• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wang Lixuan, Gao Jiaqi, Yang Guang, Di Xueying, Yu Hongzhou, Weng Yuetai. Stoichiometric characteristics of C and N of post-fire forest floor of Larix gmelinii[J]. Journal of Beijing Forestry University, 2021, 43(12): 55-64. DOI: 10.12171/j.1000-1522.20200281
Citation: Wang Lixuan, Gao Jiaqi, Yang Guang, Di Xueying, Yu Hongzhou, Weng Yuetai. Stoichiometric characteristics of C and N of post-fire forest floor of Larix gmelinii[J]. Journal of Beijing Forestry University, 2021, 43(12): 55-64. DOI: 10.12171/j.1000-1522.20200281

Stoichiometric characteristics of C and N of post-fire forest floor of Larix gmelinii

More Information
  • Received Date: September 13, 2020
  • Revised Date: July 13, 2021
  • Available Online: November 19, 2021
  • Published Date: January 04, 2022
  •   Objective  Forest floor is the main fuel of forest soil surface, and it is also the fundamental substance for wildfire to disturb the ecological process of boreal forest. Nutrient cycling and energy flow are the core contents for the ecological restoration of post-fire stands. In order to better understand the effects of fire disturbance on the forest floor carbon (C) and nitrogen (N) cycles of boreal forest ecosystem, this study explored the relationship between C, N or C/N ratio and spatial or temporal factors in post-fire forest floor.
      Method  In the forest floors (Oi horizon and Oe horizon) of different burned and unburned Larix gmelinii stands, the total organic C, N, ammonium N, nitrate N and soluble organic C contents were measured. We used one-way analysis of variance (ANOVA) to compare differences in the stoichiometric characteristics of forest floor C and N in post-fire forests, which were characteristics of different environments and time since fire. Pearson correlation was used to show the correlation between carbon content, nitrogen content, carbon nitrogen ratio and various factors; the influence of different factors on the stoichiometric ratio of carbon and nitrogen in forest floor was analyzed by factor analysis. ower than that in gentle slope (P > 0.05). In Oe horizon, the C and N contents of samples collected from gentle slope were slightly higher than that from flat slope, but the C/N ratio in flat slope was slightly higher than that in gentle slope. The sequential order of environmental factors affecting the C/N ratio in Oi horizon was longitude > latitude > ammonium N content > N content > C content > slope gradient > slope aspect > pH; whereas, in Oe horizon, the sequential order was longitude > C content > slope aspect > altitude > N content > pH > nitrate N content.
      Conclusion  Time since fire and environmental factors could influence C, N and C/N ratio in post-fire Larix gmelinii forest floor. Some environmental factors, such as slope gradient and slope aspect, could significantly affect the C, N and C/N ratio of post-fire Larix gmelinii forest floor. Time factor and environmental factors could affect the C and N cycles in post-fire boreal forest ecosystem by changing the decomposition rate of the forest floor.
  • [1]
    陶玉柱, 邸雪颖, 金森. 我国森林火灾发生的时空规律研究[J]. 世界林业研究, 2013, 26(5):75−80.

    Tao Y Z, Di X Y, Jin S. Research on temporal and spatial distribution of forest fire in China[J]. World Forestry Research, 2013, 26(5): 75−80.
    [2]
    胡海清, 罗斯生, 罗碧珍, 等. 林火干扰对广东省杉木林土壤有机碳及其组分的影响[J]. 北京林业大学学报, 2019, 41(12):108−118. doi: 10.12171/j.1000-1522.20190179

    Hu H Q, Luo S S, Luo B Z, et al. Effects of forest fire disturbance on soil organic carbon and its components of Cunninghamia lanceolata forest in Guangdong Province, southern China[J]. Journal of Beijing Forestry University, 2019, 41(12): 108−118. doi: 10.12171/j.1000-1522.20190179
    [3]
    钱国平, 赵志霞, 李正才, 等. 火烧对北亚热带天然次生林土壤有机碳的影响[J]. 南京林业大学学报(自然科学版), 2017, 41(6):118−122.

