• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhao Na, Li Shaoning, Xu Xiaotian, Wang Weina, Lu Shaowei. Water use efficiency and its influencing factors of typical greening tree species in Beijing region[J]. Journal of Beijing Forestry University, 2021, 43(3): 44-54. DOI: 10.12171/j.1000-1522.20200293
Citation: Zhao Na, Li Shaoning, Xu Xiaotian, Wang Weina, Lu Shaowei. Water use efficiency and its influencing factors of typical greening tree species in Beijing region[J]. Journal of Beijing Forestry University, 2021, 43(3): 44-54. DOI: 10.12171/j.1000-1522.20200293

Water use efficiency and its influencing factors of typical greening tree species in Beijing region

More Information
  • Received Date: September 24, 2020
  • Revised Date: December 03, 2020
  • Available Online: March 02, 2021
  • Published Date: April 15, 2021
  •   Objective  Due to the water scarcity and the improvement in urban greening, the tension has grown from the struggles for water between industries, urban life, and urban afforestation in Beijing. Thus, it is the top priority to explore the response mechanism of urban greening tree species to arid habitats and to screen the low-water consumption and high-water utilization landscaping tree species for high-quality urban forest landscape.
      Method  Typical greening tree species including Ginkgo biloba, Koelreuteria paniculata, Sophora japonica, Platycladus orientalis, Pinus tabuliformis, and Pinus bungeana in Beijing were selected and subjected to three groups of soil water stresses such as slight drought (SLD, 50%−70% field capacity (FC)), moderate drought (MD, 30%−50% FC) and extreme drought (ED, lower than 30% FC). The interspecific differences in the instantaneous water use efficiency (WUEi) and mean water use efficiency (WUEL) of these tree species under water stresses and their relationship to eco-physiological factors were investigated based on the stable isotope technology and the observations on tree physiological traits.
      Result  The photosynthetic capacities and WUEi in G. biloba, K. paniculata, S. japonica and P. orientalis decreased significantly compared with control (CK, 90%−100% FC) when potted soil volumetric water content (SWC) was less than 70% (P < 0.05), whereas there was no significant difference in WUEi of P. tabuliformis and P. bungeana subjected to continuous drought (P > 0.05). The WUELs of evergreen tree species were significantly higher than those of deciduous tree species under MD and ED (P < 0.05). The WUELs of three deciduous tree species differed in response to extreme drought (P < 0.05), and the sequence of WUELs in three deciduous tree species was S. japonica > K. paniculata > G. biloba. The WUELs of G. biloba and K. paniculata in SLD, and P. orientalis and P. tabuliformis in MD reached their respective peaks and then decreased along with the increases in soil water stress; while those of S. japonica and P. bungeana increased with potted soil drying, and were 44.19% and 30.35% higher than control, respectively at severe drought condition (P < 0.05). Comparing the correlations between photosynthetic parameters, WUEi and WUEL of different tree species, it was found that the stomatal conductance (gs) of G. biloba, K. paniculata and S. japonica significantly affected its photosynthesis and transpiration processes (P < 0.01) and hence exerted a strong influence on WUEi, while those in evergreen tree species such as P. orientalis, P. tabuliformis, and P. bungeana were insensitive to the variation in soil moisture and had little impact on WUEi (P > 0.05). The WUEL of evergreen tree species was higher than that of deciduous ones under moderate and extreme water stress.
      Conclusion  Therefore, considering the limited water resources of Beijing, evergreen tree species have stronger abilities to conserve water content and optimize photosynthetic performance to improve their water use efficiency, to adapt to arid habitats than those of deciduous trees in Beijing.
  • [1]
    Gillner S, Vogt J, Tharang A, et al. Role of street trees in mitigating effects of heat and drought at highly sealed urban sites[J]. Landscape and Urban Planning, 2015, 143: 33−42. doi: 10.1016/j.landurbplan.2015.06.005
    [2]
    Nowak D J, Greenfield E J, Hoehn R E, et al. Carbon storage and sequestration by trees in urban and community areas of the United States[J]. Environmental Pollution, 2013, 178: 229−236. doi: 10.1016/j.envpol.2013.03.019
    [3]
    Baldocchi D A. A comparative study of mass and energy exchange rates over a closed C3 (wheat) and an open C4 (corn) crop (II): CO2 exchange and water use efficiency[J]. Agricultural and Forest Meteorology, 1994, 67: 291−321. doi: 10.1016/0168-1923(94)90008-6
    [4]
    林光辉. 稳定同位素生态学[M]. 北京: 高等教育出版社, 2013: 141−147.

