• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wu Minghao, Li Hao, Xiao Meng, Liu Zhicheng. River morphology simulation and resilient restoration strategies of Yongding River in Beijing[J]. Journal of Beijing Forestry University, 2021, 43(7): 128-139. DOI: 10.12171/j.1000-1522.20200240
Citation: Wu Minghao, Li Hao, Xiao Meng, Liu Zhicheng. River morphology simulation and resilient restoration strategies of Yongding River in Beijing[J]. Journal of Beijing Forestry University, 2021, 43(7): 128-139. DOI: 10.12171/j.1000-1522.20200240

River morphology simulation and resilient restoration strategies of Yongding River in Beijing

More Information
  • Received Date: August 03, 2020
  • Revised Date: March 23, 2021
  • Available Online: June 23, 2021
  • Published Date: July 24, 2021
  •   Objective  The downstream channel of Yongding River was occupied and damaged seriously after it was dry from the 1980s. Ecological water replenishments were carried out in 2019 and 2020 for river ecological restoration. The reach between Wanping Lake and Huangliang Railway was selected to simulate the river morphology under different ecological flows and pulse flows. This paper aims to couple different flow discharges with the river spatial morphology to provide information for ecological restoration.
      Method  (1) Ecological flow discharges of different habitat conditions were calculated by Tennant method. And three ecological flow discharges and four pulse flow discharges were selected and set as the hydrology inputs for simulation. (2) The river morphology characteristics under flow discharges above were modelled by CAESAR-Lisflood model.
      Result  (1) The simulation results under different ecological flows were: the annual average wetted areas were 439.29−462.74 ha, water surface heights were 40−52 m, the Max. velocities were 1.49−2.24 m/s, the erosion areas were 52.18−77.94 ha, and the deposition areas were 61.70−101.39 ha. The results under different pulse flows were: the wetted areas were 637.58−769.25 ha, water surface height was 42−55 m, and the Max. velocities were 3.92−5.85 m/s. (2) The restoration alternatives were suggested according to the river spatial morphology characteristics. And the erosion/deposion areas and the flooding areas under 5-year return period flood were identified as the resilient space.
      Conclusion  The study reach and the whole dry downstream of Yongding River in Beijing should be ecologically restored by natural recovery and artificial restoration measures under the implementation of ecological water replenishment. It is necessary to make space for nature to heal itself and for river dynamic processes. And it needs long-term monitoring and adaptive management strategies to rebuild the ecosystem function and the natural river landscape in the future.
  • [1]
    Belletti B, Nardi L, Rinaldi M, et al. Assessing restoration effects on river hydromorphology using the process-based morphological quality index in eight European river reaches[J]. Environmental Management, 2018, 61: 69−84.
    [2]
    王文君, 黄道明. 国内外河流生态修复研究进展[J]. 水生态学杂志, 2012, 33 (4):142−146.

    Wang W J, Huang D M. Research progress of river restoration research at home and abroad[J]. Journal of Hydroecology, 2012, 33 (4): 142−146.
    [3]
    Sear D A. River restoration and geomorphology[J]. Aquatic Conservation: Marine and Freshwater Ecosystems, 1994, 4: 169−177. doi: 10.1002/aqc.3270040207
    [4]
    Karr J R. Defining and measuring river health[J]. Freshwater Biology, 1999, 41(2): 221−234. doi: 10.1046/j.1365-2427.1999.00427.x
    [5]
    Vietz G J, Finlayson B L. Geomorphological effects of flow alteration on rivers[M]//Horne A C, Webb J A, Stewardson M J, et al. Water for the environment: from policy and science to implementation and management. New York: Academic Press, 2017: 83−100.
    [6]
    Poff N L, Allan J D, Bain M B, et al. The natural flow regime[J]. BioScience, 1997, 47: 769−784. doi: 10.2307/1313099
    [7]
    Molnar P, Burlando P, Wolfgang R. Integrated catchment assessment of riverine landscape dynamics[J]. Aquatic Sciences, 2002, 64: 129−140. doi: 10.1007/s00027-002-8061-1
    [8]
    Poff N L, Richter B D, Arthington A H, et al. The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards[J]. Freshwater Biology, 2010, 55(1): 147−170. doi: 10.1111/j.1365-2427.2009.02204.x
    [9]
    Lytle D H, Poff N L. Adaptation to natural flow regimes[J]. Trends in Ecology and Evolution, 2004, 19: 94−100. doi: 10.1016/j.tree.2003.10.002
    [10]
    Richter B D, Thomas G A. Restoring environmental flows by modifying dam operations[J]. Ecology and Society, 2007, 12(1): 12. doi: 10.5751/ES-02014-120112
    [11]
    Arthington A H, Naiman R J, McClain M E, et al. Preserving the biodiversity and ecological services of rivers: new challenges and research opportunities[J]. Freshwater Biology, 2010, 55(1): 1−16. doi: 10.1111/j.1365-2427.2009.02340.x
    [12]
    张君伟, 万超, 杜志国, 等. 永定河生态用水保障机制研究[J]. 北京水务, 2020(5):1−4.