    Qian G P, Zhao Z X, Li Z C, et al. Effects of fire on soil organic carbon in natural secondary forest in north subtropical areas[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2017, 41(6): 118−122.
    [4]
    胡海清, 魏书精, 金森, 等. 森林火灾碳排放计量模型研究进展[J]. 应用生态学报, 2012, 23(5):1423−1434.

    Hu H Q, Wei S J, Jin S, et al. Measurement model of carbon emission from forest fire: a review[J]. Chinese Journal of Applied Ecology, 2012, 23(5): 1423−1434.
    [5]
    胡海清, 张富山, 魏书精, 等. 火干扰对土壤呼吸的影响及测定方法研究进展[J]. 森林工程, 2013, 29(1):1−8. doi: 10.3969/j.issn.1001-005X.2013.01.001

    Hu H Q, Zhang F S, Wei S J, et al. Research progress on effects of forest fire disturbance on soil respiration and measuring methods[J]. Forest Engineering, 2013, 29(1): 1−8. doi: 10.3969/j.issn.1001-005X.2013.01.001
    [6]
    张亨宇. 火干扰对大兴安岭北方森林土壤性质和碳氮磷化学计量特征的影响[D]. 沈阳: 沈阳师范大学, 2019.

    Zhang H Y. Effects of fire disturbance on the soil properties and C/N/P stoichiometry in the boreal forest of Great Xing ’an Mountains [D]. Shenyang: Shenyang Normal University, 2019.
    [7]
    田晓瑞, 殷丽, 舒立福, 等. 2005—2007年大兴安岭林火释放碳量[J]. 应用生态学报, 2009, 20(12):2877−2883.

    Tian X R, Yin L, Shu L F, et al. Carbon emission from forest fires in Daxing ’ anling region in 2005−2007[J]. Chinese Journal of Applied Ecology, 2009, 20(12): 2877−2883.
    [8]
    Tian H, Lu C, Ciaais P, et al. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere[J]. Nature, 2016, 531: 225−228. doi: 10.1038/nature16946
    [9]
    Schuur E A G, Mcgurie A D, Schädel C, et al. Climate change and the permafrost carbon feedback[J]. Nature, 2015, 520: 171−179. doi: 10.1038/nature14338
    [10]
    Certini G. Effects of fire on properties of forest soils: a review[J]. Oecologia, 2005, 143(1): 1−10. doi: 10.1007/s00442-004-1788-8
    [11]
    Giovannini G, Lucchesi S, Giachetti M. Effects of heating on some physical and chemical parameters related to soil aggregation and erodibility[J]. Soil Science, 1988, 146(4): 255−261. doi: 10.1097/00010694-198810000-00006
    [12]
    González-Pérez J, González-Vila F, Almendros G, et al. The effect of fire on soil organic matter: a review[J]. Environ International, 2004, 30(6): 855−870. doi: 10.1016/j.envint.2004.02.003
    [13]
    Sevink J, Imeson A C, Verstraten J M. Humus form development and hillslope runoff, and the effects of fire and management, under Mediterranean forest in NE-Spain.[J]. Catena, 1989, 16(4/5): 461−475.
    [14]
    Durgin P B, Vogelsang P J. Dispersion of kaolinite by water extracts of Douglas-fir ash[J]. Canadian Journal of Soil Science, 1984, 64(3): 439−443. doi: 10.4141/cjss84-044
    [15]
    Fayos C B. The roles of texture and structure in the water retention capacity of burnt Mediterranean soils with varying rainfall[J]. Catena, 1997, 31(3): 219−236. doi: 10.1016/S0341-8162(97)00041-6
    [16]
    Fisher R F, Binkley D. Ecology and management of forest soils[M]. Colorado: John Wiley, 2000.
    [17]
    Mabuhay J A, Isagi Y, Nakagoshi N. Wildfire effects on microbial biomass and diversity in pine forests at three topographic positions[J]. Ecological Research, 2005, 21(1): 54−63.
    [18]
    Kim E J, Oh J E, Chang Y S. Effects of forest fire on the level and distribution of PCDD/Fs and PAHs in soil[J]. Science of the Total Environment, 2003, 311(1/3): 177−189.
    [19]
    赵彬, 孙龙, 胡海清, 等. 兴安落叶松林火后对土壤养分和土壤微生物生物量的影响[J]. 自然资源学报, 2011, 26(3):450−459. doi: 10.11849/zrzyxb.2011.03.011

