• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wu Minghao, Li Hao, Xiao Meng, Liu Zhicheng. River morphology simulation and resilient restoration strategies of Yongding River in Beijing[J]. Journal of Beijing Forestry University, 2021, 43(7): 128-139. DOI: 10.12171/j.1000-1522.20200240
Citation: Wu Minghao, Li Hao, Xiao Meng, Liu Zhicheng. River morphology simulation and resilient restoration strategies of Yongding River in Beijing[J]. Journal of Beijing Forestry University, 2021, 43(7): 128-139. DOI: 10.12171/j.1000-1522.20200240

River morphology simulation and resilient restoration strategies of Yongding River in Beijing

More Information
  • Received Date: August 03, 2020
  • Revised Date: March 23, 2021
  • Available Online: June 23, 2021
  • Published Date: July 24, 2021
  •   Objective  The downstream channel of Yongding River was occupied and damaged seriously after it was dry from the 1980s. Ecological water replenishments were carried out in 2019 and 2020 for river ecological restoration. The reach between Wanping Lake and Huangliang Railway was selected to simulate the river morphology under different ecological flows and pulse flows. This paper aims to couple different flow discharges with the river spatial morphology to provide information for ecological restoration.
      Method  (1) Ecological flow discharges of different habitat conditions were calculated by Tennant method. And three ecological flow discharges and four pulse flow discharges were selected and set as the hydrology inputs for simulation. (2) The river morphology characteristics under flow discharges above were modelled by CAESAR-Lisflood model.
      Result  (1) The simulation results under different ecological flows were: the annual average wetted areas were 439.29−462.74 ha, water surface heights were 40−52 m, the Max. velocities were 1.49−2.24 m/s, the erosion areas were 52.18−77.94 ha, and the deposition areas were 61.70−101.39 ha. The results under different pulse flows were: the wetted areas were 637.58−769.25 ha, water surface height was 42−55 m, and the Max. velocities were 3.92−5.85 m/s. (2) The restoration alternatives were suggested according to the river spatial morphology characteristics. And the erosion/deposion areas and the flooding areas under 5-year return period flood were identified as the resilient space.
      Conclusion  The study reach and the whole dry downstream of Yongding River in Beijing should be ecologically restored by natural recovery and artificial restoration measures under the implementation of ecological water replenishment. It is necessary to make space for nature to heal itself and for river dynamic processes. And it needs long-term monitoring and adaptive management strategies to rebuild the ecosystem function and the natural river landscape in the future.
  • [1]
    Belletti B, Nardi L, Rinaldi M, et al. Assessing restoration effects on river hydromorphology using the process-based morphological quality index in eight European river reaches[J]. Environmental Management, 2018, 61: 69−84.
    [2]
    王文君, 黄道明. 国内外河流生态修复研究进展[J]. 水生态学杂志, 2012, 33 (4):142−146.

