• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Fan Shuxin, Li Kun, Zhang Mengyuan, Xie Yafen, Dong Li. Effects of micro scale underlying surface type and pattern of urban residential area on microclimate: taking Beijing as a case study[J]. Journal of Beijing Forestry University, 2021, 43(10): 100-109. DOI: 10.12171/j.1000-1522.20200256
Citation: Fan Shuxin, Li Kun, Zhang Mengyuan, Xie Yafen, Dong Li. Effects of micro scale underlying surface type and pattern of urban residential area on microclimate: taking Beijing as a case study[J]. Journal of Beijing Forestry University, 2021, 43(10): 100-109. DOI: 10.12171/j.1000-1522.20200256

Effects of micro scale underlying surface type and pattern of urban residential area on microclimate: taking Beijing as a case study

More Information
  • Received Date: August 23, 2020
  • Revised Date: March 19, 2021
  • Available Online: July 12, 2021
  • Published Date: October 29, 2021
  •   Objective  The micro-scale environment is a very important human-scale outdoor space unit. Exploring the influence mechanism of micro-scale underlying surface type and pattern on microclimate is the theoretical basis of improving urban thermal environment with the help of landscape design strategies.
      Method  Through field measurements, differences of daily air temperature (AT) and relative humidity (RH) among seven typical underlying surface types of urban residential green space, and correlations between daily AT and RH and various micro-scale underlying surface patterns as explained by landscape metrics were analyzed.
      Result  During the four seasons, there were various differences in daily AT and RH among the seven underlying surface types, and the order of seven types varied seasonally. Overall, high canopy-density vegetation and water body type always had prominent cooling and humidifying effects, whereas highest AT and lowest RH were always found in pavement type. Correlations between landscape metrics and daily AT and RH varied by season. Metrics reflecting the dominance and distribution of underlying surface classifications had closer relationships with microclimate level in the micro-scale environment. The proportion and average patch area of underlying surface classifications were the critical pattern characteristics affecting the daily AT and RH. And the fragmentation and aggregation also had certain influence.
      Conclusion  When designing micro-scale thermal comfort outdoor space, increasing the proportion and patch area of high and moderate canopy-density vegetation, controlling the fragmentation and adopting aggregating layout can significantly reduce AT and increase RH. The impervious pavement with high proportion, large area and concentrated distribution should be avoided to reduce its thermal regulation negative effect.
  • [1]
    Gao Z, Hou Y, Chen W. Enhanced sensitivity of the urban heat island effect to summer temperatures induced by urban expansion[J/OL]. Environmental Research Letters, 2019, 14(9)[2020−03−03]. https://doi.org/10.1088/1748-9326/ab2740.
    [2]
    Peng J, Ma J, Liu Q, et al. Spatial-temporal change of land surface temperatureIcross 285 cities in China: an urban-rural contrast perspective[J]. Science of The Total Environment, 2018, 635: 487−497. doi: 10.1016/j.scitotenv.2018.04.105
    [3]
    Rizwan A M, Dennis L Y C, Liu C H. A review on the generation, determination and mitigation of Urban Heat Island[J]. Journal of Environmental Science, 2008, 20(1): 120−128. doi: 10.1016/S1001-0742(08)60019-4
    [4]
    Gosling S N, Lowe J A, Mcgregor G R, et al. Associations between elevated atmospheric temperature and human mortality: a critical review of the literature[J]. Climatic Change, 2009, 92(3−4): 299−341. doi: 10.1007/s10584-008-9441-x
    [5]
    潘守文. 小气候考察的理论基础及其应用[M]. 北京: 气象出版社, 1989.