    Zhao B, Sun L, Hu H Q, et al. Post-fire soil microbial biomass and nutrient content of larix gmelinii forest in autumn[J]. Journal of Natural Resources, 2011, 26(3): 450−459. doi: 10.11849/zrzyxb.2011.03.011
    [20]
    中国农业百科全书总编辑委员会编土壤卷编辑委员会. 中国农业百科全书土壤卷[M]. 北京: 农业出版社, 1996.

    Soil Volume Editorial Committee of General Editorial Committee of China Agricultural encyclopedia, edited by the editorial department of China Agricultural encyclopedia. Soil volume of China Agricultural encyclopedia [M]. Beijing: Agricultural Press, 1996.
    [21]
    高雪梅, 黄沐亮, 阙辰月, 等. 林地生态系统土壤可溶性有机氮库及其生态功能研究进展[J]. 福建农业学报, 2011, 26(6):1135−1141. doi: 10.3969/j.issn.1008-0384.2011.06.039

    Gao X M, Huang M L, Que C Y, et al. Research progress on soluble organic nitrogen pool in soil and its functions in forestry ecosystem[J]. Fujian Journal of Agricultural Sciences, 2011, 26(6): 1135−1141. doi: 10.3969/j.issn.1008-0384.2011.06.039
    [22]
    王宝荣, 曾全超, 安韶山, 等. 黄土高原子午岭林区两种天然次生林植物叶片−凋落叶−土壤生态化学计量特征[J]. 生态学报, 2017, 37(16):5461−5473.

    Wang B R, Zeng Q C, An S S, et al. C∶N∶P stoichiometry characteristics of plants-litter-soils in two kind types of natural secondary forest on the ziwuling region of the loess plateau[J]. Acta Ecologica Sinica, 2017, 37(16): 5461−5473.
    [23]
    周正虎, 王传宽, 张全智. 土地利用变化对东北温带幼龄林土壤碳氮磷含量及其化学计量特征的影响[J]. 生态学报, 2015, 35(20):6694−6702.

    Zhou Z H, Wang C K, Zhang Q Z. The effect of land use change on soil carbon, nitrogen, and phosphorus contents and their stoichiometry in temperate sapling stands in northeastern China[J]. Acta Ecologica Sinica, 2015, 35(20): 6694−6702.
    [24]
    李俊. 凋落物分解过程中无脊椎动物与微生物群落的相互作用随海拔的变化特征[D]. 成都: 四川农业大学, 2016.

    Li J. Characteristics of interaction between invertebrate and microbial community in litter decomposition with altitude[D]. Chengdu: Sichuan Agricultural University, 2016.
    [25]
    Alca I M, Outeiro L, Francos M, et al. Effects of prescribed fires on soil properties: a review[J]. Science of the Total Environment, 2018, 613(144): 944−957.
    [26]
    Butler O M, Lewis T, Chen C. Fire alters soil labile stoichiometry and litter nutrients in Australian eucalypt forests[J]. International Journal of Wildland Fire, 2017, 26(9): 783−788. doi: 10.1071/WF17072
    [27]
    杨新芳, 鲍雪莲, 胡国庆, 等. 大兴安岭不同火烧年限森林凋落物和土壤C、N、P化学计量特征[J]. 应用生态学报, 2016, 27(5):1359−1367.