    Wang W J, Huang D M. Research progress of river restoration research at home and abroad[J]. Journal of Hydroecology, 2012, 33 (4): 142−146.
    [3]
    Sear D A. River restoration and geomorphology[J]. Aquatic Conservation: Marine and Freshwater Ecosystems, 1994, 4: 169−177. doi: 10.1002/aqc.3270040207
    [4]
    Karr J R. Defining and measuring river health[J]. Freshwater Biology, 1999, 41(2): 221−234. doi: 10.1046/j.1365-2427.1999.00427.x
    [5]
    Vietz G J, Finlayson B L. Geomorphological effects of flow alteration on rivers[M]//Horne A C, Webb J A, Stewardson M J, et al. Water for the environment: from policy and science to implementation and management. New York: Academic Press, 2017: 83−100.
    [6]
    Poff N L, Allan J D, Bain M B, et al. The natural flow regime[J]. BioScience, 1997, 47: 769−784. doi: 10.2307/1313099
    [7]
    Molnar P, Burlando P, Wolfgang R. Integrated catchment assessment of riverine landscape dynamics[J]. Aquatic Sciences, 2002, 64: 129−140. doi: 10.1007/s00027-002-8061-1
    [8]
    Poff N L, Richter B D, Arthington A H, et al. The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards[J]. Freshwater Biology, 2010, 55(1): 147−170. doi: 10.1111/j.1365-2427.2009.02204.x
    [9]
    Lytle D H, Poff N L. Adaptation to natural flow regimes[J]. Trends in Ecology and Evolution, 2004, 19: 94−100. doi: 10.1016/j.tree.2003.10.002
    [10]
    Richter B D, Thomas G A. Restoring environmental flows by modifying dam operations[J]. Ecology and Society, 2007, 12(1): 12. doi: 10.5751/ES-02014-120112
    [11]
    Arthington A H, Naiman R J, McClain M E, et al. Preserving the biodiversity and ecological services of rivers: new challenges and research opportunities[J]. Freshwater Biology, 2010, 55(1): 1−16. doi: 10.1111/j.1365-2427.2009.02340.x
    [12]
    张君伟, 万超, 杜志国, 等. 永定河生态用水保障机制研究[J]. 北京水务, 2020(5):1−4.

    Zhang J W, Wan C, Du Z G, et al. Study on the protection mechanism of ecological water usage of Yongding River[J]. Beijing Water, 2020(5): 1−4.
    [13]
    董哲仁, 孙东亚, 王俊娜, 等. 河流生态学相关交叉学科进展[J]. 水利水电技术, 2009, 40(8):36−43. doi: 10.3969/j.issn.1000-0860.2009.08.010

    Dong Z R, Sun D Y, Wang J N, et al. Progresses of interdisciplines to river ecology[J]. Water Resources and Hydropower Engineering, 2009, 40(8): 36−43. doi: 10.3969/j.issn.1000-0860.2009.08.010
    [14]
    董哲仁, 张晶, 赵进勇. 环境流理论进展述评[J]. 水利学报, 2017, 48(6):670−677.

    Dong Z R, Zhang J, Zhao J Y. Comments upon progress of environmental flows assessments[J]. Journal of Hydraulic Engineering, 2017, 48(6): 670−677.
    [15]
    杨志峰, 崔保山, 孙涛, 等. 湿地生态需水机理、模型和配置[M]. 北京: 科学出版社, 2012.

    Yang Z F, Cui B S, Sun T, et al. Mechanism, model and allocation of ecological water requirement for wetlands[M]. Beijing: Science Press, 2012.
    [16]
    Tharme R E. A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers[J]. River Research and Applications, 2003, 19(5−6): 397−441. doi: 10.1002/rra.736
    [17]
    Tennant D L. Instream flow regimens for fish, wildlife, recreation and related environmental resources[J]. Fisheries, 1976, 1(4): 6−10. doi: 10.1577/1548-8446(1976)001<0006:IFRFFW>2.0.CO;2
    [18]
    Mosley M P. Flow requirements for recreation and wildlife in New Zealand rivers: a review[J]. Journal of Hydrology, 1983, 22(2): 152−174.
    [19]
    吕孙云, 许银山, 兰岚, 等. 基于优化-模拟技术的生态库容研究[J]. 水科学进展, 2013, 24(3):402−409.

    Lü S Y, Xu Y S, Lan L, et al. Study of ecological storage based on optimization simulation technique[J]. Advances in Water Science, 2013, 24(3): 402−409.
    [20]
    雍婷, 许银山, 梅亚东. 基于生态流量要求的调度图优化及生态库容研究[J]. 水力发电学报, 2013, 32(1):89−95.

    Yong T, Xu Y S, Mei Y D. Study on optimization of operation curve and ecological storage based on ecological flow demand[J]. Journal of Hydroelectric Engineering, 2013, 32(1): 89−95.
    [21]
    张士锋, 刘晓菲, 李瑞, 等. 永定河北京段生态需水量研究[J/OL]. 水资源研究, 2016(2): 108−119 [2020−03−03]. http://qikan.cqvip.com/Qikan/Article/Detail?id=668952103.

