• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Guo Qiang, Guan Fengying, Hui Chaomao, Liu Weiyi, Zou Xueming. Effects of density and fertilization on growth and biomass characteristics of newly grown Dendrocalamus sinicus[J]. Journal of Beijing Forestry University, 2022, 44(4): 95-106. DOI: 10.12171/j.1000-1522.20200325
Citation: Guo Qiang, Guan Fengying, Hui Chaomao, Liu Weiyi, Zou Xueming. Effects of density and fertilization on growth and biomass characteristics of newly grown Dendrocalamus sinicus[J]. Journal of Beijing Forestry University, 2022, 44(4): 95-106. DOI: 10.12171/j.1000-1522.20200325

Effects of density and fertilization on growth and biomass characteristics of newly grown Dendrocalamus sinicus

More Information
  • Received Date: October 25, 2020
  • Revised Date: November 24, 2020
  • Accepted Date: March 07, 2022
  • Available Online: March 08, 2022
  • Published Date: April 24, 2022
  •   Objective  The effects of cutting-remaining bamboo density and organic fertilizer amount on newly grown bamboo growth, biomass accumulation and distribution characteristics of Dendrocalamus sinicus were explored, providing a basis for the cultivation and management of D. sinicus.
      Method  A two-factor and four-level orthogonal experiment was designed (cutting-remaining bamboo density: 7, 15, 25, 35 tree/cluster. organic fertilizer amount: 0, 40, 80, 120 kg/cluster) and 23 indexes of young D. sinicus growth and biomass characteristics were measurand for evaluating the density and ferilization effects of 16 types of experimental treatment combinations by variance analysis, principal component analysis and weighting-fuzzy mathematics in southwestern Yunnan Province of southwestern China.
      Result  (1) On average, young bamboo amount: 1.0−7.8 tree/cluster, DBH: 17.2−19.9 cm, total length: 29.0−29.9 m, clear length: 14.8−16.3 m; biomass of each component of individual newly grown bamboo: total biomass each tree: 69.63−98.13 kg, aboveground biomass: 58.22−80.42 kg, underground biomass: 11.41−17.71 kg, stalk biomass: 48.94−60.37 kg, branch biomass: 3.71−12.04 kg, leaf biomass: 1.55−9.10 kg; biomass of each component of newly grown individual bamboo cluster: total biomass: 69.63−678.20 kg, aboveground biomass: 58.22−543.62 kg, underground biomass: 11.41−134.58 kg, stalk biomass: 48.94−467.89 kg, branch biomass: 5.69−48.04 kg, leaf biomass: 3.60−28.69 kg; proportion of biomass allocation of components of newly grown bamboo: aboveground biomass:79.47%−83.62%, underground biomass: 16.38%−20.53%, stalk biomass: 60.41%−74.87%, branch biomass: 5.12%−12.27%, leaf biomass: 2.11%−9.26%, root-shoot ratio: 0.20−0.26, leafing intensity: 0.40−0.75. (2) The effects of cutting-remaining bamboo density and organic fertilizer amount on bamboo growth and biomass characteristics of D. sinicus were significant. At the same cutting-remaining bamboo density and as the organic fertilizer amount increased, the indexes of young D. sinicus growth and biomass were increased, the biomass distribution proportions of underground, branch and leaf were increased and the biomass distribution proportions of aboveground and stalk were decreased. At the same organic fertilizer amount and as the cutting-remaining bamboo density increased, the indexes of young D. sinicus growth and biomass were increased firstly and then decreased (peak turning point: 25, 15 tree/cluster), the biomass distribution proportions of underground and stalk were increased, while the biomass distribution proportions of aboveground, branch and leaf were decreased. (3) The growth and biomass characteristics of D. sinicus biomass under different experiment treatments were evaluated. Stalk-comprehensive score (the first three): T4(7 + 120) (0.457), T8(15 + 120) (0.390), T3(7 + 80) (0.389). Cluster-comprehensive score (the first three): T12(25 + 120) (0.456), T8(15 + 120) (0.447), T4(7 + 120) (0.424).
      Conclusion  The cutting-remaining bamboo density is 25 tree/cluster and the organic fertilizer amount is 120 kg/cluster, which are helpful to facilitate bamboo growth and raise productivity of D. sinicus.
  • [1]
    卢立华, 农友, 李华, 等. 保留密度对杉木人工林生长和生物量及经济效益的影响[J]. 应用生态学报, 2020, 31(3): 717−724.