    Yang X F, Bao X L, Hu G Q, et al. C∶N∶P stoichiometry characteristics of litter and soil of forests in Great Xing ’ an Mountains with different fire years[J]. Chinese Journal of Applied Ecology, 2016, 27(5): 1359−1367.
    [28]
    胡海清, 罗碧珍, 魏书精, 等. 大兴安岭5种典型林型森林生物碳储量[J]. 生态学报, 2015, 35(17):178−193.

    Hu H Q, Luo B Z, Wei S J, et al. Estimating biological carbon storage of five typical forest types in the Daxing ’ anling Mountains, Heilongjiang, China[J]. Acta Ecologica Sinica, 2015, 35(17): 178−193.
    [29]
    李景文. 黑龙江森林[M]. 哈尔滨: 东北林业大学出版社, 1993.

    Li J W. Heilongjiang forest [M]. Harbin: Northeast Forestry University Press, 1993.
    [30]
    Wang C K, Gower S T, Wang Y H, et al. The influence of fire on carbon distribution and net primary production of boreal Larix gmelinii forests in north-eastern China[J]. Global Change Biology, 2001, 7(6): 719−730. doi: 10.1046/j.1354-1013.2001.00441.x
    [31]
    王绪高, 李秀珍, 贺红士. 1987年大兴安岭特大火灾后不同管理措施对落叶松林的长期影响[J]. 应用生态学报, 2008, 19(4):915−921.

    Wang X G, Li X Z, He H S. Long-term effects of different management strategies on Larix gmelinii forests in Great Hing'an Mountains after the catastrophic fire in 1987[J]. Chinese Journal of Applied Ecology, 2008, 19(4): 915−921.
    [32]
    王立轩, 杨光, 高佳琪, 等. 兴安落叶松火烧迹地林褥层可溶性有机质的时间变化特征[J]. 生态学杂志, 2020, 39(12):3913−3923.

    Wang L X, Yang G, Gao J Q, et al. Temporal variation of dissolved organic matter in post-fire forest floor of Larix gmelinii[J]. Chinese Journal of Ecology, 2020, 39(12): 3913−3923.
    [33]
    葛晓改, 肖文发, 曾立雄, 等. 三峡库区马尾松林土壤-凋落物层酶活性对凋落物分解的影响[J]. 生态学报, 2014, 34(9):2228−2237.

    Ge X G, Xiao W F, Zeng L X, et al. Effect of soil-litter layer enzyme activities on litter decomposition in Pinus massoniana plantation in Three Gorges Reservoir Area[J]. Acta Ecologica Sinica, 2014, 34(9): 2228−2237.
    [34]
    吕金林, 闫美杰, 宋变兰, 等. 黄土丘陵区刺槐、辽东栎林地土壤碳、氮、磷生态化学计量特征[J]. 生态学报, 2017, 37(10):3385−3393.

    Lü J L, Yan M J, Song B L, et al. Ecological stoichiometry characteristics of soil carbon, nitrogen, and phosphorus in an oak forest and a black locust plantation in the Loess hilly region[J]. Acta Ecologica Sinica, 2017, 37(10): 3385−3393.
    [35]
    Kalbitz K, Schmerwitz J, Schwesig D, et al. Biodegradation of soil-derived dissolved organic matter as related to its properties[J]. Geoderma, 2003, 113(3/4): 273−291.
    [36]
    陕红, 张庆忠, 张晓娟, 等. 保存、分析方法等因素对土壤中硝态氮测定的影响[J]. 分析测试学报, 2013, 32(12):1466−1471.