    Zhang S F, Liu X F, Li R, et al. Study on environmental flow in Beijing section of Yongding River [J/OL]. Journal of Water Resources Research, 2016 (2): 108−119 [2020−03−03]. http://qikan.cqvip.com/Qikan/Article/Detail?id=668952103.
    [22]
    顾斌杰, 王富世, 宋磊, 等. 永定河官厅山峡生态需水量计算及配置方案研究[J]. 北京水务, 2017(2):12−18. doi: 10.3969/j.issn.1673-4637.2017.02.004

    Gu B J, Wang F S, Song L, et al. Calculation and configuration of ecological water requirements for Yongding River Guanting Gorge[J]. Beijing Water, 2017(2): 12−18. doi: 10.3969/j.issn.1673-4637.2017.02.004
    [23]
    Li C W, Kang L. A new modified Tennant method with spatial-temporal variability[J]. Water Resource Management, 2014, 28: 4911−4926. doi: 10.1007/s11269-014-0746-4
    [24]
    董哲仁, 张晶, 赵进勇. 生态流量的科学内涵[J]. 中国水利, 2020(15):15−19. doi: 10.3969/j.issn.1000-1123.2020.15.007

    Dong Z R, Zhang J, Zhao J Y. Scientific connotation of ecological flow[J]. China Water Resources, 2020(15): 15−19. doi: 10.3969/j.issn.1000-1123.2020.15.007
    [25]
    中央人民政府水利部水文局. 华北区水文资料海河流域永定河水系水位、气象(1912—1949年)[R]. 北京: 中央人民政府水利部水文局, 1954.

    Ministry of Water Resources Hydrographic Office of Central People’s Government. Water level and weather hydrological data in 1912−1949 of Yongding River System in Haihe River Basin[R]. Beijing: Ministry of Water Resource Hydrographic office of Central People’s Government, 1954.
    [26]
    中央人民政府水利部水文局. 华北区水文资料海河流域永定河水系流量、含沙量(1918—1949)[R]. 北京: 中央人民政府水利部水文局, 1954.

    Ministry of Water Resources Hydrographic Office of Central People’s Government. Flow and sediment concentration data in 1918−1949 of Yongding River System in Haihe River Basin[R]. Beijing: Ministry of Water Resource Hydrographic Office of Central People’s Government, 1954.
    [27]
    Junk W J, Bayley P B, Sparks R E. The flood pulse concept in river-floodplain systems[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1989, 106: 110−127.
    [28]
    Death R G, Fuller I C, Macklin M G. Resetting the river template: the potential for climate-related extreme floods to transform river geomorphology and ecology[J]. Freshwater Biology, 2015, 60(12): 2477−2496. doi: 10.1111/fwb.12639
    [29]
    Talbot C J, Bennett E M, Cassell K, et al. The impact of flooding on aquatic ecosystem services[J]. Biogeochemistry, 2018, 141: 439−461. doi: 10.1007/s10533-018-0449-7
    [30]
    潘安君. 永定河“以水开路、用水引路”生态补水探索[J]. 北京水务, 2020(3):1−3.

    Pan A J. Ecological water replenishment in Yongding River[J]. Beijing Water, 2020(3): 1−3.
    [31]
    Coulthard T J, Hicks D M, van de Wiel M J. Cellular modelling of river catchments and reaches: advantages, limitations and prospects[J]. Geomorphology, 2007, 90: 192−207. doi: 10.1016/j.geomorph.2006.10.030
    [32]
    Coulthard T J, Neal J C, Bates P D, et al. Integrating the LISFLOOD-FP 2D hydrodynamic model with the CAESAR model implications for modelling landscape evolution[J]. Earth Surface Processes and Landform, 2013, 38(15): 1897−1906. doi: 10.1002/esp.3478
    [33]
    Coulthard T J, van de Wiel M J. Quantifying fluvial non linearity and finding self organized criticality? Insights from simulations of river basin evolution[J]. Geomorphology, 2007, 91(3−4): 216−235. doi: 10.1016/j.geomorph.2007.04.011
    [34]
    谢军, 汪明, 刘凯. 震后极端降雨下流域产沙及物质运移规律模拟: 以四川省洪溪河流域为例[J]. 水土保持研究, 2019, 26(1):1−7.

