• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Han Changzhi, Zhou Yin. Colonization of Trichoderma hamatum and Bacillus subtilis in rhizosphere soil of walnut[J]. Journal of Beijing Forestry University, 2021, 43(9): 19-24. DOI: 10.12171/j.1000-1522.20200285
Citation: Han Changzhi, Zhou Yin. Colonization of Trichoderma hamatum and Bacillus subtilis in rhizosphere soil of walnut[J]. Journal of Beijing Forestry University, 2021, 43(9): 19-24. DOI: 10.12171/j.1000-1522.20200285

Colonization of Trichoderma hamatum and Bacillus subtilis in rhizosphere soil of walnut

More Information
  • Received Date: September 16, 2020
  • Revised Date: May 25, 2021
  • Available Online: May 31, 2021
  • Published Date: October 14, 2021
  •   Objective  The colonization of plant disease biocontrol agents in plant rhizosphere soil is one of the important factors affecting its biocontrol effect. In recent years, walnut anthracnose has caused serious harm to the development of walnut industry in Yunnan Province of southwestern China, and it has posed a serious threat to the development of walnut industry in the growing areas. In the early stage, Trichoderma hamatum YB-4-15 and Bacillus subtilis yb33, which are important biocontrol agents, were obtained indoors by screening biocontrol of anthracnose on walnut in rhizosphere soil of Guangming Village, Yangbi County, Dali City. To better promote the above biocontrol agents, the colonization of the above strains in the rhizosphere of walnuts should be firstly considered.
      Method  Trichoderma spore suspensions of different concentrations were applied to sterilized rhizosphere of walnuts.
      Result  The colonization amount of the two biocontrol agents in rhizosphere soil was regularly measured, and it was found that after one month of mixing the biocontrol agents to the rhizosphere soil, the colonization amount of T. hamatum was 2 × 104 cfu/g at lowest level to 5 × 104 cfu/g at maximum level. At the same time, the rifampicin-resistant B. subtilis yb33-Rif was used to determine the colonization ability in sterilized soil and field soil, the colonization amount of tested bacteria ranged from 7.07 × 106 to 1.08 × 108 cfu/g, significantly lower in field soil than in sterilized soil, ranging from 1.03 × 106 cfu/g at lowest level to 7.53 × 106 cfu/g at maximum level. In addition, the two tested biocontrol agents were mixed in the rhizosphere soils of walnut, osmanthus, camphor and heather, and it was found that the two biocontrol agents were found to grow well in walnut rhizosphere soil.
      Conclusion  The current study lays a solid base for future application of the two biocontrol agents in walnut fields.
  • [1]
    余红红, 李娅, 廖灵芝. 云南省核桃产业发展策略研究[J]. 林业经济问题, 2019, 39(4):427−434.

    Yu H H, Li Y, Liao L Z. Study on the development strategy of walnut industry in Yunnan Province[J]. Issues of Forestry Economics, 2019, 39(4): 427−434.
    [2]
    韩长志. 植物病害生防菌的研究现状及发展趋势[J]. 中国森林病虫, 2015, 34(1):33−37, 25. doi: 10.3969/j.issn.1671-0886.2015.01.010

    Han C Z. Research status and development trend of microbial antagonists against plant diseases[J]. Forest Pest and Disease, 2015, 34(1): 33−37, 25. doi: 10.3969/j.issn.1671-0886.2015.01.010
    [3]
    韩长志, 霍超. 核桃炭疽病生物防治菌株YB-4-15的筛选和鉴定[J]. 经济林研究, 2016, 34(1):83−89.

    Han C Z, Huo C. Isolation and identification of YB-4-15 strain against walnut anthracnose[J]. Nonwood Forest Research, 2016, 34(1): 83−89.
    [4]
    韩长志, 霍超. 核桃炭疽病生防菌yb33的鉴定及其次生代谢物特性分析[J]. 经济林研究, 2015, 33(3):63−67, 74.

    Han C Z, Huo C. Identification of bio-control strain yb33 against walnut anthracnose and analysis of its secondary metabolite characteristics[J]. Nonwood Forest Research, 2015, 33(3): 63−67, 74.
    [5]
    袁秀英, 白红霞, 白玉明, 等. 杨树内生真菌的分离和拮抗生防菌的筛选[J]. 林业科学研究, 2006, 19(6):713−717. doi: 10.3321/j.issn:1001-1498.2006.06.007

    Yuan X Y, Bai H X, Bai Y M, et al. Isolation of endophytes and screen of antagonistic strains in poplar trees[J]. Forest Research, 2006, 19(6): 713−717. doi: 10.3321/j.issn:1001-1498.2006.06.007
    [6]
    张磊. 草酸青霉菌P8(Penicillium oxalicum)的GFP和潮霉素抗性基因标记及其作物根际定殖的研究[D]. 南京: 南京农业大学, 2005.

