Citation: | Liu Huimin, Han Hairong, Cheng Xiaoqin, Cai Mengke, Liu Xujun, Liu Li, Zhang Wenwen, Liu Mingbo. Effects of different density regulation intensities on soil quality in Larix principis-rupprechtii plantation[J]. Journal of Beijing Forestry University, 2021, 43(6): 50-59. DOI: 10.12171/j.1000-1522.20200322 |
[1] |
任启文, 毕君, 李联地, 等. 冀北山地3种森林植被恢复类型对土壤质量的影响[J]. 生态环境学报, 2018, 27(10):1818−1824.
Ren Q W, Bi J, Li L D, et al. Effects of three forest vegetation restoration types on soil quality in northern Hebei mountain area[J]. Ecology and Environment Sciences, 2018, 27(10): 1818−1824.
|
[2] |
Gaurav M, Rossana M, Krishna G, et al. Soil quality assessment across different stands in tropical moist deciduous forests of Nagaland, India[J]. Journal of Forestry Research, 2018, 30: 1479−1485.
|
[3] |
Doran J W, Parkin T B. Defining and assessing soil quality[M]// Doran J W, Coleman D C, Bezdicek D F, et al. Defining soil quality for a sustainable environment. Madison: American Soil Agronomy, 1994: 3−21.
|
[4] |
Christersson L. Wood production potential in poplar plantations in Sweden[J]. Biomass & Bioenergy, 2010, 34(9): 1289−1299.
|
[5] |
Winjum J K, Schroeder P E. Forest plantations of the world: their extent, ecological attributes, and carbon storage[J]. Agricultural and Forest Meteorology, 1997, 84: 153−167. doi: 10.1016/S0168-1923(96)02383-0
|
[6] |
马祥庆. 人工林地力衰退研究综述[J]. 南京林业大学学报 (自然科学版), 1997, 21(2):77−82.
Ma X Q. Review on the decline of plantation capacity[J]. Journal of Nanjing Forestry University (Natural Sciences), 1997, 21(2): 77−82.
|
[7] |
周霆, 盛炜彤. 关于我国人工林可持续问题[J]. 世界林业研究, 2008, 21(3):49−53.
Zhou T, Sheng W T. On the plantation sustainability in China[J]. World Forestry Research, 2008, 21(3): 49−53.
|
[8] |
Bünemann E K, Bongiorno G, Bai Z, et al. Soil quality: a critical review[J]. Soil Biology & Biochemistry, 2018, 120: 105−125.
|
[9] |
刘占锋, 傅伯杰, 刘国华, 等. 土壤质量与土壤质量指标及其评价[J]. 生态学报, 2006, 26(3):901−913. doi: 10.3321/j.issn:1000-0933.2006.03.036
Liu Z F, Fu B J, Liu G H, et al. Soil quality: concept, indicators and its assessment[J]. Acta Ecologica Sinica, 2006, 26(3): 901−913. doi: 10.3321/j.issn:1000-0933.2006.03.036
|
[10] |
Yu P J, Tang X G, Zhang A C, et al. Responses of soil specific enzyme activities to short-term land use conversions in a salt-affected region, northeastern China[J]. Science of The Total Environment, 2019, 687: 939−945. doi: 10.1016/j.scitotenv.2019.06.171
|
[11] |
Niemeyer J C, Lolata G B, de Carvalho G M, et al. Microbial indicators of soil health as tools for ecological risk assessment of a metal contaminated site in Brazil[J]. Applied Soil Ecology, 2012, 59: 96−105.
|
[12] |
骆东奇, 白洁, 谢德体. 论土壤肥力评价指标和方法[J]. 生态环境学报, 2002, 11(2):202−205. doi: 10.3969/j.issn.1674-5906.2002.02.020
Luo D Q, Bai J, Xie D T. Research on evaluation norm and method of soil fertility[J]. Ecology and Environment Sciences, 2002, 11(2): 202−205. doi: 10.3969/j.issn.1674-5906.2002.02.020
|
[13] |
Guo L L, Sun Z G, Zhu O Y, et al. A comparison of soil quality evaluation methods for fluvisol along the lower Yellow River[J]. Catena, 2017, 152: 135−143. doi: 10.1016/j.catena.2017.01.015
|
[14] |
Willy D K, Muyanga M, Mbuvi J, et al. The effect of land use change on soil fertility parameters in densely populated areas of Kenya[J]. Geoderma, 2019, 343: 254−262. doi: 10.1016/j.geoderma.2019.02.033
|
[15] |
吴玉红, 田霄鸿, 同延安, 等. 基于主成分分析的土壤肥力综合指数评价[J]. 生态学杂志, 2010, 29(1):173−180.