    Zhang J W, Wan C, Du Z G, et al. Study on the protection mechanism of ecological water usage of Yongding River[J]. Beijing Water, 2020(5): 1−4.
    [13]
    董哲仁, 孙东亚, 王俊娜, 等. 河流生态学相关交叉学科进展[J]. 水利水电技术, 2009, 40(8):36−43. doi: 10.3969/j.issn.1000-0860.2009.08.010

    Dong Z R, Sun D Y, Wang J N, et al. Progresses of interdisciplines to river ecology[J]. Water Resources and Hydropower Engineering, 2009, 40(8): 36−43. doi: 10.3969/j.issn.1000-0860.2009.08.010
    [14]
    董哲仁, 张晶, 赵进勇. 环境流理论进展述评[J]. 水利学报, 2017, 48(6):670−677.

    Dong Z R, Zhang J, Zhao J Y. Comments upon progress of environmental flows assessments[J]. Journal of Hydraulic Engineering, 2017, 48(6): 670−677.
    [15]
    杨志峰, 崔保山, 孙涛, 等. 湿地生态需水机理、模型和配置[M]. 北京: 科学出版社, 2012.

    Yang Z F, Cui B S, Sun T, et al. Mechanism, model and allocation of ecological water requirement for wetlands[M]. Beijing: Science Press, 2012.
    [16]
    Tharme R E. A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers[J]. River Research and Applications, 2003, 19(5−6): 397−441. doi: 10.1002/rra.736
    [17]
    Tennant D L. Instream flow regimens for fish, wildlife, recreation and related environmental resources[J]. Fisheries, 1976, 1(4): 6−10. doi: 10.1577/1548-8446(1976)001<0006:IFRFFW>2.0.CO;2
    [18]
    Mosley M P. Flow requirements for recreation and wildlife in New Zealand rivers: a review[J]. Journal of Hydrology, 1983, 22(2): 152−174.
    [19]
    吕孙云, 许银山, 兰岚, 等. 基于优化-模拟技术的生态库容研究[J]. 水科学进展, 2013, 24(3):402−409.

    Lü S Y, Xu Y S, Lan L, et al. Study of ecological storage based on optimization simulation technique[J]. Advances in Water Science, 2013, 24(3): 402−409.
    [20]
    雍婷, 许银山, 梅亚东. 基于生态流量要求的调度图优化及生态库容研究[J]. 水力发电学报, 2013, 32(1):89−95.

    Yong T, Xu Y S, Mei Y D. Study on optimization of operation curve and ecological storage based on ecological flow demand[J]. Journal of Hydroelectric Engineering, 2013, 32(1): 89−95.
    [21]
    张士锋, 刘晓菲, 李瑞, 等. 永定河北京段生态需水量研究[J/OL]. 水资源研究, 2016(2): 108−119 [2020−03−03]. http://qikan.cqvip.com/Qikan/Article/Detail?id=668952103.