    Lin G H. Stable isotope ecology[M]. Beijing: Higher Education Press, 2013: 141−147.
    [5]
    Cao X, Jia J B, Li H, et al. Photosynthesis, water use efficiency and stable carbon isotope composition are associated with anatomical properties of leaf and xylem in six poplar species[J]. Plant Biology, 2012, 14: 612−620. doi: 10.1111/j.1438-8677.2011.00531.x
    [6]
    Farquhar G D, Richards R A. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes[J]. Australian Journal of Plant Physiology, 1984, 11(6): 539−552.
    [7]
    张永娥, 余新晓, 陈丽华, 等. 北京西山侧柏林冠层不同高度处叶片水分利用效率[J]. 应用生态学报, 2017, 28(7):2143−2148.

    Zhang Y E, Yu X X, Chen L H, et al. Foliar water use efficiency of Platycladus orientalis of different canopy heights in Beijing western mountains area, China[J]. Chinese Journal of Applied Ecology, 2017, 28(7): 2143−2148.
    [8]
    Kozlowski T T, Pallardy S G. Acclimation and adaptive responses of woody plants to environmental stresses[J]. Botanical Review, 2002, 68(2): 270−334. doi: 10.1663/0006-8101(2002)068[0270:AAAROW]2.0.CO;2
    [9]
    Picotte J, Rosenthal D, Rhode J, et al. Plastic responses to temporal variation in moisture availability: consequences for water use efficiency and plant performance[J]. Oecologia, 2007, 153(4): 821−832. doi: 10.1007/s00442-007-0794-z
    [10]
    Xu X, Yang F, Xiao X W, et al. Sex-specific responses of Populus cathayana to drought and elevated temperatures[J]. Plant Cell and Environment, 2008, 31(6): 850−860. doi: 10.1111/j.1365-3040.2008.01799.x
    [11]
    马 飞, 姬明飞, 陈立同, 等. 油松幼苗对干旱胁迫的生理生态响应[J]. 西北植物学报, 2009, 29(3):548−554.

    Ma F, Ji M F, Chen L T, et al. Responses of Pinus tabulae formis seedlings to different soil water moistures in ecophysiological characteristics[J]. Acta Botanica Boreali-Occidentalia Sinica, 2009, 29(3): 548−554.
    [12]
    Farquhar G D, O’Leary M H, Berry J A. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves[J]. Functional Plant Biology, 1982, 9(2): 121−137. doi: 10.1071/PP9820121
    [13]
    Li J Y, Blake T J. Effect of repeated cycles of dehydration-rehydration on gas exchange and water use efficiency in jack pine and black spruce[J]. Journal of Beijing Forestry University (English Edition), 1996, 5(2): 78−87.
    [14]
    Yu S W. Plant physiology and molecular biology[M]. Beijing: Science Press, 1992.
    [15]
    Lang Y, Wang M, Zhang G C, et al. Experimental and simulated light responses of photosynthesis in leaves of three tree species under different soil water conditions[J]. Photosynthetica, 2013, 51(3): 370−378. doi: 10.1007/s11099-013-0036-z
    [16]
    Suresh K, Nagamani C, Ramachandrudu K, et al. Gas-exchange characteristics, leaf water potential and chlorophyll a fluorescence in oil palm (Elaeis guineensis Jacq.) seedlings under water stress and recovery[J]. Photosynthetica, 2010, 48(3): 430−436. doi: 10.1007/s11099-010-0056-x
    [17]
    Razavi F, Pollet B, Steppe K, et al. Chlorophyll fluorescence as a tool for evaluation of drought stress in strawberry[J]. Photosynthetica, 2008, 46(4): 631−633. doi: 10.1007/s11099-008-0108-7
    [18]
    段娜, 贾玉奎, 郝玉光, 等. 干旱胁迫对欧李叶绿素荧光特性的影响[J]. 西北林学院学报, 2018, 33(6):10−14. doi: 10.3969/j.issn.1001-7461.2018.06.02