    Pan S W. Theoretical basis and application of microclimate investigation[M]. Beijing: China Meteorological Press, 1989.
    [6]
    Algretawee H, Rayburg S, Neave M. Estimating the effect of park proximity to the central of Melbourne City on Urban Heat Island (UHI) relative to land surface temperature (LST)[J]. Ecological Engineering, 2019, 138: 374−390. doi: 10.1016/j.ecoleng.2019.07.034
    [7]
    Zenghui K, Zhibao W, Xuejun S, et al. Research on the cooling island effects of water body: a case study of Shanghai, China[J]. Ecological Indicators: Integrating, Monitoring, Assessment and Management, 2016, 67: 31−38.
    [8]
    Du H, Cai W, Xu Y, et al. Quantifying the cool island effects of urban green spaces using remote sensing data[J]. Urban Forestry & Urban Greening, 2017, 27: 24−31.
    [9]
    谢紫霞, 张彪, 佘欣璐, 等. 上海城市绿地夏季降温效应及其影响因素[J]. 生态学报, 2020, 40(19):6749−6760.

    Xie Z X, Zhang B, She X L, et al. The summer cooling effect and its influencing factors of urban green spaces in Shanghai[J]. Acta Ecologica Sinica, 2020, 40(19): 6749−6760.
    [10]
    Liu F, Zhang X, Murayama Y, et al. Impacts of land cover/use on the urban thermal environment: a comparative study of 10 megacities in China[J/OL]. Remote Sensing, 2020, 12(2): 307 [2020−03−02]. https://doi.org/10.3390/rs12020307.
    [11]
    Fan S, Li X, Han J, et al. Assessing the effects of landscape characteristics on the thermal environment of open spaces in residential areas of Beijing, China[J]. Landscape & Ecological Engineering, 2018, 14: 79−90.
    [12]
    仇宽彪, 贾宝全, 成军锋. 北京市五环内主要公园冷岛效应及其主要影响因素[J]. 生态学杂志, 2017, 36(7):1984−1992.

    Qiu K B, Jia B Q, Cheng J F. Cool island effect of urban parks and its influencing factors within the Fifth Ring in Beijing[J]. Chinese Journal of Ecology, 2017, 36(7): 1984−1992.
    [13]
    Gage E A, Cooper D J. Relationships between landscape pattern metrics, vertical structure and surface Urban Heat Island formation in a Colorado suburb[J]. Urban Ecosystems, 2017, 20(6): 1229−1238. doi: 10.1007/s11252-017-0675-0
    [14]
    陈爱莲, 孙然好, 陈利顶. 传统景观格局指数在城市热岛效应评价中的适用性[J]. 应用生态学报, 2012, 23(8):2077−2086.

    Chen A L, Sun R H, Chen L D. Applicability of traditional landscape metrics in evaluating urban heat island effect[J]. Chinese Journal of Applied Ecology, 2012, 23(8): 2077−2086.
    [15]
    Chen A, Yao L, Sun R, et al. How many metrics are required to identify the effects of the landscape pattern on land surface temperature?[J]. Ecological Indicators, 2014, 45(1): 424−433.
    [16]
    邹婧, 曾辉. 城市地表热环境与景观格局的关系: 以深圳市为例[J]. 北京大学学报(自然科学版), 2017, 53(3):436−444.

    Zou J, Zeng H. Relationships between urban landscape pattern and land surface temperature: a case study of Shenzhen[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53(3): 436−444.
    [17]
    花利忠, 孙凤琴, 陈娇娜, 等. 基于Landsat-8影像的沿海城市公园冷岛效应: 以厦门为例[J]. 生态学报, 2020, 40(22):1−11.