    Shan H, Zhang Q Z, Zhang X J, et al. Effects of preservation, analysis method on determination of nitrate in soils[J]. Journal of Instrumental Analysis, 2013, 32(12): 1466−1471.
    [37]
    Maksimova E, Abakumov E. Wildfire effects on ash composition and biological properties of soils in forest-steppe ecosystems of Russia[J]. Environmental Earth Sciences, 2015, 74(5): 4395−4405. doi: 10.1007/s12665-015-4497-1
    [38]
    Hoiden S R, Berhe A A, Treseder K K. Decreases in soil moisture and organic matter quality suppress microbial decomposition following a boreal forest fire[J]. Soil Biology & Biochemistry, 2015, 87(4): 1−9.
    [39]
    Moorheada D L, Sinsabaughb R L, Linkinse A E, et al. Decomposition processes: modeling approaches and applications.[J]. The Science of the Total Environment, 1996, 183(1): 137−149.
    [40]
    Fox D M, Darboux F, Carrega P. Topographic controls on soil properties affecting post-fire erosion and sediment redistribution in a mixed forested-agricultural Mediterranean catchment[J]. Geophysical Research Abstracts, 2006(8): 3−4.
    [41]
    Song X, Wang G, Ran F, et al. Effects of topography and fire on soil CO2 and CH4 flux in boreal forest underlain by permafrost in northeast China[J]. Ecological Engineering, 2017, 106(partA): 35−43.
    [42]
    Griffiths R P, Madritch M D, Swanson A K. The effects of topography on forest soil characteristics in the Oregon Cascade Mountains (USA): implications for the effects of climate change on soil properties[J]. Forest Ecology and Management, 2009, 257(1): 1−7. doi: 10.1016/j.foreco.2008.08.010
    [43]
    Fisk M C, Seastedt S K, Seastedt T R. Topographic patterns of above- and belowground production and nitrogen cycling in Alpine Tundra[J]. Ecology, 1998, 79(7): 2253−2266. doi: 10.1890/0012-9658(1998)079[2253:TPOAAB]2.0.CO;2
    [44]
    Geroy I J, Gribb M M, Marshall H P, et al. Aspect influences on soil water retention and storage[J]. Hydrology Processes, 2011, 25(25): 3836−3842. doi: 10.1002/hyp.8281
    [45]
    魏孝荣, 邵明安. 黄土高原沟壑区小流域坡地土壤养分分布特征[J]. 生态学报, 2007, 27(2):603−612. doi: 10.3321/j.issn:1000-0933.2007.02.023

    Wei X R, Shao M A. The distribution of soil nutrients on sloping land in the gully region watershed of the Loess Plateau[J]. Acta Ecologica Sinica, 2007, 27(2): 603−612. doi: 10.3321/j.issn:1000-0933.2007.02.023
    [46]
    何福红. 黄土高原沟壑区小流域水文性质的空间变异性[D]. 杨凌: 西北农林科技大学, 2003.

    He F H. Spatial variability of hydrological properties in a catchment of the gully region, the Loess Plateau[D]. Yangling: Northwest A&F University, 2003.
    [47]
    王晶, 包维楷, 丁德蓉. 九寨沟林下地表径流及其与地表和土壤状况的关系[J]. 水土保持学报, 2005, 19(3):93−96. doi: 10.3321/j.issn:1009-2242.2005.03.023

    Wang J, Bao W K, Ding D R. Surface run off and connection with surface status and soil under three forests in Jiuzhaigou World Nature Heritage Reserve[J]. Journal of Soil and Water Conservation, 2005, 19(3): 93−96. doi: 10.3321/j.issn:1009-2242.2005.03.023
    [48]
    Neary D G, Ryan K C, DeBano L F. Wildland fire in ecosystems: effects of fire on soil and water[M]. Colorado: Create Space Independent Publishing Platform, 2005.
  • Related Articles