    Zhang L. Labelling the phosphate-solubilizing strain P8 of Penicillium oxalicum with GFP and hygromycin resistance genes and its colonization in rhizosphere of crops[D]. Nanjing: Nanjing Agricultural University, 2005.
    [7]
    张炳欣, 张平. 植物根围外来微生物定殖的检测方法[J]. 浙江大学学报(农业与生命科学版), 2000, 26(6):44−48.

    Zhang B X, Zhang P. Detection of introduced microorganisms to rhizosphere[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2000, 26(6): 44−48.
    [8]
    郑磊. 核桃根腐病及其生防菌定殖能力的研究[D]. 成都: 四川农业大学, 2015.

    Zheng L. Walnut root rot and colonization of bio-control microorganisms[D]. Chengdu: Sichuan Agricultural University, 2015.
    [9]
    张晓鹿, 薛泉宏, 郭志英, 等. 混合接种对辣椒疫病生防菌定殖、辣椒生长及诱导抗性的影响[J]. 西北农林科技大学学报(自然科学版), 2008, 36(4):151−158.

    Zhang X L, Xue Q H, Guo Z Y, et al. Effect of the inoculation with the fungi and actinomycetes against Phytophthora capsici and the colonization capability and the growth and PPO activity of capsicum’s leaf and root[J]. Journal of Northwest A&F University (Natural Science Edition), 2008, 36(4): 151−158.
    [10]
    陈胜菊. 生防荧光假单胞菌CPF10对西瓜根围土壤真菌群落多样性影响的评价[D]. 上海: 华东理工大学, 2013.

    Chen S J. Assessing the impact of biocontrol agent Pseudomonas fluorescens CPF10 on the fungal community diversity in soil of watermelon rhizosphere[D]. Shanghai: East China University of Science and Technology, 2013.
    [11]
    张霞. 荧光假单胞菌遗传标记及工程菌生物安全性评价[D]. 保定: 河北农业大学, 2004.

    Zhang X. Genetically marking of Pseudomonas fluoresence and biosafety assessment of engineered strain[D]. Baoding: Agricultural University of Hebei, 2004.
    [12]
    杜立新. 枯草芽孢杆菌防治番茄灰霉病及其作用机制与发酵水平研究[D]. 保定: 河北农业大学, 2004.

    Du L X. Study on action mechanism and fermentation of Bacillus subtilis against Botrytis cinerea[D]. Baoding: Agricultural University of Hebei, 2004.
    [13]
    刘云霞, 张青文, 周明. 电镜免疫胶体金定位水稻内生细菌的研究[J]. 农业生物技术学报, 1996, 4(4):50−54.

    Liu Y X, Zhang Q W, Zhou M. Immuno-gold staining techniques for detection of endophytic bacteria in rice plant[J]. Journal of Agricultural Biotechnology, 1996, 4(4): 50−54.
    [14]
    方中达. 植病研究方法[M]. 北京: 中国农业出版社, 1998.

    Fang Z D. Research methods of plant diseases[M]. Beijing: China Agriculture Press, 1998.
    [15]
    弭宝彬, 田雪亮, 王殿东, 等. 转MAPK双链RNA干扰表达载体黄瓜对根际土壤真菌群落多样性的影响[J]. 中国生物防治学报, 2013, 29(3):395−400.

    Mi B B, Tian X L, Wang D D, et al. Effect on fungal diversity in rhizosphere soil of cucumber genetically modified with double-strand RNA interference expression vector of MAPK[J]. Chinese Journal of Biological Control, 2013, 29(3): 395−400.
    [16]
    栾晓波, 徐福利, 汪有科, 等. 施肥对山地红枣林土壤微生物区系及酶活性的影响[J]. 西北农业学报, 2012, 21(7):149−154. doi: 10.3969/j.issn.1004-1389.2012.07.028

    Luan X B, Xu F L, Wang Y K, et al. Impacts of fertilization on soil microorganism quantities and enzyme activities in jujube forest of hillside[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2012, 21(7): 149−154. doi: 10.3969/j.issn.1004-1389.2012.07.028
    [17]
    靳辉勇, 黎娟, 朱益, 等. 土壤调理剂对烤烟根系活力及根际土壤微生物碳代谢特征的影响[J]. 核农学报, 2019, 33(1):158−165. doi: 10.11869/j.issn.100-8551.2019.01.0158

    Jin H Y, Li J, Zhu Y, et al. Effect of soil conditioner on root vigor and carbon metabolism characteristics of rhizosphere soil microorganisms in flue-cured tobacco[J]. Journal of Nuclear Agricultural Sciences, 2019, 33(1): 158−165. doi: 10.11869/j.issn.100-8551.2019.01.0158
    [18]
    Kloepper J W, Schroth M N. Plant growth-promoting rhizobacteria and plant growth under gnotobiotic conditions[J]. Phytopathology, 1981, 71: 642−644. doi: 10.1094/Phyto-71-642
    [19]
    张凯东, 秦双林, 周英, 等. 生防菌对猕猴桃两种病原真菌的抑制效果[J]. 中国南方果树, 2020, 49(1):123−125.