    Duan N, Jia Y K, Hao Y G, et al. Effects of drought stress on chlorophyll fluorescence characteristics of Cerasus humilis[J]. Journal of Northwest Forestry University, 2018, 33(6): 10−14. doi: 10.3969/j.issn.1001-7461.2018.06.02
    [19]
    Klein T. The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours[J]. Functional Ecology, 2014, 28(6): 1313−1320. doi: 10.1111/1365-2435.12289
    [20]
    范嘉智, 王丹, 胡亚林, 等. 最优气孔行为理论和气孔导度模拟[J]. 植物生态学报, 2016, 40(6):631−642. doi: 10.17521/cjpe.2015.0480

    Fan J Z, Wang D, Hu Y L, et al. Optimal stomatal behavior theory for simulating stomatal conductance[J]. Chinese Journal of Plant Ecology, 2016, 40(6): 631−642. doi: 10.17521/cjpe.2015.0480
    [21]
    张彦群, 王传宽. 北方和温带森林生态系统的蒸腾耗水[J]. 应用与环境生物学报, 2008, 14(6):838−845.

    Zhang Y Q, Wang C K. Transpiration of boreal and temperate forests[J]. Chinese Journal of Applied and Environmental Biology, 2008, 14(6): 838−845.
    [22]
    郑淑霞, 上官周平. 8 种阔叶树种叶片气体交换特征和叶绿素荧光特性比较[J]. 生态学报, 2006, 26(4):1080−1087. doi: 10.3321/j.issn:1000-0933.2006.04.014

    Zheng S X, Shangguan Z P. Comparison of leaf gas exchange and chlorophyll fluorescence parameters in eight broad-leaved tree species[J]. Acta Ecologica Sinica, 2006, 26(4): 1080−1087. doi: 10.3321/j.issn:1000-0933.2006.04.014
    [23]
    Damesin C, Rambal S, Toffre R. Between-tree variations in leaf delta C-13 of Quercus pubescens and Quercus ilex among Mediterranean habitats with different water availability[J]. Oecologia, 1997, 111: 26−35. doi: 10.1007/s004420050204
    [24]
    贾剑波. 北京山区典型森林生态系统水分运动过程与机制研究[D]. 北京: 北京林业大学, 2016.

    Jia J B. Water movement process and mechanism analysis on forest ecosystems in Beijing mountainous area[D]. Beijing: Beijing Forestry University, 2016.
    [25]
    李瀚之, 余新晓, 贾国栋, 等. 北京山区侧柏人工林内CO2浓度及其δ13C值变化特征和影响因子[J]. 应用生态学报, 2017, 28(7):2164−2170.