    Zhang S F, Liu X F, Li R, et al. Study on environmental flow in Beijing section of Yongding River [J/OL]. Journal of Water Resources Research, 2016 (2): 108−119 [2020−03−03]. http://qikan.cqvip.com/Qikan/Article/Detail?id=668952103.
    [22]
    顾斌杰, 王富世, 宋磊, 等. 永定河官厅山峡生态需水量计算及配置方案研究[J]. 北京水务, 2017(2):12−18. doi: 10.3969/j.issn.1673-4637.2017.02.004

    Gu B J, Wang F S, Song L, et al. Calculation and configuration of ecological water requirements for Yongding River Guanting Gorge[J]. Beijing Water, 2017(2): 12−18. doi: 10.3969/j.issn.1673-4637.2017.02.004
    [23]
    Li C W, Kang L. A new modified Tennant method with spatial-temporal variability[J]. Water Resource Management, 2014, 28: 4911−4926. doi: 10.1007/s11269-014-0746-4
    [24]
    董哲仁, 张晶, 赵进勇. 生态流量的科学内涵[J]. 中国水利, 2020(15):15−19. doi: 10.3969/j.issn.1000-1123.2020.15.007

    Dong Z R, Zhang J, Zhao J Y. Scientific connotation of ecological flow[J]. China Water Resources, 2020(15): 15−19. doi: 10.3969/j.issn.1000-1123.2020.15.007
    [25]
    中央人民政府水利部水文局. 华北区水文资料海河流域永定河水系水位、气象(1912—1949年)[R]. 北京: 中央人民政府水利部水文局, 1954.

    Ministry of Water Resources Hydrographic Office of Central People’s Government. Water level and weather hydrological data in 1912−1949 of Yongding River System in Haihe River Basin[R]. Beijing: Ministry of Water Resource Hydrographic office of Central People’s Government, 1954.
    [26]
    中央人民政府水利部水文局. 华北区水文资料海河流域永定河水系流量、含沙量(1918—1949)[R]. 北京: 中央人民政府水利部水文局, 1954.

    Ministry of Water Resources Hydrographic Office of Central People’s Government. Flow and sediment concentration data in 1918−1949 of Yongding River System in Haihe River Basin[R]. Beijing: Ministry of Water Resource Hydrographic Office of Central People’s Government, 1954.
    [27]
    Junk W J, Bayley P B, Sparks R E. The flood pulse concept in river-floodplain systems[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1989, 106: 110−127.
    [28]
    Death R G, Fuller I C, Macklin M G. Resetting the river template: the potential for climate-related extreme floods to transform river geomorphology and ecology[J]. Freshwater Biology, 2015, 60(12): 2477−2496. doi: 10.1111/fwb.12639
    [29]
    Talbot C J, Bennett E M, Cassell K, et al. The impact of flooding on aquatic ecosystem services[J]. Biogeochemistry, 2018, 141: 439−461. doi: 10.1007/s10533-018-0449-7
    [30]
    潘安君. 永定河“以水开路、用水引路”生态补水探索[J]. 北京水务, 2020(3):1−3.

    Pan A J. Ecological water replenishment in Yongding River[J]. Beijing Water, 2020(3): 1−3.
    [31]
    Coulthard T J, Hicks D M, van de Wiel M J. Cellular modelling of river catchments and reaches: advantages, limitations and prospects[J]. Geomorphology, 2007, 90: 192−207. doi: 10.1016/j.geomorph.2006.10.030
    [32]
    Coulthard T J, Neal J C, Bates P D, et al. Integrating the LISFLOOD-FP 2D hydrodynamic model with the CAESAR model implications for modelling landscape evolution[J]. Earth Surface Processes and Landform, 2013, 38(15): 1897−1906. doi: 10.1002/esp.3478
    [33]
    Coulthard T J, van de Wiel M J. Quantifying fluvial non linearity and finding self organized criticality? Insights from simulations of river basin evolution[J]. Geomorphology, 2007, 91(3−4): 216−235. doi: 10.1016/j.geomorph.2007.04.011
    [34]
    谢军, 汪明, 刘凯. 震后极端降雨下流域产沙及物质运移规律模拟: 以四川省洪溪河流域为例[J]. 水土保持研究, 2019, 26(1):1−7.

    Xie J, Wang M, Liu K. Material migration patterns of basin after earthquake under extreme rainfall: a case study on Hongxi Basin of Sichuan Province[J]. Research of Soil and Water Conservation, 2019, 26(1): 1−7.
    [35]
    Coulthard T J, Macklin M G, Kirkby M J. A cellular model of Holocene upland river basin and alluvial fan evolution[J]. Earth Surface Processes and Landforms, 2002, 27: 269−288. doi: 10.1002/esp.318
    [36]
    van de Wiel M J, Coulthard T J, Macklin M G, et al. Embedding reach-scale fluvial dynamics within the CAESAR cellular automaton landscape evolution model[J]. Geomorphology, 2007, 90: 283−301. doi: 10.1016/j.geomorph.2006.10.024
    [37]
    Beechie T J, Sear D A, Olden J D, et al. Process-based principles for restoring river ecosystems[J]. BioScience, 2010, 60(3): 209−222. doi: 10.1525/bio.2010.60.3.7
    [38]
    刘毅, 朱晨东, 李其军. 生态型河流护岸工程指南[Z]. 日本河边整备中心(北京水利协会内部资料), 2003: 31.