    [1]Feng Yuan, Li Guixiang, He Liping, Bi Bo, Qin Yangping, Wang Faping, Hu Binxian, Yin Jiuming. Tree height curves of Pinus yunnanensis forest based on nonlinear mixed effects model[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240063
    [2]Li Xinyu, Yeerjiang Baiketuerhan, Wang Juan, Zhang Xinna, Zhang Chunyu, Zhao Xiuhai. Relationship between tree height and DBH of Pinus koraiensis in northeastern China based on nonlinear mixed effects model[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240321
    [3]Du Zhi, Chen Zhenxiong, Li Rui, Liu Ziwei, Huang Xin. Development of climate-sensitive nonlinear mixed-effects tree height-DBH model for Cunninghamia lanceolata[J]. Journal of Beijing Forestry University, 2023, 45(9): 52-61. DOI: 10.12171/j.1000-1522.20230052
    [4]Wang Longfeng, Xiao Weiwei, Wang Shuli. Changes of soil aggregate stability and carbon-nitrogen distribution after artificial management of natural secondary forests[J]. Journal of Beijing Forestry University, 2022, 44(7): 97-106. DOI: 10.12171/j.1000-1522.20210497
    [5]Jin Xiaojuan, Sun Yujun, Pan Lei. Prediction model of base diameter of primary branch for Larix olgensis based on mixed effects[J]. Journal of Beijing Forestry University, 2020, 42(10): 1-10. DOI: 10.12171/j.1000-1522.20200133
    [6]ZANG Hao, LEI Xiang-dong, ZHANG Hui-ru, LI Chun-ming, LU Jun. Nonlinear mixed-effects height-diameter model of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2016, 38(6): 8-9. DOI: 10.13332/j.1000-1522.20160008
    [7]DONG Li-hu, LI Feng-ri, JIA Wei-wei.. Effects of tree competition on biomass and biomass models of Pinus koraiensis plantation.[J]. Journal of Beijing Forestry University, 2013, 35(6): 14-22.
    [8]DONG Li-hu, LI Feng-ri, JIA Wei-wei. Development of tree biomass model for Pinus koraiensis plantation[J]. Journal of Beijing Forestry University, 2012, 34(6): 16-22.
    [9]WANG Xiong-bin, YU Xin-xiao, XU Cheng-li, , GU Jian-cai, ZHOU Bin, FAN Min-rui, JIA Guo-dong, LV xi-zhi. Effects of thinning on edge effect of Larix principisrupprechtii plantation.[J]. Journal of Beijing Forestry University, 2009, 31(5): 29-34.
    [10]LI Chun-ming.. Simulating basal area growth of fir plantations using a nonlinear mixed modeling approach.[J]. Journal of Beijing Forestry University, 2009, 31(1): 44-49.
  • Cited by

    Periodical cited type(44)