    Li H Z, Yu X X, Jia G D, et al. Variations and determinants of CO2 concentration and δ13C in Platycladus orientalis plantation in Beijing mountainous area, China[J]. Chinese Journal of Applied Ecology, 2017, 28(7): 2164−2170.
    [26]
    Evans J R. Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.)[J]. Plant Physiology, 1983, 72(2): 297−302. doi: 10.1104/pp.72.2.297
    [27]
    Perez-Martin A, Michelazzo C, Torres-Ruiz J M, et al. Regulation of photosynthesis and stomatal and mesophyll conductance under water stress and recovery in olive trees: correlation with gene expression of carbonic anhydrase and aquaporins[J]. Journal of Experimental Botany, 2014, 65(2): 3143−3156.
    [28]
    Lagergren F, Lindroth A. Transpiration response to soil moisture in pine and spruce trees in Sweden[J]. Agricultural and Forest Meteorology, 2002, 112(2): 67−85. doi: 10.1016/S0168-1923(02)00060-6
    [29]
    杨建伟, 赵丹, 孙桂芳, 等. 干旱胁迫对小紫珠光合生理的影响[J]. 西北植物学报, 2018, 38(4):733−740.

    Yang J W, Zhao D, Sun G F, et al. Photosynthetic characteristics of Callicarpa dichotoma under drought stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(4): 733−740.
    [30]
    王孟本, 李洪建. 黄土高原人工林水分生态研究[M]. 北京: 中国林业出版社, 2001.

    Wang M B, Li H J. Study on water ecology of plantations in the Loess Plateau[M]. Beijing: China Forestry Publishing House, 2001.
    [31]
    Somerville C, Youngs H, Taylor C, et al. Feedstocks for lignocellulosic biofuels[J]. Science, 2010, 329: 790−792. doi: 10.1126/science.1189268
    [32]
    Saibo N J M, Lourenço T, Oliveira M M. Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses[J]. Annals of Botany, 2009, 103(4): 609−623. doi: 10.1093/aob/mcn227
    [33]
    Ögren E, Öquist G. Effects of drought on photosynthesis, chlorophyll fluorescence and photoinhibition susceptibility in intact willow leaves[J]. Planta, 1985, 166(3): 380−388. doi: 10.1007/BF00401176
    [34]
    Ashraf M, Harris P J C. Photosynthesis under stressful environments: an overview[J]. Photosynthetica, 2013, 51(2): 163−190. doi: 10.1007/s11099-013-0021-6
    [35]
    罗丹丹, 王传宽, 金鹰. 植物水分调节对策: 等水与非等水行为[J]. 植物生态学报, 2017, 41(9):1020−1032. doi: 10.17521/cjpe.2016.0366

    Luo D D, Wang C K, Jin Y. Plant water-regulation strategies: isohydric versus anisohydric behavior[J]. Chinese Journal of Plant Ecology, 2017, 41(9): 1020−1032. doi: 10.17521/cjpe.2016.0366
    [36]
    Hou J, D’Andrea W J, Macdonald D, et al. Evidence for water use efficiency as an important factor in determining the δD values of tree leaf waxes[J]. Organic Geochemistry, 2007, 38(8): 1251−1255. doi: 10.1016/j.orggeochem.2007.03.011
    [37]
    赵凤君, 沈应柏, 高荣孚, 等. 叶片δ13C与长期水分利用效率的关系[J]. 北京林业大学学报, 2006, 28(6):40−45. doi: 10.3321/j.issn:1000-1522.2006.06.007

