Citation: | Lü Zhaolin, Yuan Weiqiong, Zhang Bolin, Xing Guoliang. A review on mass distribution of active components from Hippophae rhamnoides fruits[J]. Journal of Beijing Forestry University, 2021, 43(1): 144-152. DOI: 10.12171/j.1000-1522.20200236 |
[1] |
周文洁. 陕北黄土区沙棘林下植被特征及群落稳定性研究[D]. 北京: 北京林业大学, 2020.
Zhou W J. Characteristics and community stability of Hippophae rhamnoides in loess area of northern Shaanxi Province[D]. Beijing: Beijing Forestry University, 2020.
|
[2] |
Suryakumar G, Gupta A. Medicinal and therapeutic potential of sea buckthorn (Hippophae rhamnoides L.)[J]. Journal of Ethnopharmacology, 2011, 138(2): 268−278. doi: 10.1016/j.jep.2011.09.024.
|
[3] |
Srivastava R B, Korekar G, Stobdan T. Nutritional attributes and health application of seabuckthorn (Hippophae rhamnoides L.) : a review[J]. Current Nutrition & Food Science, 2013, 9(2): 151−165. doi: 10.2174/1573401311309020008.
|
[4] |
Joseph S V, Edirisinghe I, Burton-Freeman B M. Berries: anti-inflammatory effects in humans[J]. Journal of Agricultural and Food Chemistry, 2014, 62(18): 3886−3903. doi: 10.1021/jf4044056.
|
[5] |
Lehtonen H M, Suomela J P, Tahvonen R, et al. Different berries and berry fractions have various but slightly positive effects on the associated variables of metabolic diseases on overweight and obese women[J]. European Journal of Clinical Nutrition, 2011, 65(3): 394−401. doi: 10.1038/ejcn.2010.268.
|
[6] |
Xu Y J, Kaur M, Dhillon R S, et al. Health benefits of sea buckthorn for the prevention of cardiovascular diseases[J]. Journal of Functional Foods, 2011, 3(1): 2−12. doi: 10.1016/j.jff.2011.01.001.
|
[7] |
Yang B, Kortesniemi M. Clinical evidence on potential health benefits of berries[J]. Current Opinion in Food Science, 2015, 2: 36−42. doi: 10.1016/j.cofs.2015.01.002.
|
[8] |
Yang B. Sugars, acids, ethyl β-d-glucopyranose and a methyl inositol in sea buckthorn (Hippophae rhamnoides) berries[J]. Food Chemistry, 2009, 112(1): 89−97. doi: 10.1016/j.foodchem.2008.05.042.
|
[9] |
Bal L M, Meda V, Naik S N, et al. Seabuckthorn berries: a potential source of valuable nutrients for nutraceuticals and cosmoceuticals[J]. Food Research International, 2011, 44(7): 1718−1727. doi: 10.1016/j.foodres.2011.03.002.
|
[10] |
Vashishtha V, Barhwal K, Kumar A, et al. Effect of seabuckthorn seed oil in reducing cardiovascular risk factors: a longitudinal controlled trial on hypertensive subjects[J]. Clinical Nutrition, 2017, 36(5): 1231−1238. doi: 10.1016/j.clnu.2016.07.013.
|
[11] |
Li Z, Jian W, Xiong Y, et al. The determination of the fatty acid content of sea buckthorn seed oil using near infrared spectroscopy and variable selection methods for multivariate calibration[J]. Vibrational Spectroscopy, 2016, 84: 24−29. doi: 10.1016/j.vibspec.2016.02.008.
|
[12] |
Yang W, Laaksonen O, Kallio H, et al. Proanthocyanidins in sea buckthorn (Hippophae rhamnoides L.) serries of different origins with special reference to influence of genetic background and growth location[J]. Journal of Agricultural and Food Chemistry, 2016, 64: 1274−1282. doi: 10.1021/acs.jafc.5b05718.
|
[13] |
Besbes S, Blecker C, Deroanne C, et al. Date seed oil: phenolic, tocopherol and sterol profiles[J]. Journal of Food Lipids, 2010, 11(4): 251−265. doi: 10.1111/j.1745-4522.2004.01141.x.
