• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Liu Huimin, Han Hairong, Cheng Xiaoqin, Cai Mengke, Liu Xujun, Liu Li, Zhang Wenwen, Liu Mingbo. Effects of different density regulation intensities on soil quality in Larix principis-rupprechtii plantation[J]. Journal of Beijing Forestry University, 2021, 43(6): 50-59. DOI: 10.12171/j.1000-1522.20200322
Citation: Liu Huimin, Han Hairong, Cheng Xiaoqin, Cai Mengke, Liu Xujun, Liu Li, Zhang Wenwen, Liu Mingbo. Effects of different density regulation intensities on soil quality in Larix principis-rupprechtii plantation[J]. Journal of Beijing Forestry University, 2021, 43(6): 50-59. DOI: 10.12171/j.1000-1522.20200322

Effects of different density regulation intensities on soil quality in Larix principis-rupprechtii plantation

More Information
  • Received Date: November 02, 2020
  • Revised Date: February 22, 2021
  • Available Online: May 10, 2021
  • Published Date: June 29, 2021
  •   Objective  This paper aims to explore the variation law of soil quality of Larix principis-rupprechtii plantation under different density regulation intensities, which provides a theoretical basis for rational utilization of forest land resources and sustainable management of plantation.
      Method  In this study, we analyzed 18 soil indexes including soil density, moisture content, nutrient content and enzyme activity in L. principis-rupprechtii plantation, under four different density regulation intensities (control, 2 096 tree/ha, CK; low intensity treatment, 1 850 tree/ha, LT; moderate intensity treatment, 1 402 tree/ha, MT; high intensity treatment, 1 106 tree/ha, HT) in Taiyue Mountain, Shanxi Province of northern China. And the minimum data set (MDS) of soil quality evaluation was established by combining principal component analysis (PCA) and correlation analysis. Finally the soil quality of L. principis-rupprechtii plantation was synthesized by the weighted additive index.
      Result  Compared with CK, the soil moisture of LT, MT and HT increased. In terms of the effects of density regulation on soil nutrients, the contents of C, N and P in MT were higher. In addition, soil biological properties also showed significant response to different regulation intensities, among which, soil microbial biomass carbon and nitrogen contents in MT were significantly higher than those in CK; urease and polyphenol oxidase activities were the highest in MT, peroxidase activity was the highest in LT, and sucrase activity was the highest in CK, while cellulase activities showed a downward trend with the increase of density regulation intensity. The results of PCA and correlation analysis showed that the MDS for soil quality evaluation included organic matter, moisture content, microbial biomass nitrogen, polyphenol oxidase and peroxidase. The order of soil quality of different density regulation intensity plantation was as following: MT (0.598), HT (0.510), LT (0.432), CK (0.339).
      Conclusion  Density regulation can effectively improve the soil quality of L. principis-rupprechtii plantation, and the soil quality index of medium stand density is the highest. Therefore, we recommend moderate density regulation to L. principis-rupprechtii plantation to promote soil quality.
  • [1]
    任启文, 毕君, 李联地, 等. 冀北山地3种森林植被恢复类型对土壤质量的影响[J]. 生态环境学报, 2018, 27(10):1818−1824.

    Ren Q W, Bi J, Li L D, et al. Effects of three forest vegetation restoration types on soil quality in northern Hebei mountain area[J]. Ecology and Environment Sciences, 2018, 27(10): 1818−1824.
    [2]
    Gaurav M, Rossana M, Krishna G, et al. Soil quality assessment across different stands in tropical moist deciduous forests of Nagaland, India[J]. Journal of Forestry Research, 2018, 30: 1479−1485.
    [3]
    Doran J W, Parkin T B. Defining and assessing soil quality[M]// Doran J W, Coleman D C, Bezdicek D F, et al. Defining soil quality for a sustainable environment. Madison: American Soil Agronomy, 1994: 3−21.
    [4]
    Christersson L. Wood production potential in poplar plantations in Sweden[J]. Biomass & Bioenergy, 2010, 34(9): 1289−1299.
    [5]
    Winjum J K, Schroeder P E. Forest plantations of the world: their extent, ecological attributes, and carbon storage[J]. Agricultural and Forest Meteorology, 1997, 84: 153−167. doi: 10.1016/S0168-1923(96)02383-0
    [6]
    马祥庆. 人工林地力衰退研究综述[J]. 南京林业大学学报 (自然科学版), 1997, 21(2):77−82.