    Zhang K D, Qin S L, Zhou Y, et al. Inhibitory effect of biocontrol microbes on two pathogenic fungi of kiwifruit[J]. South China Fruit Tree, 2020, 49(1): 123−125.
    [20]
    蒋志强, 郭坚华. 生防菌对土壤微生态影响的风险评估[J]. 微生物学杂志, 2006, 26(1):85−88. doi: 10.3969/j.issn.1005-7021.2006.01.023

    Jiang Z Q, Guo J H. Hazard analysis of the impact of bio-controlling microbes on soil micro-ecosystem[J]. Journal of Microbiology, 2006, 26(1): 85−88. doi: 10.3969/j.issn.1005-7021.2006.01.023
  • Cited by

    Periodical cited type(17)

    1. 袁慧兰,郑甜甜,林佳敏,鲍雪莲,闵凯凯,朱雪峰,解宏图,梁超. 农林土壤置换对植物残体分解过程的影响. 生态学杂志. 2024(04): 1017-1024 .
    2. 李慧璇,马红亮,尹云锋,高人. 亚热带天然阔叶林凋落物分解过程中活性、惰性碳氮的动态特征. 植物生态学报. 2023(05): 618-628 .
    3. 罗国娜,车震宇. 马尾松凋落物对土壤氮循环与微生物的影响. 山东农业大学学报(自然科学版). 2023(04): 553-561 .
    4. 韦昌林,李毅,单立山,解婷婷,张鹏. 降水变化对典型荒漠植物凋落物分解的影响. 草地学报. 2022(05): 1280-1289 .
    5. Hao Qu,XueYong Zhao,XiaoAn Zuo,ShaoKun Wang,XuJun Ma,Xia Tang,XinYuan Wang,Eduardo Medina-Roldán. Litter decomposition in fragile ecosystems: A review. Sciences in Cold and Arid Regions. 2022(03): 151-161 .
    6. 王文秀,栾军伟,王一,杨怀,赵阳,李丝雨,梁昌强,孔祥河,刘世荣. 模拟干旱和磷添加对热带低地雨林叶凋落物分解的影响. 生态学报. 2022(15): 6160-6174 .
    7. 李慧业,林永慧,何兴兵. 4种内源真菌对马尾松凋落叶分解的影响. 西南农业学报. 2021(03): 618-625 .
    8. 王光燚,上官周平,方燕. 氮沉降对细根分解影响的研究进展. 水土保持研究. 2020(02): 383-391 .
    9. 舒韦维,陈琳,刘世荣,曾冀,李华,郑路,陈文军. 减雨对南亚热带马尾松人工林凋落物分解的影响. 生态学报. 2020(13): 4538-4545 .
    10. 叶贺,红梅,赵巴音那木拉,李静,闫瑾,张宇晨,梁志伟. 水氮控制对短花针茅荒漠草原根系分解的影响. 应用与环境生物学报. 2020(05): 1169-1175 .
    11. 杨晶晶,周正立,吕瑞恒,梁继业,王雄. 干旱生境下3种植物叶凋落物分解动态特征. 干旱区研究. 2019(04): 916-923 .
    12. 周书玉,袁川,王景燕,龚伟,唐海龙. 菌剂和外源氮素添加对青花椒采收剩余物分解的影响. 四川农业大学学报. 2019(06): 799-806 .
    13. 王欣,郭延朋,赵辉,孟凡军,刘国萍. 华北落叶松与白桦叶凋落物混合分解及其养分动态. 林业与生态科学. 2018(01): 29-36 .
    14. 郑欣颖,佘汉基,薛立,蔡金桓. 外源性氮和磷添加对马尾松凋落叶分解及土壤特性的影响. 生态环境学报. 2017(10): 1710-1718 .
    15. 佘汉基,蔡金桓,薛立,郑欣颖. 模拟外源性氮磷对尾叶桉和马占相思混合凋落叶分解的影响. 西北林学院学报. 2017(06): 45-52 .
    16. 蔡金桓,郑欣颖,薛立,佘汉基. 外源性氮和磷对杉木和藜蒴锥混合凋落叶分解的影响. 西南林业大学学报(自然科学). 2017(04): 103-112 .
    17. 蔡金桓,王卓敏,薛立,郑欣颖,佘汉基. 外源性氮和磷对藜蒴林凋落叶分解的影响. 中南林业科技大学学报. 2017(07): 105-111 .

    Other cited types(16)

Catalog

    Article views (1500) PDF downloads (78) Cited by(33)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return