    1. 韩彦隆,魏亚娟,左小锋,左轶璆,康帅,童国利,李建媛,王永平. 吉兰泰荒漠绿洲过渡带土壤生态化学计量特征及养分恢复状况研究. 水土保持研究. 2025(02): 207-214+223 .
    2. 罗婷,黄甫昭,李健星,陆芳,文淑均,阮枰臻,李先琨. 广西漓江流域喀斯特地区植被不同恢复阶段植物优势种叶片和土壤的生态化学计量特征. 植物资源与环境学报. 2024(02): 80-90 .
    3. 任泽文,陈昕,陈玥,钟曲颖,余泽平,刘骏,杨清培,宋庆妮. 亚热带森林演替中优势种茎干-土壤碳氮磷生态化学计量的变化特征. 江西农业大学学报. 2024(02): 401-410 .
    4. 侯贻菊,姚雾清,杨光能,崔迎春,周华. 黔竹笋期生长特性及配方施肥效应研究. 贵州林业科技. 2024(02): 19-24 .
    5. 刘亚博,冯天骄,王平,卫伟. 黄土丘陵区典型小流域不同植被恢复方式土壤理化性质差异及其影响因素. 生态学报. 2024(15): 6652-6666 .
    6. 史丽娟,吕海涛,张树梓,李联地,任启文,冯广. 白洋淀上游典型林分类型土壤理化性质及其化学计量特征. 土壤通报. 2024(04): 960-967 .
    7. 武仁杰,邢玮,葛之葳,毛岭峰,彭思利. 4种林分凋落叶不同分解阶段化学计量特征. 浙江农林大学学报. 2023(01): 155-163 .
    8. 孙阔,袁兴中,王晓锋,袁嘉,候春丽,魏丽景. 三峡水库消落带土壤养分含量及生态化学计量特征. 长江流域资源与环境. 2023(02): 403-414 .
    9. 刘根,岳翰林,陈雨志,汪富资,李先宝,代智蓝,李德欢,李思雨,卫万荣. 3种修复措施对高原高速公路边坡土壤化学计量特征的影响. 草业科学. 2023(01): 71-78 .
    10. 王艺伟,仇模升,孙彩丽. 植物反馈作用对火棘群落土壤养分、酶活性及化学计量特征的影响. 中南林业科技大学学报. 2023(03): 127-134 .
    11. 梁楚欣,范弢,陈培云. 滇东石漠化坡地不同恢复模式下云南松林土壤碳氮磷化学计量特征及其影响因子. 浙江农林大学学报. 2023(03): 511-519 .
    12. 白金珂,李笑雨,王力. 1980s与2020s青藏高原南部土壤质量变化. 应用生态学报. 2023(05): 1367-1374 .
    13. 徐子涵,王磊,崔明,刘玉国,赵紫晴,李嘉豪. 南水北调水源区不同植被恢复模式的土壤化学计量特征. 南京林业大学学报(自然科学版). 2023(03): 173-181 .
    14. 何芳远,苏权,陈坤铨,陈善栋,姜勇,罗明,梁士楚. 基于功能性状及系统发育的桂林喀斯特石山群落构建. 广西师范大学学报(自然科学版). 2023(03): 171-181 .
    15. 吴丹,温晨,卫伟,张钦弟. 黄土高原小流域不同植物群落土壤生态化学计量的垂直变化特征. 广西植物. 2023(05): 923-935 .
    16. 宁静,杨磊,曹建华,李亮. 基于文献计量分析的岩溶区植被恢复研究现状与热点. 中国岩溶. 2023(02): 321-336 .
    17. 李雪梅,舒英格. 不同土地利用类型下土壤养分变化及生态化学计量特征分析. 中国农学通报. 2023(28): 62-69 .
    18. 周士锋,魏亚娟,何磊,王项飞,刘美萍,刘澜波. 包头市南海湿地不同季节土壤养分分布特征. 北方园艺. 2023(20): 69-76 .
    19. 侯贻菊,姚雾清,杨光能,崔迎春,周华,张喜. 黔竹秆形结构和地上生物量分配格局研究. 竹子学报. 2023(04): 51-57 .
    20. 胡林安,邱江梅,李强. 云南岩溶断陷盆地植被演替土壤碳氮磷化学计量学特征. 中国岩溶. 2023(06): 1213-1223 .
    21. 袁在翔,关庆伟,李俊杰,韩梦豪,金雪梅,陈霞. 不同植被恢复模式对紫金山森林土壤理化性质的影响. 东北林业大学学报. 2022(01): 52-57 .
    22. 曹全恒 ,胡健 ,陈雪玲 ,孙梅玲 ,刘小龙 ,杨丽雪 ,周青平 . 川西北沙地植被恢复对土壤碳氮磷及生态化学计量特征的影响. 草地学报. 2022(03): 523-531 .
    23. 蔡雅梅,冯民权,肖瑜. 人类活动对河岸带植被氮磷生态化学计量特征的影响——以汾河临汾段为例. 水土保持通报. 2022(01): 17-25 .