    Ma X Q. Review on the decline of plantation capacity[J]. Journal of Nanjing Forestry University (Natural Sciences), 1997, 21(2): 77−82.
    [7]
    周霆, 盛炜彤. 关于我国人工林可持续问题[J]. 世界林业研究, 2008, 21(3):49−53.

    Zhou T, Sheng W T. On the plantation sustainability in China[J]. World Forestry Research, 2008, 21(3): 49−53.
    [8]
    Bünemann E K, Bongiorno G, Bai Z, et al. Soil quality: a critical review[J]. Soil Biology & Biochemistry, 2018, 120: 105−125.
    [9]
    刘占锋, 傅伯杰, 刘国华, 等. 土壤质量与土壤质量指标及其评价[J]. 生态学报, 2006, 26(3):901−913. doi: 10.3321/j.issn:1000-0933.2006.03.036

    Liu Z F, Fu B J, Liu G H, et al. Soil quality: concept, indicators and its assessment[J]. Acta Ecologica Sinica, 2006, 26(3): 901−913. doi: 10.3321/j.issn:1000-0933.2006.03.036
    [10]
    Yu P J, Tang X G, Zhang A C, et al. Responses of soil specific enzyme activities to short-term land use conversions in a salt-affected region, northeastern China[J]. Science of The Total Environment, 2019, 687: 939−945. doi: 10.1016/j.scitotenv.2019.06.171
    [11]
    Niemeyer J C, Lolata G B, de Carvalho G M, et al. Microbial indicators of soil health as tools for ecological risk assessment of a metal contaminated site in Brazil[J]. Applied Soil Ecology, 2012, 59: 96−105.
    [12]
    骆东奇, 白洁, 谢德体. 论土壤肥力评价指标和方法[J]. 生态环境学报, 2002, 11(2):202−205. doi: 10.3969/j.issn.1674-5906.2002.02.020

    Luo D Q, Bai J, Xie D T. Research on evaluation norm and method of soil fertility[J]. Ecology and Environment Sciences, 2002, 11(2): 202−205. doi: 10.3969/j.issn.1674-5906.2002.02.020
    [13]
    Guo L L, Sun Z G, Zhu O Y, et al. A comparison of soil quality evaluation methods for fluvisol along the lower Yellow River[J]. Catena, 2017, 152: 135−143. doi: 10.1016/j.catena.2017.01.015
    [14]
    Willy D K, Muyanga M, Mbuvi J, et al. The effect of land use change on soil fertility parameters in densely populated areas of Kenya[J]. Geoderma, 2019, 343: 254−262. doi: 10.1016/j.geoderma.2019.02.033
    [15]
    吴玉红, 田霄鸿, 同延安, 等. 基于主成分分析的土壤肥力综合指数评价[J]. 生态学杂志, 2010, 29(1):173−180.

    Wu Y H, Tian X H, Tong Y A, et al. Assessment of integrated soil fertility index based on principal components analysis[J]. Chinese Journal of Ecology, 2010, 29(1): 173−180.
    [16]
    杨奇勇, 杨劲松, 姚荣江, 等. 基于GIS和改进灰色关联模型的土壤肥力评价[J]. 农业工程学报, 2010, 26(4):100−105. doi: 10.3969/j.issn.1002-6819.2010.04.016