    Hua L Z, Sun F Q, Chen J N, et al. Quantifying the cool-island effects of urban parks using Landsat-8 imagery in a coastal city, Xiamen, China[J]. Acta Ecologica Sinica, 2020, 40(22): 1−11.
    [18]
    Hai Y, Fan W, Li D. Influence of a large urban park on the local urban thermal environment[J]. Science of the Total Environment, 2018, 622−623(May1): 882−891.
    [19]
    Zhao J, Zhao X, Liang S, et al. Assessing the thermal contributions of urban land cover types[J/OL]. Landscape and Urban Planning, 2020, 204 [2020−03−10]. https://doi.org/10.1016/j.landurbplan.2020.103927.
    [20]
    Wu Z, Chen L. Optimizing the spatial arrangement of trees in residential neighborhoods for better cooling effects: Integrating modeling with in-situ measurements[J]. Landscape and Urban Planning, 2017, 167: 463−472. doi: 10.1016/j.landurbplan.2017.07.015
    [21]
    Coseo P, Larsen L. How factors of land use/land cover, building configuration, and adjacent heat sources and sinks explain Urban Heat Islands in Chicago[J]. Landscape & Urban Planning, 2014, 125: 117−129.
    [22]
    Sun R, Chen L. Effects of green space dynamics on urban heat islands: mitigation and diversification[J]. Ecosystem Services, 2017, 23: 38−46. doi: 10.1016/j.ecoser.2016.11.011
    [23]
    Skelhorn C, Lindley S, Levermore G. The impact of vegetation types on air and surface temperatures in a temperate city: a fine scale assessment in Manchester, UK[J]. Landscape & Urban Planning, 2014, 121: 129−140.
    [24]
    朱春阳, 李树华, 纪鹏. 城市带状绿地结构类型与温湿效应的关系[J]. 应用生态学报, 2011, 22(5):1255−1260.

    Zhu C Y, Li S H, Ji P. Relationships between urban green belt structure and temperature-humidity effect[J]. Chinese Journal of Applied Ecology, 2011, 22(5): 1255−1260.
    [25]
    Srivanit M, Hokao K. Evaluating the cooling effects of greening for improving the outdoor thermal environment at an institutional campus in the summer[J]. Building and Environment, 2013, 66(Suppl. C): 158−172.
    [26]
    Skelhorn C, Lindley S, Levermore G. The impact of vegetation types on air and surface temperatures in a temperate city: a fine scale assessment in Manchester, UK[J]. Landscape & Urban Planning, 2014, 121(1): 129−140.
    [27]
    高吉喜, 宋婷, 张彪, 等. 北京城市绿地群落结构对降温增湿功能的影响[J]. 资源科学, 2016, 38(6):1028−1038.

    Gao J X, Song T, Zhang B, et al. The relationship between urban green space community structure and air temperature reduction and humidity increase in Beijing[J]. Resources Science, 2016, 38(6): 1028−1038.
    [28]
    Lin T, Ho Y, Huang Y. Seasonal effect of pavement on outdoor thermal environments in subtropical Taiwan[J]. Building and Environment, 2007, 42(12): 4124−4131. doi: 10.1016/j.buildenv.2006.11.031
    [29]
    刘娇妹, 杨志峰. 北京市冬季不同景观下垫面温湿度变化特征[J]. 生态学报, 2009, 29(6):3241−3252. doi: 10.3321/j.issn:1000-0933.2009.06.056

    Liu J M, Yang Z F. Dynamicss of temperature and humidity in underlaying surface of different landscape type in winter in Beijing City, China[J]. Acta Ecologica Sinica, 2009, 29(6): 3241−3252. doi: 10.3321/j.issn:1000-0933.2009.06.056
    [30]
    Dimoudi A, Nikolopoulou M. Vegetation in the urban environment: microclimatic analysis and benefits[J]. Energy & Buildings, 2003, 35(1): 69−76.
    [31]
    Koc C B , Osmond P , Peters A. Evaluating the cooling effects of green infrastructure: a systematic review of methods, indicators and data sources[J]. Solar Energy, 2018, 166: 486−508.
    [32]
    邹春城, 张友水, 黄欢欢. 福州市城市不透水面景观指数与城市热环境关系分析[J]. 地球信息科学学报, 2014, 16(3):490−498.