    Liu Y, Zhu C D, Li Q J. Guidelines for ecological riverbank engineering[Z]. Japan River Restoration Center (internal files of Beijing Hydraulic Engineering Society), 2003: 31.
  • Related Articles

    [1]Xie Yunhong, Sun Zhao, Ding Zhidan, Luo Mi, Li Yun, Sun Yujun. UAV remote sensing image extraction of single tree crown of Chinese fir based on Mask R-CNN and transfer learning[J]. Journal of Beijing Forestry University, 2024, 46(3): 153-166. DOI: 10.12171/j.1000-1522.20210343
    [2]Cen Lumei, Lin Jian. Compression deformation fixation and properties of Chinese fir pretreated with citric acid[J]. Journal of Beijing Forestry University, 2022, 44(4): 157-164. DOI: 10.12171/j.1000-1522.20210467
    [3]Geng Dan, Xia Chaozong, Zhang Guobin, Liu Xiaodong, Kang Fengfeng. Biomass model construction of shrub layer of Chinese fir plantation[J]. Journal of Beijing Forestry University, 2018, 40(3): 34-41. DOI: 10.13332/j.1000-1522.20170257
    [4]ZHANG Shu-qin, YU Yan, FEI Ben-hua, WANG Han-kun. Longitudinal modulus of elasticity of Chinese fir tracheids[J]. Journal of Beijing Forestry University, 2012, 34(6): 126-130.
    [5]ZHANG Shu-qin, FEI Ben-hua, YU Yan, XING Xin-ting, WANG Han-kun. Constructing a twovariable model for predicting longitudinal MOE of wood: a case study on Chinese fir wood.[J]. Journal of Beijing Forestry University, 2012, 34(1): 123-126.
    [6]XIA Zhong-sheng, ZENG Wei-sheng, ZHU Song, LUO Hong-zhang1. Construction of tree volume equations for Chinese fir plantation in Guizhou Province, southwestern China.[J]. Journal of Beijing Forestry University, 2012, 34(1): 1-5.
    [7]ZENG Wei-sheng, XIA Zhong-sheng, ZHU Song, LUO Hong-zhang. Compatible tree volume and above-ground biomass equations for Chinese fir plantations in Guizhou[J]. Journal of Beijing Forestry University, 2011, 33(4): 1-6.
    [8]LI Yan-jun, TANG Rong-qiang, BAO Bin-fu, SUN Hui. Mechanical properties and dimensional stability of heat-treated Chinese fir[J]. Journal of Beijing Forestry University, 2010, 32(4): 232-236.
    [9]HUANG Hua-hong, CHEN Fen-xue, TONG Zai-kang, ZHU Yu-qiu.. Photosynthetic properties and chlorophyll florescence parameters of dwarf Chinese fir.[J]. Journal of Beijing Forestry University, 2009, 31(2): 69-73.
    [10]FU Yun-lin, XU Feng, TANG Li-ming, WEI Guang-sui. Wood anatomy of Chinese fir in different site types of its southern growing district.[J]. Journal of Beijing Forestry University, 2005, 27(1): 10-13.
  • Cited by

    Periodical cited type(3)

    1. 罗光成,雷相东,史景宁,何潇,向玮,李玉堂. 基于潜在生产力的吉林省长白落叶松人工林立地质量评价. 北京林业大学学报. 2025(01): 1-10 . 本站查看
    2. 高羽,李静,刘洋,乌雅瀚,巩家星,辛启睿. 结构方程模型在兴安落叶松林生长中的应用. 南京林业大学学报(自然科学版). 2023(01): 38-46 .
    3. 金鹏,徐明,冉富菊,雷云,蒙春灿,张健. 森林光环境特征及其生态作用. 山地农业生物学报. 2023(02): 38-47 .

    Other cited types(5)

Catalog

    Article views (1947) PDF downloads (127) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return