    Lu L H, Nong Y, Li H, et al. Effects of retention density on growth, biomass, and economic benefit of Cunninghamia lanceolata plantation[J]. Chinese Journal of Applied Ecology, 2020, 31(3): 717−724.
    [2]
    弓文艳. 辽东大伙房水库防护林林分结构及其水土保持功能研究[D]. 北京: 北京林业大学, 2019.

    Gong W Y. Study on forest structure and soil & water conservation function of shelterbelt around Liaodong Dahuofang Reservoir[D]. Beijing: Beijing Forestry University, 2019.
    [3]
    王凯, 赵成姣, 张日升, 等. 不同密度樟子松人工林土壤碳氮磷化学计量特征[J]. 生态学杂志, 2020, 39(3): 741−748.

    Wang K, Zhao C J, Zhang R S, et al. Soil carbon, nitrogen and phosphorus stoichiometry of Pinus sylvestris var. mongolica plantations with different densities[J]. Chinese Journal of Ecology, 2020, 39(3): 741−748.
    [4]
    杨桂娟, 胡海帆, 孙洪刚, 等. 林分年龄、造林密度和林分自然稀疏对杉木人工林个体大小分化和生产力关系的影响[J]. 林业科学, 2019, 55(11): 126−136. doi: 10.11707/j.1001-7488.20191114

    Yang G J, Hu H F, Sun H G, et al. The influences of stand age, planting density and self-thinning on relationship between size inequality and periodic annual increment in Chinese fir (Cunninghamia lanceolata) plantations[J]. Scientia Silvae Sinicae, 2019, 55(11): 126−136. doi: 10.11707/j.1001-7488.20191114
    [5]
    王蒙. 抚育间伐对长白落叶松人工林生长的影响及其动态模拟[D]. 哈尔滨: 东北林业大学, 2017.

    Wang M. Effects of thinning on the growth of planted Larix olgensis and dynamic simulation[D]. Harbin: Northeast Forestry University, 2017.
    [6]
    范少辉, 刘广路, 苏文会, 等. 竹林培育研究进展[J]. 林业科学研究, 2011, 31(1): 137−144.

    Fan S H, Liu G L, Su W H, et al. Advances in research of bamboo forest cultivation[J]. Forest Research, 2011, 31(1): 137−144.
    [7]
    吴明, 吴柏林, 曹永慧, 等. 不同施肥处理对笋用红竹林土壤特性的影响[J]. 林业科学研究, 2006, 19(3): 353−357. doi: 10.3321/j.issn:1001-1498.2006.03.017

    Wu M, Wu B L, Cao Y H, et al. Influence of fertilization treatment on soil characteristics in bamboo plantation[J]. Forest Research, 2006, 19(3): 353−357. doi: 10.3321/j.issn:1001-1498.2006.03.017
    [8]
    马宁宁, 李天来, 武春成, 等. 长期施肥对设施菜田土壤酶活性及土壤理化性状的影响[J]. 应用生态学报, 2010, 21(7): 1766−1771.

    Ma N N, Li T L, Wu C C, et al. Effects of long-term fertilization on soil enzyme activities and soil physicochemical properties of facility vegetable field[J]. Chinese Journal of Applied Ecology, 2010, 21(7): 1766−1771.
    [9]
    黄紧生, 施小弟, 张志坚, 等. 施肥与林分密度对四方竹出笋量的影响试验[J]. 世界竹藤通讯, 2018, 16(6): 30−32, 36.

    Huang J S, Shi X D, Zhang Z J, et al. Effects of fertilization and stand density on shoot yield of Chimonobambusa quadrangularis[J]. World Bamboo and Rattan, 2018, 16(6): 30−32, 36.
    [10]
    苏宇, 刘鸿, 李贤伟, 等. 施肥与覆盖处理对雷竹林土壤养分化学计量特征及肥料贡献率的影响[J]. 四川农业大学学报, 2018, 36(6): 751−757, 784.