Wu Y H, Tian X H, Tong Y A, et al. Assessment of integrated soil fertility index based on principal components analysis[J]. Chinese Journal of Ecology, 2010, 29(1): 173−180.
|
[16] |
杨奇勇, 杨劲松, 姚荣江, 等. 基于GIS和改进灰色关联模型的土壤肥力评价[J]. 农业工程学报, 2010, 26(4):100−105. doi: 10.3969/j.issn.1002-6819.2010.04.016
Yang Q Y, Yang J S, Yao R J, et al. Comprehensive evaluation of soil fertility by GIS and improved grey relation model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(4): 100−105. doi: 10.3969/j.issn.1002-6819.2010.04.016
|
[17] |
Liu Z J, Zhou W, Shen J B, et al. Soil quality assessment of albic soils with different productivities for eastern China[J]. Soil & Tillage Research, 2014, 140: 74−81.
|
[18] |
Nabiollahi K, Golmohamadi F, Taghizadeh-Mehrjardi R, et al. Assessing the effects of slope gradient and land use change on soil quality degradation through digital mapping of soil quality indices and soil loss rate[J]. Geoderma, 2018, 318: 16−28. doi: 10.1016/j.geoderma.2017.12.024
|
[19] |
Andrés-Abellán M, Wic-Baena C, López-Serrano F R, et al. A soil-quality index for soil from Mediterranean forests[J]. European Journal of Soil Science, 2019, 70: 1001−1011.
|
[20] |
罗红, 普布顿珠, 朱雪林, 等. 西藏人工造林作业区土壤肥力评价[J]. 应用生态学报, 2017, 28(5):1507−1514.
Luo H, Pubudunzhu, Zhu X L, et al. Soil fertility evaluation of artificial afforestation areas in Tibet, China[J]. Chinese Journal of Applied Ecology, 2017, 28(5): 1507−1514.
|
[21] |
邵国栋, 艾娟娟, 孙启武, 等. 昆嵛山不同林分类型土壤质量状况及评价[J]. 林业科学研究, 2018, 31(6):178−187.
Shao G D, Ai J J, Sun Q W, et al. Soil quality status and assessment of different forest types in Kunyushan Mountains[J]. Forest Research, 2018, 31(6): 178−187.
|
[22] |
Zhou Z, Wang C, Jin Y, et al. Impacts of thinning on soil carbon and nutrients and related extracellular enzymes in a larch plantation[J]. Forest Ecology and Management, 2019, 450: 1−9.
|
[23] |
Zhao B, Cao J, Geng Y, et al. Inconsistent responses of soil respiration and its components to thinning intensity in a Pinus tabuliformis plantation in northern China[J]. Agricultural and Forest Meteorology, 2019, 265: 370−380. doi: 10.1016/j.agrformet.2018.11.034
|
[24] |
Wang Z, Yang H, Wang D, et al. Response of height growth of regenerating trees in a Pinus tabulaeformis Carr. plantation to different thinning intensities[J]. Forest Ecology and Management, 2019, 444: 280−289. doi: 10.1016/j.foreco.2019.04.042
|
[25] |
朱江, 韩海荣, 康峰峰, 等. 山西太岳山华北落叶松生物量分配格局与异速生长模型[J]. 生态学杂志, 2016, 35(11):2918−2925.
Zhu J, Han H R, Kang F F, et al. Biomass allocation patterns and allometric models of Larix principis-rupprechtii in Mt. Taiyue, Shanxi[J]. Chinese Journal of Ecology, 2016, 35(11): 2918−2925.
|
[26] |
国家林业局. 森林土壤分析方法: LY/T 1210 ~ 1275—1999[S]. 北京: 中国标准出版社, 1999.
State Forestry Administration. Forest soil analysis method: LY/T 1210 ~ 1275−1999[S]. Beijing: Standards Press of China, 1999.
|
[27] |
吴然, 康峰峰, 韩海荣, 等. 山西太岳山不同林龄华北落叶松林土壤微生物特性[J]. 生态学杂志, 2016, 35(12):3183−3190.
Wu R, Kang F F, Han H R, et al. Soil microbial properties in Larix principis-rupprechtii plantations of different ages in Mt. Taiyue, Shanxi, China[J]. Chinese Journal of Ecology, 2016, 35(12): 3183−3190.
|
[28] |
关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986.