|
[14] |
Ramadan M F, Wahdan K M M. Blending of corn oil with black cumin (Nigella sativa) and coriander (Coriandrum sativum) seed oils: impact on functionality, stability and radical scavenging activity[J]. Food Chemistry, 2012, 132(2): 873−879. doi: 10.1016/j.foodchem.2011.11.054
|
[15] |
Wang L G, Li E C, Qin J G, et al. Effect of oxidized fish oil and α-tocopherol on growth, antioxidation status, serum immune enzyme activity and resistance to aeromonas hydrophila challenge of Chinese mitten crab eriocheir sinensis[J]. Aquaculture Nutrition, 2015, 21(4): 414−424. doi: 10.1111/anu.12171.
|
[16] |
Rosch D, Bergmann M, Knorr D, et al. Structure-antioxidant efficiency relationships of phenolic compounds and their contribution to the antioxidant activityof sea buckthorn juice[J]. Journal of Agricultural and Food Chemistry, 2003, 51(15): 4233−4239. doi: 10.1021/jf0300339.
|
[17] |
Pawel B, Schulze-Lefert P. Role of plant secondary metabolites at the host-pathogen interface[M]//Annual plant reviews (Vol. 34): molecular aspects of plant disease resistance. Trenton: Wiley-Blackwell, 2009.
|
[18] |
Beveridge T, Li T S C, Oomah B D, et al. Seabuckthorn products: manufacture and composition.[J]. Journal of Agricultural and Food Chemistry, 1999, 47(9): 3480−3488. doi: 10.1021/jf981331m.
|
[19] |
Yang B R, Kallio H. Fatty acid composition of lipids in sea buckthorn (Hippophae rhamnoides L.) berries of different origins[J]. Journal of Agricultural and Food Chemistry, 2001, 49: 1939−1947. doi: 10.1021/jf001059s.
|
[20] |
Ma X, Yang W, Laaksonen O, et al. Role of flavonols and proanthocyanidins in the sensory quality of sea buckthorn (Hippophaë rhamnoides L.) berries[J]. Journal of Agricultural and Food Chemistry, 2017, 65(45): 9871−9879. doi: 10.1021/acs.jafc.7b04156.
|
[21] |
Cheng J, Kondo K, Suzuki Y, et al. Inhibitory effects of total flavones of Hippophae rhamnoides L. on thrombosis in mouse femoral artery and in vitro platelet aggregation[J]. Life Sciences, 2003, 72(20): 2262−2271. doi: 10.1016/s0024-3205(03)00114-0.
|
[22] |
Clair E, Yang B, Raija T, et al. Effects of an antioxidant-rich juice (seabuckthorn) on risk factors for coronary heart disease in humans[J]. Journal of Nutritional Biochemistry, 2002, 13(6): 346−354. doi: 10.1016/S0955-2863(02)00179-1.
|
[23] |
Raffo A, Paoletti F, Antonelli M. Changes in sugar, organic acid, flavonol and carotenoid composition during ripening of berries of three seabuckthorn (Hippophae rhamnoides L.) cultivars[J]. European Food Research and Technology, 2004, 219(4): 360−368. doi: 10.1007/s00217-004-0984-4.
|
[24] |
Jeppsson N, Gao X. Changes in the contents of kaempherol, quercetin and L-ascorbic acid in seabuckthorn berries during maturation[J]. Agricultural & Food Science in Finland, 2000, 9(1): 17−22. doi: 10.23986/afsci.5652.
|
[25] |
Chen C, Zhang H, Xiao W, et al. High-performance liquid chromatographic fingerprint analysis for different origins of sea buckthorn berries[J]. Journal of Chromatography A, 2007, 1154(1−2): 250−259. doi: 10.1016/j.chroma.2007.03.097.
|
[26] |
Rösch D, Mügge C, Fogliano V, et al. Antioxidant oligomeric proanthocyanidins from sea buckthorn (Hippophaë rhamnoides) pomace[J]. Journal of Agricultural and Food Chemistry, 2004, 52(22): 6712−6718. doi: 10.1021/jf040241g
|
[27] |
Alshaibani D, Rong Z, Wu V C H. Antibacterial characteristics and activity of vaccinium macrocarpon proanthocyanidins against diarrheagenic Escherichia coli[J]. Journal of Functional Foods, 2017, 39: 133−138. doi: 10.1016/j.jff.2017.10.003.