    Su Y, Liu H, Li X W, et al. Responses of soil stoichiometry characteristic and fertilizer contribution rate to intensive management in a Phyllostachys praecox forest[J]. Journal of Sichuan Agricultural University, 2018, 36(6): 751−757, 784.
    [11]
    郭宝华, 范少辉, 刘广路, 等. 不同施肥模式对硬头黄竹生长特征的影响[J]. 中南林业科技大学学报, 2013, 33(7): 45−49.

    Guo B H, Fan S H, Liu G L, et al. Effects of different fertilization modes on growth characteristics of Bambusa rigida[J]. Journal of Central South University of Forestry & Technology, 2013, 33(7): 45−49.
    [12]
    钟意. 袋控缓释肥氮素释放特性及其在雷竹林的应用效果研究[D]. 杭州: 浙江农林大学, 2018.

    Zhong Y. Nitrogen release characteristics of bag controlled release fertilizer and its effect on Phyllostachys violascens growth[D]. Hangzhou: Zhejiang Agriculture & Forestry University, 2018.
    [13]
    李翀, 周国模, 施拥军, 等. 毛竹林老竹水平和经营措施对新竹发育质量的影响[J]. 生态学报, 2016, 36(8): 2243−2254.

    Li C, Zhou G M, Shi Y J, et al. Effects of old bamboo forests and relevant management measures on growth of new bamboo forests[J]. Acta Ecologica Sinica, 2016, 36(8): 2243−2254.
    [14]
    杜满义, 刘广路, 范少辉, 等. 施肥对闽西毛竹生物量及碳储量分布格局的影响[J]. 热带作物学报, 2015, 36(5): 872−877. doi: 10.3969/j.issn.1000-2561.2015.05.008

    Du M Y, Liu G L, Fan S H, et al. Effects of fertilization on the distribution patterns of biomass and carbon storage in moso bamboo forest, western Fujian Province, China[J]. Chinese Journal of Tropical Crops, 2015, 36(5): 872−877. doi: 10.3969/j.issn.1000-2561.2015.05.008
    [15]
    封焕英, 范少辉, 苏文会, 等. 竹林专用控释肥对毛竹地上生物量和氮利用率的影响[J]. 生态学杂志, 2014, 33(9): 2357−2362.

    Feng H Y, Fan S H, Su W H, et al. Effects of controlled urea fertilizer specialized for bamboo on aboveground biomass, nitrogen use efficiency of Moso bamboo[J]. Chinese Journal of Ecology, 2014, 33(9): 2357−2362.
    [16]
    范少辉, 赵建诚, 苏文会, 等. 不同密度毛竹林土壤质量综合评价[J]. 林业科学, 2015, 51(10): 1−9.

    Fan S H, Zhao J C, Su W H, et al. Comprehensive evaluation of soil quality in Phyllostachys edulis stands of different stocking stocking densities[J]. Scientia Silvae Sinicae, 2015, 51(10): 1−9.
    [17]
    柴彦君, 黄利民, 董越勇, 等. 沼液施用量对毛竹林地土壤理化性质及碳储量的影响[J]. 农业工程学报, 2019, 35(8): 214−220. doi: 10.11975/j.issn.1002-6819.2019.08.025

    Chai Y J, Huang L M, Dong Y Y, et al. Effects of biogas slurry application rates on soil physical and chemical properties and carbon storage of bamboo forest[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(8): 214−220. doi: 10.11975/j.issn.1002-6819.2019.08.025
    [18]
    陈本学, 刘广路, 蔡春菊, 等. 不同施肥方式对毛竹林碳储量及土壤理化性质的影响[J]. 四川农业大学学报, 2018, 36(3): 323−328.