Guan S Y. Soil enzyme and its research method[M]. Beijing: China Agriculture Press, 1986.
|
[29] |
Andrews S S, Karlen D L, Cambardella C A. The soil management assessment framework: a quantitative soil quality evaluation method[J]. Soil Science Society of America Journal, 2004, 68: 1945−1962. doi: 10.2136/sssaj2004.1945
|
[30] |
邓绍欢, 曾令涛, 关强, 等. 基于最小数据集的南方地区冷浸田土壤质量评价[J]. 土壤学报, 2016, 53(5):1326−1333.
Deng S H, Zeng L T, Guan Q, et al. Minimum dataset-based soil quality assessment of waterlogged paddy field in South China[J]. Acta Pedologica Sinica, 2016, 53(5): 1326−1333.
|
[31] |
杨振奇, 秦富仓, 于晓杰, 等. 基于最小数据集的砒砂岩区人工林地土壤质量评价指标体系构建[J]. 土壤通报, 2019, 50(5):1072−1078.
Yang Z Q, Qin F C, Yu X J , et al. Construction of artificial forest soil quality evaluation indices in the feldspathic sandstone region based on minimum data set[J]. Chinese Journal of Soil Science, 2019, 50(5): 1072−1078.
|
[32] |
康冰, 刘世荣, 蔡道雄, 等. 马尾松人工林林分密度对林下植被及土壤性质的影响[J]. 应用生态学报, 2009, 20(10):2323−2331.
Kang B, Liu S R, Cai D X, et al. Effects of Pinus massoniana plantation stand density on understory vegetation and soil properties[J]. Chinese Journal of Applied Ecology, 2009, 20(10): 2323−2331.
|
[33] |
毛志宏, 朱教君, 刘足根, 等. 间伐对落叶松人工林内草本植物多样性及其组成的影响[J]. 生态学杂志, 2006, 25(10):1201−1207. doi: 10.3321/j.issn:1000-4890.2006.10.010
Mao Z H, Zhu J J, Liu Z G, et al. Effects of thinning on species diversity and composition of understory herbs in a larch plantation[J]. Chinese Journal of Ecology, 2006, 25(10): 1201−1207. doi: 10.3321/j.issn:1000-4890.2006.10.010
|
[34] |
马芳芳, 贾翔, 赵卫, 等. 间伐强度对辽东落叶松人工林土壤理化性质的影响[J]. 生态学杂志, 2017, 36(4):971−977.
Ma F F, Jia X, Zhao W, et al. Effects of thinning intensity on soil physicochemical properties of Larix kaempferi plantation in eastern Liaoning Province[J]. Chinese Journal of Ecology, 2017, 36(4): 971−977.
|
[35] |
向元彬, 黄从德, 胡庭兴, 等. 不同密度巨桉人工林土壤有机碳及微生物量碳氮特征[J]. 西北植物学报, 2014, 34(7):1476−1481. doi: 10.7606/j.issn.1000-4025.2014.07.1476
Xiang Y B, Huang C D, Hu T X, et al. Characteristics of soil organic carbon and microbial biomass carbon and nitrogen in Eucalyptus grand plantations with different densities[J]. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(7): 1476−1481. doi: 10.7606/j.issn.1000-4025.2014.07.1476
|
[36] |
Baldrian P, Šnajdr J, Merhautová V, et al. , Responses of the extracellular enzyme activities in hardwood forest to soil temperature and seasonality and the potential effects of climate change[J]. Soil Biology & Biochemistry, 2013, 56: 60−68.
|
[37] |
赵汝东, 樊剑波, 何园球, 等. 林分密度对马尾松林下土壤养分及酶活性的影响[J]. 土壤, 2012, 44(2):297−301. doi: 10.3969/j.issn.0253-9829.2012.02.019
Zhao R D, Fan J B, He Y Q, et al. Effects of stand density on soil nutrients and enzyme activities in Pinus massoniana plantation[J]. Soils, 2012, 44(2): 297−301. doi: 10.3969/j.issn.0253-9829.2012.02.019
|
[38] |
Qiu X C, Peng D L, Wang H B, et al. Minimum data set for evaluation of stand density effects on soil quality in Larix principis-rupprechtii plantations in North China[J]. Ecological Indicators, 2019, 103: 236−247. doi: 10.1016/j.ecolind.2019.04.010
|
[39] |
赵娜, 孟平, 张劲松, 等. 华北低丘山地不同退耕年限刺槐人工林土壤质量评价[J]. 应用生态学报, 2014, 25(2):351−358.
Zhao N, Meng P, Zhang J S, et al. Soil quality assessment of Robinia psedudoacia plantations with various ages in the Grain-for-Green Program in hilly area of North China[J]. Chinese Journal of Applied Ecology, 2014, 25(2): 351−358.
|