Citation: | Wang Chu, Wang Yang, Zou Jianjun, Peng Rusheng, Liu Guifeng, Jiang Jing. Growth adaptability analysis of BpCCR1 transgenic Betula platyphylla and selection of elite lines[J]. Journal of Beijing Forestry University, 2022, 44(7): 52-62. DOI: 10.12171/j.1000-1522.20200264 |
[1] |
Lacombe E, Hawkins S, Doorsselaere J V, et al. Cinnamoyl CoA reductase, the first committed enzyme of the lignin branch biosynthetic pathway: cloning, expression and phylogenetic relationships[J]. Plant Journal, 2010, 11(3): 429−441.
|
[2] |
胡可, 严雪锋, 栗丹, 等. 沉默CCR和CAD基因培育低木质素含量转基因多年生黑麦草[J]. 草业学报, 2013, 22(5): 72−83. doi: 10.11686/cyxb20130509
Hu K, Yan X F, Li D, et al. Genetic improvement of perennial ryegrass with low lignin content by silencing genes of CCR and CAD[J]. Acta Prataculturae Sinica, 2013, 22(5): 72−83. doi: 10.11686/cyxb20130509
|
[3] |
Chen H C, Song J N, Wang J, et al. Systems biology of lignin biosynthesis in Populus trichocarpa: heteromeric 4-coumaric acid: coenzyme a ligase protein complex formation, regulation, and numerical modeling[J]. The Plant Cell, 2014, 26(3): 876−893. doi: 10.1105/tpc.113.119685
|
[4] |
高原, 陈信波, 张志扬. 木质素生物合成途径及其基因调控的研究进展[J]. 生物技术通报, 2007(2): 47−51. doi: 10.3969/j.issn.1002-5464.2007.02.011
Gao Y, Chen X B, Zhang Z Y. Advances in research on lignin biosynthesis and its molecular regulation[J]. Biotechnology Bulletin, 2007(2): 47−51. doi: 10.3969/j.issn.1002-5464.2007.02.011
|
[5] |
Ling F, Raphael L, Shimon G, et al. Progressive inhibition by water deficit of cell wall extensibility and growth along the elongation zone of maize roots is related to increased lignin metabolism and progressive stelar accumulation of wall phenolics[J]. Plant Physiology, 2006, 140(2): 603−612. doi: 10.1104/pp.105.073130
|
[6] |
闫志鹏, 仪慧兰, 张艾英, 等. 谷子对黑粉菌侵染的生物学响应[J]. 山西农业科学, 2019, 47(10): 1700−1704. doi: 10.3969/j.issn.1002-2481.2019.10.04
Yan Z P, Yi H L, Zhang A Y, et al. Biological responses of millet plants to Ustilago crameri infection[J]. Journal of Shanxi Agricultural Sciences, 2019, 47(10): 1700−1704. doi: 10.3969/j.issn.1002-2481.2019.10.04
|
[7] |
Sabella E, Luvisi A, Aprile A, et al. Xylella fastidiosa induces differential expression of lignification related-genes and lignin accumulation in tolerant olive trees cv. Leccino[J]. Journal of Plant Physiology, 2018, 220: 60−68. doi: 10.1016/j.jplph.2017.10.007
|
[8] |
蔺占兵. 小麦肉桂酰辅酶A还原酶(CCR)基因的分离和功能分析[D]. 北京: 中国科学院(植物研究所), 2003.
Lin Z B. Cloning and functional analysis of cinnamoyl: CoA Reductase (CCR) gene from Triticum aestivum L. cv. H4564[D]. Beijing: Institute of Botany, Chinese Academy of Sciences, 2003.
|
[9] |
国增超, 侯静, 郭炜, 等. 簸箕柳材性性状株内纵向变异的趋势分析[J]. 南京林业大学学报(自然科学版), 2014, 38(5): 149−152.