    Zhao F J, Shen Y B, Gao R F, et al. Relationship between foliar carbon isotope composition (δ13C) and long-term water use efficiency (WUEL)[J]. Journal of Beijing Forestry University, 2006, 28(6): 40−45. doi: 10.3321/j.issn:1000-1522.2006.06.007
    [38]
    Franks P J, Doheny-Adams T W, Britton-Harper Z J, et al. Increasing water-use efficiency directly through genetic manipulation of stomatal density[J]. New Phytologist, 2015, 207(1): 188−195. doi: 10.1111/nph.13347
    [39]
    Fitter A H. Functioning of vesicular-arbuscular mycorrhizas under field condition[J]. New Phytologist, 1985, 99(2): 257−265. doi: 10.1111/j.1469-8137.1985.tb03654.x
    [40]
    Huang Y, Shuman B, Wang Y, et al. Climatic and environmental controls on the variation of C3 and C4 plant abundances in central Florida for the past 62, 000 years[J]. Palaeogeography, Palaeoclimatology, Palaecology, 2006, 237(2−4): 428−435. doi: 10.1016/j.palaeo.2005.12.014
    [41]
    Waghorn M J, Whitehead D, Watt M S, et al. Growth, biomass, leaf area and water-use efficiency of juvenile Pinus radiata in response to water deficits[J]. New Zealand Journal of Forestry Science, 2015, 45(1): 1−11. doi: 10.1186/s40490-015-0034-y
    [42]
    Paul J K, John S B. Water relations of plants and soils[M]. San Diego: Academy Press, 1995.
    [43]
    金华, 玉米提·哈力克, 阿丽亚·拜都热拉, 等. 阿克苏8种常见树种水分利用效率特征[J]. 西北林学院学报, 2015, 30(2):44−50. doi: 10.3969/j.issn.1001-7461.2015.02.08

    Jin H, Umut H, Aliya B, et al. Characteristics of leaf water use efficiency of eight common tree species in Aksu[J]. Journal of Northwest Forestry University, 2015, 30(2): 44−50. doi: 10.3969/j.issn.1001-7461.2015.02.08
    [44]
    牛素贞, 宋勤飞, 樊卫国, 等. 干旱胁迫对喀斯特地区野生茶树幼苗生理特性及根系生长的影响[J]. 生态学报, 2017, 37(21):7333−7341.

    Niu S Z, Song Q F, Fan W G, et al. Effects of drought stress on leaf physiological characteristics and root growth of the clone seedlings of wild tea plants[J]. Acta Ecologica Sinica, 2017, 37(21): 7333−7341.
    [45]
    牛晓丽, 胡田田, 刘亭亭, 等. 适度局部水分胁迫提高玉米根系吸水能力[J]. 农业工程学报, 2014, 30(22):80−86. doi: 10.3969/j.issn.1002-6819.2014.22.010

    Niu X L, Hu T T, Liu T T, et al. Appropriate partial water stress improving maize root absorbing capacity[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(22): 80−86. doi: 10.3969/j.issn.1002-6819.2014.22.010
  • Related Articles