    Xie J, Wang M, Liu K. Material migration patterns of basin after earthquake under extreme rainfall: a case study on Hongxi Basin of Sichuan Province[J]. Research of Soil and Water Conservation, 2019, 26(1): 1−7.
    [35]
    Coulthard T J, Macklin M G, Kirkby M J. A cellular model of Holocene upland river basin and alluvial fan evolution[J]. Earth Surface Processes and Landforms, 2002, 27: 269−288. doi: 10.1002/esp.318
    [36]
    van de Wiel M J, Coulthard T J, Macklin M G, et al. Embedding reach-scale fluvial dynamics within the CAESAR cellular automaton landscape evolution model[J]. Geomorphology, 2007, 90: 283−301. doi: 10.1016/j.geomorph.2006.10.024
    [37]
    Beechie T J, Sear D A, Olden J D, et al. Process-based principles for restoring river ecosystems[J]. BioScience, 2010, 60(3): 209−222. doi: 10.1525/bio.2010.60.3.7
    [38]
    刘毅, 朱晨东, 李其军. 生态型河流护岸工程指南[Z]. 日本河边整备中心(北京水利协会内部资料), 2003: 31.

    Liu Y, Zhu C D, Li Q J. Guidelines for ecological riverbank engineering[Z]. Japan River Restoration Center (internal files of Beijing Hydraulic Engineering Society), 2003: 31.
  • Cited by

    Periodical cited type(9)

    1. 王喜刚,郭成瑾,焦杨,赵沛,田静,张丽荣,沈瑞清. 哈茨木霉M-17厚垣孢子可湿性粉剂的研制及其对马铃薯干腐病的田间防效. 中国生物防治学报. 2024(06): 1319-1330 .
    2. 申云鑫,李铭刚,施竹凤,赵江源,王楠,李者芬,杨明英,陈齐斌,杨佩文. 贝莱斯芽胞杆菌SH-1471可湿性粉剂研制及其对番茄枯萎病的防治效果. 中国生物防治学报. 2023(04): 904-914 .
    3. 薛德星,李美,高兴祥,李健. 生防菌棘孢木霉的分离鉴定及生物学特性研究. 山东农业科学. 2023(10): 118-123 .
    4. 张成,李欣雨,邹艺琴,王睿,侯巨梅,廖文敏,刘铜. 木霉菌Trichoderma brev可湿性粉剂的研制. 农药. 2022(05): 329-335 .
    5. 胡建坤,黄蓉,黄瑞荣,朱植银,王玉,曾钦华. 2种化学杀菌剂与木霉及其组配制剂对辣椒疫病防控效果研究. 生物灾害科学. 2021(04): 460-464 .
    6. 庄新亚,程亮,郭青云. 燕麦镰刀菌GD-2可湿性粉剂研制及对野燕麦的防除效果. 青海大学学报. 2020(03): 9-17+43 .
    7. 遇文婧,宋小双,邓勋,平晓帆,周琦,刘志华. 刺激植物响应蛋白基因Epl1克隆、原核表达及功能初探. 北京林业大学学报. 2018(01): 17-26 . 本站查看
    8. 徐沛东,朱植银,黄加诚,肖永良,谢远芳,魏方林. 新型生物农药棘孢木霉菌防治辣椒疫病应用研究. 生物灾害科学. 2017(03): 172-175 .
    9. 罗洋,滕应,罗绪强,李振高. 里氏木霉FS10-C可湿性粉剂的研制及其促生效果测定. 生物技术通报. 2016(08): 194-199 .

    Other cited types(8)

Catalog

    Article views (1947) PDF downloads (127) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return