Guo Z C, Hou J, Guo W, et al. Variation trends of wood property along stem in Salix suchowensis[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2014, 38(5): 149−152.
|
[10] |
Huang H, Wang S, Jiang J, et al. Overexpression of BpAP1 induces early flowering and produces dwarfism in Betula platyphylla × Betula pendula[J]. Physiologia Plantarum, 2014, 151(4): 495−506. doi: 10.1111/ppl.12123
|
[11] |
詹亚光, 王玉成, 王志英, 等. 白桦的遗传转化及转基因植株的抗虫性[J]. 植物生理与分子生物学学报, 2003, 29(5): 380−386.
Zhan Y G, Wang Y C, Wang Z Y, et al. Genetic transformation of Betula platyphylla and insect resistance of the transgenic plants[J]. Acta Photophysiologica Sinica, 2003, 29(5): 380−386.
|
[12] |
李园园, 杨光, 韦睿, 等. 转TabZIP基因白桦的获得及耐盐性分析[J]. 南京林业大学学报(自然科学版), 2013, 37(5): 6−12.
Li Y Y, Yang G, Wei R, et al. TabZIP transferred Betula platyphylla generation and salt tolerance analysis[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2013, 37(5): 6−12.
|
[13] |
Zhang W, Wei R, Chen S, et al. Functional characterization of CCR in birch (Betula platyphylla × Betula pendula) through overexpression and suppression analysis[J]. Physiologia Plantarum, 2014, 154(2): 283−296.
|
[14] |
陈继英, 刘超逸, 王朔, 等. 白桦BpTOPP1基因功能[J]. 东北林业大学学报, 2018, 46(8): 13−19. doi: 10.3969/j.issn.1000-5382.2018.08.003
Chen J Y, Liu C Y, Wang S, et al. A preliminary study on function of BpTOPP1 gene in Betula platyphylla × B. pendula[J]. Journal of Northeast Forestry University, 2018, 46(8): 13−19. doi: 10.3969/j.issn.1000-5382.2018.08.003
|
[15] |
范志勇, 姜晶, 王芳, 等. 转BpCHS基因过量表达白桦叶片和韧皮部色素含量及植株表型分析[J]. 东北林业大学学报, 2018, 46(6): 8−13. doi: 10.3969/j.issn.1000-5382.2018.06.002
Fan Z Y, Jiang J, Wang F, et al. Overexpression of BpCHS confers changes of pigment content in leaves and phloem and other phenotypic traits in transgenic birch[J]. Journal of Northeast Forestry University, 2018, 46(6): 8−13. doi: 10.3969/j.issn.1000-5382.2018.06.002
|
[16] |
韦睿. 白桦木质素BpCCR1基因的克隆及遗传转化[D]. 哈尔滨: 东北林业大学, 2012.
Wei R. Gene clone and genetic transformation of cinnamoyl-CoA reductase gene 1 in Betula platyphylla[D]. Harbin: Northeast Forestry University, 2012.
|
[17] |
张闻博. 白桦BpCCR1基因的功能研究[D]. 哈尔滨: 东北林业大学, 2015.
Zhang W B. Function analysis of CCR1 in Betula platyphylla × Betula pendula[D]. Harbin: Northeast Forestry University, 2015.
|
[18] |
张嫚嫚, 刘宝光, 顾宸瑞, 等. 转BpCCR1正义链及反义链对7年生盆栽白桦木质素的影响及优良株系选择[J]. 北京林业大学学报, 2019, 41(6): 86−95.
Zhang M M, Liu B G, Gu C R, et al. Effects of transgenic sense and antisense of BpCCR1 on 7-year-old potted birch and selection of excellent lines[J]. Journal of Beijing Forestry University, 2019, 41(6): 86−95.
|
[19] |
孟宪宇. 测树学[M]. 北京: 中国林业出版社, 2004.