|
[28] |
Cádiz-Gurrea M L, Borrás-Linares I, Lozano-Sánchez J, et al. Cocoa and grape seed byproducts as a source of antioxidant and anti-inflammatory proanthocyanidins[J]. International Journal of Molecular Sciences, 2017, 18(2): 376. doi: 10.3390/ijms18020376.
|
[29] |
Lee N, Min S S, Kang Y, et al. Oligonol, a lychee fruit-derived low-molecular form of polyphenol mixture, suppresses inflammatory cytokine production from human monocytes[J]. Human Immunology, 2016, 77(6): 512−515. doi: 10.1016/j.humimm.2016.04.011.
|
[30] |
Yu R J, Liu H B, Yu Y, et al. Anticancer activities of proanthocyanidins from the plant urceola huaitingii and their synergistic effects in combination with chemotherapeutics[J]. Fitoterapia, 2016, 112: 175−182. doi: 10.1016/j.fitote.2016.05.015.
|
[31] |
Manach C. Bioavailability and bioefficacy of polyphenols in humans(I): review of 97 bioavailability studies[J]. The American Journal of Clinical Nutrition, 2005, 81(1): 230−242. doi: 10.1021/jo070579k.
|
[32] |
Ou K, Gu L. Absorption and metabolism of proanthocyanidins[J]. Journal of Functional Foods, 2014, 7: 43−53. doi: 10.1016/j.jff.2013.08.004.
|
[33] |
Hajazimi E, Landberg R, Zamaratskaia G. Simultaneous determination of flavonols and phenolic acids by HPLC-CoulArray in berries common in the Nordic diet[J]. LWT-Food Science and Technology, 2016, 74: 128−134. doi: 10.1016/j.lwt.2016.07.034.
|
[34] |
Li G, Hong G, Li X, et al. Synthesis and activity towards alzheimer’s disease in vitro: tacrine, phenolic acid and ligustrazine hybrids[J]. European Journal of Medicinal Chemistry, 2018, 148: 238−254. doi: 10.1016/j.ejmech.2018.01.028.
|
[35] |
Arimboor R, Kumar K S, Arumughan C. Simultaneous estimation of phenolic acids in sea buckthorn (Hippophae rhamnoides) using RP-HPLC with DAD[J]. Journal of Pharmaceutical and Biomedical Analysis, 2008, 47(1): 31−38. doi: 10.1016/j.jpba.2007.11.045.
|
[36] |
Chauhan A, Shirkot C K, Kaushal R, et al. Plant growth-promoting rhizobacteria of medicinal plants in NW himalayas: current status and future prospects[M]//Egamberdieva D, Shrivastava S, Varma A. Plant-growth-promoting rhizobacteria (PGPR) and medicinal plants. Berlin: Springer, 2015. DOI: 10.1007/978-3-319-13401-7_19.
|
[37] |
Laaksonen O, Mäkilä L, Tahvonen R, et al. Sensory quality and compositional characteristics of blackcurrant juices produced by different processes[J]. Food Chemistry, 2013, 138(4): 2421−2429. doi: 10.1016/j.foodchem.2012.12.035
|
[38] |
Fan X, Zhao H, Wang X, et al. Sugar and organic acid composition of apricot and their contribution to sensory quality and consumer satisfaction[J]. Scientia Horticulturae, 2017, 225: 553−560. doi: 10.1016/j.scienta.2017.07.016.
|
[39] |
吴紫洁, 阮成江, 李贺, 等. 12个沙棘品种的果实可溶性糖和有机酸组分研究[J]. 西北林学院学报, 2016, 31(4):106−112. doi: 10.3969/j.issn.1001-7461.2016.04.18.
Wu Z J, Ruan C J, Li H, et al. Compositions of soluble sugars and organic acids in berries of 12 seabuckthorn cultivars[J]. Journal of Northwest Forestry University, 2016, 31(4): 106−112. doi: 10.3969/j.issn.1001-7461.2016.04.18.
|
[40] |
Yang B, Zheng J, Kallio H. Influence of origin, harvesting time and weather conditions on content of inositols and methylinositols in sea buckthorn (Hippophae rhamnoides) berries[J]. Food Chemistry, 2011, 125(2): 388−396. doi: 10.1016/j.foodchem.2010.09.013.
|
[41] |
陶翠, 王捷, 姚玉军, 等. 沙棘中白雀木醇表征方法及其分布规律[J]. 北京林业大学学报, 2020, 42(1):121−126.