    Yang Q Y, Yang J S, Yao R J, et al. Comprehensive evaluation of soil fertility by GIS and improved grey relation model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(4): 100−105. doi: 10.3969/j.issn.1002-6819.2010.04.016
    [17]
    Liu Z J, Zhou W, Shen J B, et al. Soil quality assessment of albic soils with different productivities for eastern China[J]. Soil & Tillage Research, 2014, 140: 74−81.
    [18]
    Nabiollahi K, Golmohamadi F, Taghizadeh-Mehrjardi R, et al. Assessing the effects of slope gradient and land use change on soil quality degradation through digital mapping of soil quality indices and soil loss rate[J]. Geoderma, 2018, 318: 16−28. doi: 10.1016/j.geoderma.2017.12.024
    [19]
    Andrés-Abellán M, Wic-Baena C, López-Serrano F R, et al. A soil-quality index for soil from Mediterranean forests[J]. European Journal of Soil Science, 2019, 70: 1001−1011.
    [20]
    罗红, 普布顿珠, 朱雪林, 等. 西藏人工造林作业区土壤肥力评价[J]. 应用生态学报, 2017, 28(5):1507−1514.

    Luo H, Pubudunzhu, Zhu X L, et al. Soil fertility evaluation of artificial afforestation areas in Tibet, China[J]. Chinese Journal of Applied Ecology, 2017, 28(5): 1507−1514.
    [21]
    邵国栋, 艾娟娟, 孙启武, 等. 昆嵛山不同林分类型土壤质量状况及评价[J]. 林业科学研究, 2018, 31(6):178−187.

    Shao G D, Ai J J, Sun Q W, et al. Soil quality status and assessment of different forest types in Kunyushan Mountains[J]. Forest Research, 2018, 31(6): 178−187.
    [22]
    Zhou Z, Wang C, Jin Y, et al. Impacts of thinning on soil carbon and nutrients and related extracellular enzymes in a larch plantation[J]. Forest Ecology and Management, 2019, 450: 1−9.
    [23]
    Zhao B, Cao J, Geng Y, et al. Inconsistent responses of soil respiration and its components to thinning intensity in a Pinus tabuliformis plantation in northern China[J]. Agricultural and Forest Meteorology, 2019, 265: 370−380. doi: 10.1016/j.agrformet.2018.11.034
    [24]
    Wang Z, Yang H, Wang D, et al. Response of height growth of regenerating trees in a Pinus tabulaeformis Carr. plantation to different thinning intensities[J]. Forest Ecology and Management, 2019, 444: 280−289. doi: 10.1016/j.foreco.2019.04.042
    [25]
    朱江, 韩海荣, 康峰峰, 等. 山西太岳山华北落叶松生物量分配格局与异速生长模型[J]. 生态学杂志, 2016, 35(11):2918−2925.

    Zhu J, Han H R, Kang F F, et al. Biomass allocation patterns and allometric models of Larix principis-rupprechtii in Mt. Taiyue, Shanxi[J]. Chinese Journal of Ecology, 2016, 35(11): 2918−2925.
    [26]
    国家林业局. 森林土壤分析方法: LY/T 1210 ~ 1275—1999[S]. 北京: 中国标准出版社, 1999.

    State Forestry Administration. Forest soil analysis method: LY/T 1210 ~ 1275−1999[S]. Beijing: Standards Press of China, 1999.
    [27]
    吴然, 康峰峰, 韩海荣, 等. 山西太岳山不同林龄华北落叶松林土壤微生物特性[J]. 生态学杂志, 2016, 35(12):3183−3190.

    Wu R, Kang F F, Han H R, et al. Soil microbial properties in Larix principis-rupprechtii plantations of different ages in Mt. Taiyue, Shanxi, China[J]. Chinese Journal of Ecology, 2016, 35(12): 3183−3190.
    [28]
    关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986.

    Guan S Y. Soil enzyme and its research method[M]. Beijing: China Agriculture Press, 1986.
    [29]
    Andrews S S, Karlen D L, Cambardella C A. The soil management assessment framework: a quantitative soil quality evaluation method[J]. Soil Science Society of America Journal, 2004, 68: 1945−1962. doi: 10.2136/sssaj2004.1945
    [30]
    邓绍欢, 曾令涛, 关强, 等. 基于最小数据集的南方地区冷浸田土壤质量评价[J]. 土壤学报, 2016, 53(5):1326−1333.