Meng X Y. Forest mensuration [M]. Beijing: China Forestry Publishing House, 2004.
|
[20] |
Huixin G, Ranhong L, Yuming Z, et al. Loss of GLK1 transcription factor function reveals new insights in chlorophyll biosynthesis and chloroplast development[J]. Journal of Experimental Botany, 2019, 70(12): 3125−3138. doi: 10.1093/jxb/erz128
|
[21] |
Li R, Chen S, Liu G, et al. Characterization and identification of a woody lesion mimic mutant lmd, showing defence response and resistance to Alternaria alternate in birch[J]. Scientific Reports, 2017, 7(1): 11308. doi: 10.1038/s41598-017-11748-2
|
[22] |
Baxter H, Poovaiah C, Yee K, et al. Field evaluation of transgenic switchgrass plants overexpressing PvMYB4 for reduced biomass recalcitrance[J]. Bioenergy Research, 2015, 8(3): 910−921. doi: 10.1007/s12155-014-9570-1
|
[23] |
刘桂丰, 杨传平, 蔡智军, 等. 转betA基因小黑杨的耐盐性分析及优良转基因株系的选择[J]. 林业科学, 2006, 42(7): 33−36.
Liu G F, Yang C P, Cai Z J, et al. Salt tolerance of betA transgenic Populus simonii × P. nigra and selection for superior transgenic plants[J]. Scientia Silvae Sinicae, 2006, 42(7): 33−36.
|
[24] |
穆怀志, 李志新, 李玉珠, 等. 轻度盐碱地转betA基因小黑杨的生长表现[J]. 东北林业大学学报, 2009, 37(11): 24−25, 28.
Mu H Z, Li Z X, Li Y Z, et al. Growth manifestation of transgenic Populus simonii × P. nigra with betA gene on low-grade salinate fields[J]. Journal of Northeast Forestry University, 2009, 37(11): 24−25, 28.
|
[25] |
沈熙环. 油松、华北落叶松良种选育实践与理论[M]. 北京: 科学出版社, 2014.
Shen X H. Selection and breeding of Pinus tabuliformis and Larix principis-rupprechtii: practice and pheorty [M]. Beijing: Science Press, 2014.
|
[26] |
李斌, 顾万春, 夏良放, 等. 鹅掌楸种源遗传变异和选择评价[J]. 林业科学研究, 2001, 14(3): 237−243. doi: 10.3321/j.issn:1001-1498.2001.03.001
Li B, Gu W C, Xia L F, et al. Geneti
|
[27] |
李新国, 朱之悌. 林木基因型与地点最佳组合选择的研究[J]. 北京林业大学学报, 1998, 20(3): 15−18. doi: 10.3321/j.issn:1000-1522.1998.03.003
Li X G, Zhu Z T. Selection of better combinations of genotypes and sites of forest trees[J]. Journal of Beijing Forestry University, 1998, 20(3): 15−18. doi: 10.3321/j.issn:1000-1522.1998.03.003
|
[28] |
Nagamitsu T, Nagasaka K, Yoshimaru H, et al. Provenance tests for survival and growth of 50-year-old Japanese larch (Larix kaempferi) trees related to climatic conditions in central Japan[J]. Tree Genetics & Genomes, 2014, 10(1): 87−99.
|
[29] |
刘宇, 徐焕文, 尚福强, 等. 3个地点白桦种源试验生长稳定性分析[J]. 北京林业大学学报, 2016, 38(5): 50−57. doi: 10.13332/j.1000-1522.20150463
Liu Y, Xu H W, Shang F Q, et al. Growth stability of Betula platyphylla provenances from three sites[J]. Journal of Beijing Forestry University, 2016, 38(5): 50−57. doi: 10.13332/j.1000-1522.20150463
|
[30] |
谢兆辉. 天然反义转录物及其调控基因的表达机制[J]. 遗传, 2010, 32(2): 32−38.
Xie Z H. Natural antisense transcript and its mechanism of gene regulation[J]. Hereditas, 2010, 32(2): 32−38.
|
[31] |
Katayama S, Tomaru Y, Kasukawa T, et al. Antisense transcription in the mammalian transcriptome.[J]. Science, 2005, 309: 1564−1566. doi: 10.1126/science.1112009
|
[32] |
毕延震, 黄捷, 姜黎. 天然反义RNA (NATs): 基因表达的重要调控分子[J]. 中国生物化学与分子生物学报, 2010, 26(9): 9−16.
Bi Y Z, Huang J, Jiang L. Natural antisense transcripts (NATs): important regulatory molecules upon gene expression[J]. Chinese Journal of Biochemistry and Molecular Biology, 2010, 26(9): 9−16.
|