
    Yan Q, Wu F, Yan Z, et al. Differential co-expression networks of long non-coding RNAs and mRNAs in Cleistogenes songorica under water stress and during recovery[J/OL]. BMC Plant Biology, 2019, 19(1): 23 (2019−01−11)[2019−06−23]. https://doi.org/10.1186/s12870-018-1626-5.
    [21]
    Gai Y P, Yuan S S, Zhao Y N, et al. A novel LncRNA, MuLnc1, associated with environmental stress in mulberry (Morus multicaulis) [J/OL]. Frontiers in Plant Science, 2018, 9: 669 (2018−05−29) [2019−04−21]. https://doi.org/10.3389/fpls.2018.00669.
    [22]
    卢惠君, 李子义, 梁瀚予,等. 刚毛柽柳NAC24基因的表达及抗逆功能分析[J]. 林业科学, 2019, 55(3):57−66.

    Lu H J, Li Z Y, Liang H Y, et al. Expression and stress tolerance analysis of NAC24 from Tamarix hispida[J]. Scientia Silvae Sinicae, 2019, 55(3): 57−66.
    [23]
    He Z, Li Z, Lu H, et al. The NAC protein from Tamarix hispida, ThNAC7, confers salt and osmotic stress tolerance by increasing reactive oxygen species scavenging capability[J]. Plants, 2019, 8(7): 221. doi: 10.3390/plants8070221
  • Related Articles

    [1]Wang Rongfang, Zhang Ziyan, Li Dehai. Effects of extraction methods on extraction components and antioxidant activity of Quercus mongolica shell[J]. Journal of Beijing Forestry University, 2022, 44(5): 150-160. DOI: 10.12171/j.1000-1522.20210352
    [2]Deng Wenhong, Zhao Xinrui, Zhang Junqi, Guo Huihong. Determination of plant hormones in plant tissues by UPLC-MS/MS[J]. Journal of Beijing Forestry University, 2019, 41(8): 154-160. DOI: 10.13332/j.1000-1522.20190052
    [3]WANG Wu-hao, QI Qi, LI Yun, GAI Ying. Internal-standard quantitative determination of chlorogenic acid in Eucommia ulmoides plant by CE-MS[J]. Journal of Beijing Forestry University, 2017, 39(4): 115-119. DOI: 10.13332/j.1000-1522.20160030
    [4]LI Ran, QI Qi, LI Yun, CHEN Xue-mei, GAI Ying. A method of HPLC-MS/MS to determine chlorogenic acid and other three kinds of active components in Eucommia ulmoids[J]. Journal of Beijing Forestry University, 2016, 38(6): 123-129. DOI: 10.13332/j.1000-1522.20160105
    [5]LI Jin-ke, DENG Wen-hong, CHEN Shao-liang. Quantitative analysis of gibberellins in plant tissues by GPC-HPLC-LC/MS.[J]. Journal of Beijing Forestry University, 2014, 36(6): 171-178. DOI: 10.13332/j.cnki.jbfu.2014.06.027
    [6]YANG Li-bin, SONG Rui-qing, LI Chong-wei. Effects of ethyl acetate extract of Trichoderma harzianum fermentation liquid on physiological index of Phytophthora infestans[J]. Journal of Beijing Forestry University, 2013, 35(2): 92-96.
    [7]LI Jin-ke, CHEN Hua-jun, CHEN Shao-liang. Quantitative analysis of jasmonic acids, indole-3-acetic acid and abscisic acid in plant tissues by GC-MS[J]. Journal of Beijing Forestry University, 2010, 32(5): 143-148.
    [8]JI Hong-fang, ZHANG Ling-wen, SONG Rui-qing. Effects of Lactarius vellereus fermenting liquor extraction on the activity of several impo rtant enzymes in mycelia of Alternaria alternata[J]. Journal of Beijing Forestry University, 2009, 31(4): 51-54.
    [9]JI Hong-fang, ZHANG Ling-wen, SONG Rui-qing. Inhibiting mechanism of the extraction of Lactarius vellereus fermenting liquid on Alternaria alternata in poplar[J]. Journal of Beijing Forestry University, 2008, 30(4): 146-149.
    [10]JI Hong-fang, SONG Rui-qing, YANG Qian. Effects of extraction from Lactarius vellereus fermenting liquor on the activity of protective enzymes, content of MDA and conductivity ratio in Alternaria alternata(Fr.) Keissler[J]. Journal of Beijing Forestry University, 2007, 29(6): 156-160. DOI: 10.13332/j.1000-1522.2007.06.022
  • Cited by

    Periodical cited type(3)

    1. 王家强,郑锋振. 耐热嗜酸β-甘露聚糖酶TaMan5A在毕赤酵母中高效表达及酶学性质研究. 食品与发酵工业. 2024(03): 52-58 .
    2. 王旭洁,姚三川,雒翠梅,母军,漆楚生. 路易斯酸预处理对木材热降解特性的影响. 北京林业大学学报. 2024(11): 133-140 . 本站查看
    3. 蔡金澄,雒翠梅,王旭洁,母军. 高温热处理对挪威云杉及泡桐木振动性能和化学组分的影响. 林产工业. 2023(11): 14-20 .

    Other cited types(4)

Catalog

    Article views (1210) PDF downloads (62) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return