    Deng S H, Zeng L T, Guan Q, et al. Minimum dataset-based soil quality assessment of waterlogged paddy field in South China[J]. Acta Pedologica Sinica, 2016, 53(5): 1326−1333.
    [31]
    杨振奇, 秦富仓, 于晓杰, 等. 基于最小数据集的砒砂岩区人工林地土壤质量评价指标体系构建[J]. 土壤通报, 2019, 50(5):1072−1078.

    Yang Z Q, Qin F C, Yu X J , et al. Construction of artificial forest soil quality evaluation indices in the feldspathic sandstone region based on minimum data set[J]. Chinese Journal of Soil Science, 2019, 50(5): 1072−1078.
    [32]
    康冰, 刘世荣, 蔡道雄, 等. 马尾松人工林林分密度对林下植被及土壤性质的影响[J]. 应用生态学报, 2009, 20(10):2323−2331.

    Kang B, Liu S R, Cai D X, et al. Effects of Pinus massoniana plantation stand density on understory vegetation and soil properties[J]. Chinese Journal of Applied Ecology, 2009, 20(10): 2323−2331.
    [33]
    毛志宏, 朱教君, 刘足根, 等. 间伐对落叶松人工林内草本植物多样性及其组成的影响[J]. 生态学杂志, 2006, 25(10):1201−1207. doi: 10.3321/j.issn:1000-4890.2006.10.010

    Mao Z H, Zhu J J, Liu Z G, et al. Effects of thinning on species diversity and composition of understory herbs in a larch plantation[J]. Chinese Journal of Ecology, 2006, 25(10): 1201−1207. doi: 10.3321/j.issn:1000-4890.2006.10.010
    [34]
    马芳芳, 贾翔, 赵卫, 等. 间伐强度对辽东落叶松人工林土壤理化性质的影响[J]. 生态学杂志, 2017, 36(4):971−977.

    Ma F F, Jia X, Zhao W, et al. Effects of thinning intensity on soil physicochemical properties of Larix kaempferi plantation in eastern Liaoning Province[J]. Chinese Journal of Ecology, 2017, 36(4): 971−977.
    [35]
    向元彬, 黄从德, 胡庭兴, 等. 不同密度巨桉人工林土壤有机碳及微生物量碳氮特征[J]. 西北植物学报, 2014, 34(7):1476−1481. doi: 10.7606/j.issn.1000-4025.2014.07.1476

    Xiang Y B, Huang C D, Hu T X, et al. Characteristics of soil organic carbon and microbial biomass carbon and nitrogen in Eucalyptus grand plantations with different densities[J]. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(7): 1476−1481. doi: 10.7606/j.issn.1000-4025.2014.07.1476
    [36]
    Baldrian P, Šnajdr J, Merhautová V, et al. , Responses of the extracellular enzyme activities in hardwood forest to soil temperature and seasonality and the potential effects of climate change[J]. Soil Biology & Biochemistry, 2013, 56: 60−68.
    [37]
    赵汝东, 樊剑波, 何园球, 等. 林分密度对马尾松林下土壤养分及酶活性的影响[J]. 土壤, 2012, 44(2):297−301. doi: 10.3969/j.issn.0253-9829.2012.02.019

    Zhao R D, Fan J B, He Y Q, et al. Effects of stand density on soil nutrients and enzyme activities in Pinus massoniana plantation[J]. Soils, 2012, 44(2): 297−301. doi: 10.3969/j.issn.0253-9829.2012.02.019
    [38]
    Qiu X C, Peng D L, Wang H B, et al. Minimum data set for evaluation of stand density effects on soil quality in Larix principis-rupprechtii plantations in North China[J]. Ecological Indicators, 2019, 103: 236−247. doi: 10.1016/j.ecolind.2019.04.010
    [39]
    赵娜, 孟平, 张劲松, 等. 华北低丘山地不同退耕年限刺槐人工林土壤质量评价[J]. 应用生态学报, 2014, 25(2):351−358.

    Zhao N, Meng P, Zhang J S, et al. Soil quality assessment of Robinia psedudoacia plantations with various ages in the Grain-for-Green Program in hilly area of North China[J]. Chinese Journal of Applied Ecology, 2014, 25(2): 351−358.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (970) PDF downloads (99) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return