Tao C, Wang J, Yao Y J, et al. Characterization and distribution rule of quebrachitol in Hippophae rhamnoides L.[J]. Journal of Beijing Forestry University, 2020, 42(1): 121−126.
|
[42] |
Richter A, Popp M. The physiological importance of accumulation of cyclitols in Viscum album L.[J]. New Phytologist, 1992, 121(3): 431−438. doi: 10.1111/j.1469-8137.1992.tb02943.x.
|
[43] |
Xue Y, Miao Q, Zhao A, et al. Effects of seabuckthorn (Hippophae rhamnoides) juice and L-quebrachitol on type 2 diabetes mellitus in db/db mice[J]. Journal of Functional Foods, 2015, 16: 223−233. doi: 10.1016/j.jff.2015.04.041.
|
[44] |
Olinda T M D, Lemos T L G, Machado L L, et al. Quebrachitol-induced gastroprotection against acute gastric lesions: role of prostaglandins, nitric oxide and KATP + channels[J]. Phytomedicine, 2008, 15(5): 327−333. doi: 10.1016/j.phymed.2007.09.002.
|
[45] |
Hoshyar R, Mollaei H. A comprehensive review on anticancer mechanisms of the main carotenoid of saffron, crocin[J]. Journal of Pharmacy & Pharmacology, 2017, 69(11): 1419−1427. doi: 10.1111/jphp.12776.
|
[46] |
Andersson S C, Olsson M E, Johansson E, et al. Carotenoids in seabuckthorn (Hippophae rhamnoides L.) berries during ripening and use of pheophytin a as a maturity marker[J]. Journal of Agricultural & Food Chemistry, 2009, 57(1): 250−258. doi: 10.1021/jf802599f.
|
[47] |
Pop R M, Weesepoel Y, Socaciu C, et al. Carotenoid composition of berries and leaves from six Romanian seabuckthorn (Hippophae rhamnoides L.) varieties[J]. Food Chemistry, 2014, 147: 1−9. doi: 10.1016/j.foodchem.2013.09.083.
|
[48] |
Arif S, Khan M R, Gardezi S D A, et al. A novel Hydroxymethyldihydropterin pyrophosphokinase-dihydropteroate synthase (HPPK-DHPS) gene from a nutraceutical plant seabuckthorn, involved in folate pathway is predominantly expressed in fruit tissue[J/OL]. International Journal of Agriculture & Biology, 2016, 18(2) (2016−01−04) [2019−08−09]. https://doi.org/10.17957/IJAB/15.0104.
|
[49] |
Czaplicki S, Ogrodowska D, Zadernowski R, et al. Effect of sea-buckthorn (Hippophaë rhamnoides L.) pulp oil consumption on fatty acids and vitamin A and E accumulation in adipose tissue and liver of rats[J]. Plant Foods for Human Nutrition, 2017, 72(2): 1−7. doi: 10.1007/s11130-017-0610-9.
|
[50] |
Gutzeit D, Baleanu G, Winterhalter P, et al. Determination of processing effects and of storage stability on vitamin K1 (phylloquinone) in seabuckthorn berries (Hippophaë rhamnoides L. ssp. rhamnoides) and related products[J]. Journal of Food Science, 2010, 72(9): C491−C497. doi: 10.1111/j.1750-3841.2007.00567.x.
|
[51] |
Bazylko A, Granica S, Filipek A, et al. Comparison of antioxidant, anti-inflammatory, antimicrobial activity and chemical composition of aqueous and hydroethanolic extracts of the herb of Tropaeolum majus L.[J]. Industrial Crops & Products, 2013, 50(10): 88−94. doi: 10.1016/j.indcrop.2013.07.003.
|
[52] |
Gilles R, Roberto M, Gianni T, et al. Beta-carotene, vitamin C, and vitamin E and cardiovascular diseases[J]. Current Cardiology Reports, 2000, 2(4): 293−299. doi: 10.1007/s11886-000-0084-4
|
[53] |
Park S, Ahn S, Shin Y, et al. Vitamin C in cancer: a metabolomics perspective[J]. Frontiers in Physiology, 2018, 9: 762.