    24. 孟海,王海燕,侯文宁,赵晗,宁一泓. 重庆笋溪河流域河岸带水体-土壤-植物的氮磷特征及影响因素. 水土保持学报. 2022(02): 275-282+291 .
    25. 章润阳,钱前,刘坤平,梁月明,张伟,靳振江,潘复静. 喀斯特不同土地利用方式和恢复模式对土壤酶活性C∶N∶P比值的影响. 广西植物. 2022(06): 970-982 .
    26. 王杰. 河岸带土壤氮磷时空分布及影响因素分析. 水土保持应用技术. 2022(04): 13-16 .
    27. 孙渝雯,马赞文,陶贞,张乾柱,唐文魁,吴迪,钟庆祥,王振刚,丁健. 海南岛西南部土壤生物硅分布的时空差异及其驱动机制. 生态学报. 2022(17): 7092-7104 .
    28. 张萌,沈雅飞,陈天,王丽君,曾立雄,孙鹏飞,肖文发,田耀武,程瑞梅. 宜阳县不同森林类型土壤化学计量特征. 陆地生态系统与保护学报. 2022(02): 1-8 .
    29. 陈培云,范弢,何停,户红红. 滇东岩溶高原不同恢复阶段云南松林叶片-枯落物-土壤碳氮磷化学计量特征. 应用与环境生物学报. 2022(06): 1549-1556 .
    30. 刘翔,张连凯,黄超,徐灿,马一奇,杨慧. 广西岩溶区芒果园土壤碳氮磷化学计量特征. 南方农业学报. 2022(12): 3346-3356 .
    31. 李强. 土地利用方式对岩溶断陷盆地土壤细菌和真核生物群落结构的影响. 地球学报. 2021(03): 417-425 .
    32. 陈云,李玉强,王旭洋,牛亚毅. 中国典型生态脆弱区生态化学计量学研究进展. 生态学报. 2021(10): 4213-4225 .
    33. 蔡雅梅,冯民权. 汾河河岸带土壤氮、磷的时空分布规律及其影响因素研究. 水土保持学报. 2021(04): 222-229+236 .
    34. 蔡国俊,锁盆春,张丽敏,符裕红,李安定. 黔南喀斯特峰丛洼地3种建群树种不同器官C、N、P化学计量特征. 贵州师范大学学报(自然科学版). 2021(05): 36-44 .
    35. 魏亚娟,汪季,党晓宏,韩彦隆,高岩,李鹏,金山. 白刺灌丛沙堆演化过程中叶片C、N、P、K含量及其生态化学计量的变化特征. 中南林业科技大学学报. 2021(10): 102-110+139 .
    36. 杨洪炳,肖以华,李明,许涵,史欣,郭晓敏. 典型城市森林旱季土壤团聚体稳定性与微生物胞外酶活性耦合关系. 生态环境学报. 2021(10): 1976-1989 .
    37. 陈剑,王四海,杨卫,吴超. 外来入侵植物肿柄菊群落动态变化特征. 生态学杂志. 2020(02): 469-477 .
    38. 郑鸾,龙翠玲. 茂兰喀斯特森林不同地形土壤生态化学计量特征. 南方农业学报. 2020(03): 545-551 .
    39. 夏光辉,郭青霞,卢庆民,杜轶,康庆. 黄土丘陵区不同土地利用方式下土壤养分及生态化学计量特征. 水土保持通报. 2020(02): 140-147+153 .
    40. 吴鹏,崔迎春,赵文君,侯贻菊,朱军,丁访军,杨文斌. 茂兰喀斯特区68种典型植物叶片化学计量特征. 生态学报. 2020(14): 5063-5080 .
    41. 朱平宗,张光辉,杨文利,赵建民. 红壤区林地浅沟不同植被类型土壤生态化学计量特征. 水土保持研究. 2020(06): 60-65 .
    42. 余杭,罗清虎,李松阳,林勇明,王道杰. 灾害干扰受损森林土壤的碳、氮、磷初期恢复特征与变异性. 山地学报. 2020(04): 532-541 .
    43. 郭汝凤,刘鑫铭,李冠军,黄婷,吴承祯,林勇明,李键. 武夷山人工湿地系统植物生长期内土壤-植物碳氮磷变化特点. 应用与环境生物学报. 2020(02): 433-441 .
    44. 闫丽娟,王海燕,李广,吴江琪. 黄土丘陵区4种典型植被对土壤养分及酶活性的影响. 水土保持学报. 2019(05): 190-196+204 .

    Other cited types(42)

Catalog

    Article views (949) PDF downloads (72) Cited by(86)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return