    Zou C C, Zhang Y S, Huang H H. Impacts of impervious surface area and landscape metrics on Urban Heat Environment in Fuzhou City, China[J]. Journal of Geo-Information Science, 2014, 16(3): 490−498.
    [33]
    Sahar S, Huiwen Z, Xiaoli C, et al. The influence of spatial configuration of green areas on microclimate and thermal comfort[J]. Urban Forestry & Urban Greening, 2018, 34: 85−96.
    [34]
    Masoudi M, Tan P Y. Multi-year comparison of the effects of spatial pattern of urban green spaces on urban land surface temperature[J]. Landscape and Urban Planning, 2019, 184: 44−58. doi: 10.1016/j.landurbplan.2018.10.023
  • Cited by

    Periodical cited type(16)

    1. 张少杰,李珊芝,肖铁桥,马东方. 垂直绿化对老旧小区热舒适影响的数值模拟研究. 青岛理工大学学报. 2025(01): 62-71 .
    2. 李江波,翟志宏,李海燕,邓燕,陈思豪,王忆娴,丁云飞. 广州地区典型绿化乔木降温增湿效应研究. 气候与环境研究. 2024(01): 13-24 .
    3. 张鑫,蔡籽焓,黄晓光. 街头乔木景观结构的微气候效应数值仿真. 计算机仿真. 2023(01): 528-532 .
    4. 翁佳烽,梁晓媛,李婷苑,黄扬东,朱文生. 基于ENVI-met的广州街区温湿环境模拟. 广东气象. 2023(04): 1-5 .
    5. 董冬,邰宇,罗毅,张五四,顾康康. 植被配置结构对人体热舒适度影响的数值模拟研究. 环境与职业医学. 2023(08): 900-909 .
    6. 田菁,陈琳涵,张玉环,赵群,刘云. 基于ENVI-met模拟冷岛效应指标及差异性分析. 北京农学院学报. 2023(04): 105-109 .
    7. 杨鸿玮,陈子瑜,席晖. 基于热舒适评价的口袋公园绿化结构设计决策研究——以夏热冬冷地区某公园为例. 建筑科学. 2023(10): 210-221 .
    8. 潘剑彬,史川,黄田田,朱丹莉. 北京奥林匹克森林公园绿地人体感热舒适度空间差异特征. 风景园林. 2023(12): 114-120 .
    9. 祁娟娟,蔡芫镔,邱毅星,肖成明. 基于ENVI-met的冬季室外热环境缓解方案对比——以福州市中心城区为例. 环境生态学. 2022(01): 25-36 .
    10. 卢跃静,武新乾,王飞飞. 建筑因素对环境温度的显著影响分析. 环境与发展. 2022(04): 149-155+172 .
    11. 帅林茹,冯莉,阳少奇. 植被种植方式对城市微环境热舒适度影响的数值模拟研究. 生态学杂志. 2022(08): 1611-1618 .
    12. 张桂欣,刘祎,祝善友. 城市建筑布局要素对区域热环境影响的ENVI-met模拟与分析——以南京江北新区部分区域为例. 气候与环境研究. 2022(04): 513-522 .
    13. 李佳妮,朱丹莉,王娜,潘剑彬. 城市绿道植物群落空间人体热舒适度研究——以北京三山五园绿道为例. 北京建筑大学学报. 2022(06): 39-47 .
    14. 阿布力克木·托合提,朱礼同,王万江. 吐鲁番坎儿井公共空间热舒适度模拟研究. 西安建筑科技大学学报(自然科学版). 2021(05): 617-624 .
    15. 鲁凯莉,王爱霞,郭亚男,吕杨超. 半干旱区下沉式公园微气候特征与下垫面优化配置研究. 浙江林业科技. 2021(06): 50-58 .
    16. 范志强,徐佳敏,杨荣,葛文焱,丁元春. 安庆秦潭湖公园不同植物配置类型湿温效应研究. 佳木斯大学学报(自然科学版). 2021(06): 105-107 .

    Other cited types(28)

Catalog

    Article views (1398) PDF downloads (171) Cited by(44)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return