|
[54] |
Buettner G R. The pecking order of free radicals and antioxidants: lipid peroxidation, α-tocopherol, and ascorbate[J]. Archives of Biochemistry & Biophysics, 1993, 300(2): 535−543. doi: 10.1006/abbi.1993.1074.
|
[55] |
Mao Y, Han J, Tian F, et al. Chemical vomposition analysis, sensory, and feasibility study of tree peony seed[J]. Journal of Food Science, 2017, 82(2): 553−561. doi: 10.1111/1750-3841.13593.
|
[56] |
Nhe N A, Goon J A, Abdul G S M, et al. Comparing palm oil, tocotrienol-rich fraction and α-tocopherol supplementation on the antioxidant levels of older adults[J]. Antioxidants, 2018, 7(6): 42. doi: 10.3390/antiox7060074.
|
[57] |
Kalio H, Yang B, Peippo P, et al. Triacylglycerols, glycerophospholipids, tocopherols, and tocotrienols in berries and seeds of two subspecies (ssp. sinensis and mongolica) of seabuckthorn (Hippophae rhamnoides)[J]. Journal of Agricultural & Food Chemistry, 2002, 50(10): 3004−3009. doi: 10.1021/jf011556o
|
[58] |
Fatima T, Kesari V, Watt I, et al. Metabolite profiling and expression analysis of flavonoid, vitamin C and tocopherol biosynthesis genes in the antioxidant-rich sea buckthorn (Hippophae rhamnoides L.)[J]. Phytochemistry, 2015, 118: 181−191. doi: 10.1016/j.phytochem.2015.08.008.
|
[59] |
Zielinska A, Nowak I. Abundance of active ingredients in seabuckthorn oil[J]. Lipids in Health & Disease, 2017, 16(1): 95. doi: 10.1186/s12944-017-0469-7.
|
[60] |
Patel C A, Divakar K, Santani D, et al. Remedial prospective of Hippophae rhamnoides Linn. (seabuckthorn)[J]. Isrn Pharmacology, 2015, 2012(2): 436857. doi: 10.5402/2012/436857.
|
[61] |
Wysocki J, Nowicka-Falkowska K. Przegląd preparatów pochodzenia roślinnego stosowanych w stanach dysfunkcji błony śluzowej jamy ustnej i gardła[J]. Polski Przegląd Otorynolaryngologiczny, 2013, 2(3): 146−158. doi: 10.1016/j.ppotor.2013.08.004.
|
[62] |
Ito H, Asmussen S, Traber D L, et al. Healing efficacy of seabuckthorn (Hippophae rhamnoides L.) seed oil in an ovine burn wound model.[J]. Burns, 2014, 40(3): 511−519 . doi: 10.1016/j.burns.2013.08.011.
|
[63] |
Xu X Y, Pan S Y, Xie B J, et al. The anti-oxidative effect of sea buckthorn seed procyanidins in vitro[J]. Food Science, 2005, 26(2): 216−218. doi: 10.1007/s11769-005-0030-x.
|
[64] |
Enkhtaivan G, John K M M, Pandurangan M, et al. Extreme effects of seabuckthorn extracts on influenza viruses and human cancer cells and correlation between flavonol glycosides and biological activities of extracts[J]. Saudi Journal of Biological Sciences, 2016, 24(7): 1646−1656. doi: 10.1016/j.sjbs.2016.01.004.
|
[65] |
Zadernowski R, Nowak-Polakowska H, Lossow B, et al. Seabuckthorn lipids[J]. Journal of Food Lipids, 1997, 4(3): 165−172. doi: 10.1111/j.1745-4522.1997.tb00090.x.
|
[66] |
Ul’Chenko N T, Zhmyrko T G, Glushenkova A I, et al. Lipids of Hippophae rhamnoides, pericarp[J]. Chemistry of Natural Compounds, 1995, 31(5): 565−567. doi: 10.1007/BF01164880.
|
[67] |
Kralova J, Jurasek M, Krcova L, et al. Heterocyclic sterol probes for live monitoring of sterol trafficking and lysosomal storage disorders[J]. Scientific Reports, 2018, 8: 14428. doi: 10.1038/s41598-018-32776-6.