    [1]Wei Yugui, Peng Wanyu, Qiu Yingqing, Feng Wenzhong, Bai Tianjun, Ye Qing, Deng Wenping. Response of water use efficiency of Cryptomeria japonica to climate change in Lushan Mountain, Jiangxi Province of eastern China[J]. Journal of Beijing Forestry University, 2023, 45(3): 48-57. DOI: 10.12171/j.1000-1522.20220279
    [2]Qin Zeshi, Shi Juan, Hao Yanping, Cui Xiaopeng, Li Biying. Feasibility analysis on species origin traceability by hydrogen stable isotope: sample case of Dendroctonus valens (Coleoptera: Scolytidae)[J]. Journal of Beijing Forestry University, 2021, 43(5): 93-98. DOI: 10.12171/j.1000-1522.20190437
    [3]Zhou Wenjun, Zha Tianshan, Jia Xin, Tian Yun, Wei Tengzhou, Jin Chuan. Dynamics of water use efficiency of Artemisia ordosica leaf in growing season in response to environmental factors in Yanchi, Ningxia of northwestern China[J]. Journal of Beijing Forestry University, 2020, 42(7): 98-105. DOI: 10.12171/j.1000-1522.20190206
    [4]Wen Yongbin, Han Hairong, Cheng Xiaoqin, Li Zuzheng. Coupling of landscape pattern and water use efficiency with different amplitudes: a case study of Qianyanzhou in eastern China[J]. Journal of Beijing Forestry University, 2019, 41(12): 88-95. DOI: 10.12171/j.1000-1522.20190081
    [5]SHEN Fang-fang, FAN Hou-bao, WU Jian-ping, LIU Wen-fei, LEI Xue-ming, LEI Xue-chen. Review on carbon isotope composition (δ13C) and its relationship with water use efficiency at leaf level[J]. Journal of Beijing Forestry University, 2017, 39(11): 114-124. DOI: 10.13332/j.1000-1522.20170142
    [6]YANG Shuang, YUAN Xiao-na, WANG Zhong-xuan, ZHU Pu, JIA Gui-xia. Effects of HgCl2 stress on the upper leaf necroses and water use efficiency of oriental hybrid lilies[J]. Journal of Beijing Forestry University, 2016, 38(5): 114-119. DOI: 10.13332/j.1000-1522.20150306
    [7]YAO Zheng-mao, CHAI Yuan, FENG Bo, XU Cheng-yang. Differences in water use efficiency of Abies holophylla seedlings from seven provenances under water stress[J]. Journal of Beijing Forestry University, 2015, 37(6): 27-34. DOI: 10.13332/j.1000-1522.20140452
    [8]GUO Peng, XING Hai-tao, XIA Xin-li, YIN Wei-lun. Discrimination of water use efficiency(WUE) among three Populus deltoids clones.[J]. Journal of Beijing Forestry University, 2011, 33(2): 19-24.
    [9]ZHAO Feng-jun, SHEN Ying-bai, GAO Rong-fu, SU Xiao-hua, ZHANG Bing-yu. Relationship between foliar carbon isotope composition (δ13C) and long-term water use efficiency (WUEL[J]. Journal of Beijing Forestry University, 2006, 28(6): 40-45.
    [10]TIAN Jing-hui, HE Kang-ning, WANG Bai-tian, GUO Hong, ZHANG Wei-qiang, YIN Jing. Diurnal course of gas exchange and water use efficiency of Platycladus orientalis in a semi-arid region of the Loess Plateau[J]. Journal of Beijing Forestry University, 2005, 27(1): 42-46.
  • Cited by

    Periodical cited type(8)

    1. 张慧,燕怡帆,朱雅,陈玉婷,王菁华,崔志鹏,杨迪,任学敏. 林分密度对伏牛山南麓山茱萸人工林林下草本植物多样性和土壤性质的影响. 西南林业大学学报(自然科学). 2025(01): 96-105 .
    2. 赵金同,马俊. 刺槐扦插育苗技术与精细抚育要点. 现代园艺. 2024(08): 49-51 .
    3. 何欢,康必均,尹婧,李菲,彭栋,李桂静,查同刚. 不同营林措施对川东华蓥山杉木林土壤团聚体稳定性及细根分布的影响. 土壤通报. 2024(02): 351-359 .
    4. 史小鹏,苟贺然,何淑勤,刘柏廷,冉兰芳,杨琪琳,扎西拉姆,陈雨馨,骆紫藤. 成都市温江区两种绿地土壤抗蚀抗冲性及其影响因素. 水土保持通报. 2024(04): 117-125 .
    5. 刘忆南,申振宏,都都,张知然,林勇明. 蒋家沟泥石流堆积扇不同植被类型区土壤抗蚀性评价. 应用与环境生物学报. 2024(05): 886-893 .
    6. 王依瑞,王彦辉,段文标,李平平,于澎涛,甄理,李志鑫,尚会军. 黄土高原刺槐人工林郁闭度对林下植物多样性特征的影响. 应用生态学报. 2023(02): 305-314 .
    7. 赵云鹤,钟鹏,高晗,付玉. 土地利用类型对典型黑土团聚体稳定性和抗蚀性的影响. 东北林业大学学报. 2023(09): 112-119 .
    8. 胡亚伟,施政乐,刘畅,徐勤涛,张建军. 晋西黄土区刺槐林密度对林下植物多样性及土壤理化性质的影响. 生态学杂志. 2023(09): 2072-2080 .

    Other cited types(8)

Catalog

    Article views (1371) PDF downloads (119) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return