|
[68] |
Jones P, Macdougall D E, Ntanios F, et al. Dietary phytosterols as cholesterol-lowering agents in humans[J]. Canadian Journal of Physiology and Pharmacology, 1997, 75(3): 217−227. doi: 10.1139/y97-011.
|
[69] |
Reading C L, Stickney D R, Floresriveros J, et al. A synthetic anti-inflammatory sterol improves insulin sensitivity in insulin-resistant obese impaired glucose tolerance subjects[J]. Obesity, 2013, 21(9): 343−349. doi: 10.1002/oby.20207.
|
[70] |
Yang B, Karlsson R M, Oksman P H, et al. Phytosterols in sea buckthorn (Hippophae rhamnoides L.) berries: identification and effects of different origins and harvesting times.[J]. Journal of Agricultural & Food Chemistry, 2001, 49(11): 5620−5629. doi: 10.1021/jf010813m.
|
[71] |
Tiitinen K, Hakala M, Kallio H. Headspace volatiles from frozen berries of sea buckthorn (Hippophae rhamnoides L.) varieties[J]. European Food Research & Technology, 2006, 223(4): 455−460. doi: 10.1007/s00217-005-0224-6.
|
[1] | Wei Xiwen, Sun Liping, Xu Shuzheng, Yang Yang, Du Chunxiao. Quantitative detection of log defects based on stress wave propagation velocity model[J]. Journal of Beijing Forestry University, 2020, 42(5): 143-154. DOI: 10.12171/j.1000-1522.20190420 |
[2] | WEN Yu-xin, ZHAO Jian, ZHAO Dong. Experimental study on the effects of holes on bending strain distribution of wood beams[J]. Journal of Beijing Forestry University, 2017, 39(11): 106-113. DOI: 10.13332/j.1000-1522.20170221 |
[3] | Stress and strain field at wood crack tip[J]. Journal of Beijing Forestry University, 2010, 32(1): 103-107. |
[4] | LIU Shao-gang, MENG Qing-xin, LUO Yue-sheng, WANG Jue, TIAN Yong-chen. Numerical solutions of a mathematical model for a single planar capacitance sensor.[J]. Journal of Beijing Forestry University, 2009, 31(4): 135-140. |
[5] | LIU Xiu-ping, , CHEN Li-hua, ZHANG Xin-ping, GAO Zhen-lin, SONG Wei-feng. Stress-strain characteristics and stability of forest slope in the Loess Plateau[J]. Journal of Beijing Forestry University, 2008, 30(5): 97-103. |
[6] | FU Yun-lin, ZHAO Guang-jie. Stress relaxation of silicon dioxide\|wood composite[J]. Journal of Beijing Forestry University, 2008, 30(1): 119-123. |
[7] | LIU Xiao-li, JIANG Xiao-mei, YIN Ya-fang. Surface longitudinal growth strain of plantation Eucalyptus urophylla×E.grandis[J]. Journal of Beijing Forestry University, 2005, 27(6): 95-98. |
[8] | LÜ Jian-xiong, YIN Ya-fang, ZHAO You-ke, JIANG Xiao-mei. Growth strain evaluation in different species of eucalyptus plantation in south China[J]. Journal of Beijing Forestry University, 2005, 27(4): 69-72. |
[9] | QIAN Hua, XI Bao-tian. Experimental analysis of residual stress of hardened circular blades under different tempering processes[J]. Journal of Beijing Forestry University, 2005, 27(2): 107-110. |
[10] | CHENG Wan-li, LIU Yi-xing, SHI Gang-min-lang, ZE Yuan-jing. Characteristics of shrinkage stress of wood during drying under high temperature and high pressure steam conditions[J]. Journal of Beijing Forestry University, 2005, 27(2): 101-106. |
1. |
魏裕沛,郭娟,殷亚方. 树木木质部含碳率变化规律研究进展. 世界林业研究. 2024(03): 60-66 .
![]() | |
2. |
尚超,徐霞,鲍莉荣,周婷婷. 装配式建筑生命周期碳平衡BIM模型仿真. 计算机仿真. 2023(04): 267-271 .
![]() |