    Chen B X, Liu G L, Cai C J, et al. Effects of fertilization modes on carbon reserves and soil physi-chemical properties in a Phyllostachys edulis forest[J]. Journal of Sichuan Agricultural University, 2018, 36(3): 323−328.
    [19]
    Yongfu L, Jiaojiao Z, Scott X, et al. Long-term intensive management effects on soil organic carbon pools and chemical composition in Moso bamboo (Phyllostachys pubescens) forests in subtropical China[J]. Forest Ecology and Management, 2013, 303: 121−130. doi: 10.1016/j.foreco.2013.04.021
    [20]
    胡昱彦, 庄舜尧, 郭益昌, 等. 不同施肥模式对雷竹林氮磷流失的影响[J]. 水土保持学报, 2019, 33(3): 51−57.

    Hu Y Y, Zhuang S Y, Guo Y C, et al. Effect of different fertilization patterns on nitrogen and phosphorus loss in a bamboo forest[J]. Journal of Soil and Water Conservation, 2019, 33(3): 51−57.
    [21]
    辉朝茂, 张国学, 李在留, 等. 珍稀竹种巨龙竹种群特性及其保护研究[J]. 竹子研究汇刊, 2004, 23(4): 4−9.

    Hui C M, Zhang G X, Li Z L, et al. A study on the population characteristics of the valuable and rare bamboo species of Dendrocalamus sinicus and its conservation in Yunnan, China[J]. Journal of Bamboo Research, 2004, 23(4): 4−9.
    [22]
    谷志佳, 杨汉奇, 孙茂盛, 等. 巨龙竹资源分布特点及其开花结实现象[J]. 林业科学研究, 2012, 25(1): 1−5. doi: 10.3969/j.issn.1001-1498.2012.01.001

    Gu Z J, Yang H Q, Sun M S, et al. Distribution characteristics, flowering and seeding of Dendrocalamus sinicus in Yunnan, China[J]. Forest Research, 2012, 25(1): 1−5. doi: 10.3969/j.issn.1001-1498.2012.01.001
    [23]
    辉朝茂. 珍稀竹种巨龙竹生态生物学特性及其开发利用基础性研究[M]. 昆明: 云南科技出版社, 2006.

    Hui C M. Study on Valuable and rare bamboo species of Dendrocalamus sinicus[M]. Kunming: Yunnan Science and Technology Press, 2006.
    [24]
    杜凡, 赵晓惠, 杨宇明, 等. 巨龙竹的变异类型及其引种区划的研究[J]. 竹子研究汇刊, 2001, 20(1): 19−26.

    Du F, Zhao X H, Yang Y M, et al. Variet types of Dendrocalamus sinicus and its introduction divisons[J]. Journal of Bamboo Research, 2001, 20(1): 19−26.
    [25]
    刘世男, 辉朝茂. 珍稀竹种巨龙竹的研究现状和展望[J]. 世界竹藤通讯, 2011, 9(5): 26−30. doi: 10.3969/j.issn.1672-0431.2011.05.012

    Liu S N, Hui C M. Research status and outlook of rare bamboo species of Dendrocalamus sinicus[J]. World Bamboo and Rattan, 2011, 9(5): 26−30. doi: 10.3969/j.issn.1672-0431.2011.05.012
    [26]
    魏安然, 张雨秋, 谭凌照, 等. 抚育采伐对针阔混交林林分结构及物种多样性的影响[J]. 北京林业大学学报, 2019, 41(5): 148−158.

    Wei A R, Zhang Y Q, Tan L Z, et al. Effects of tending felling on stand structure and species diversity of mixed coniferous and broadleaved forest[J]. Journal of Beijing Forestry University, 2019, 41(5): 148−158.
    [27]
    Christa M D, John P B, Lathrop P L, et al. Restoration thinning enhances growth and diversity in mixed redwood/Douglas-fir stands in northern California, USA[J]. Restoration Ecology, 2018, 26(6): 1170−1179. doi: 10.1111/rec.12681
    [28]
    Junyong M, Fengfeng K, Xiaoqin Z, et al. Moderate thinning increases soil organic carbon in Larix principis-rupprechtii (Pinaceae) plantations[J]. Geoderma, 2018, 329: 118−128. doi: 10.1016/j.geoderma.2018.05.021
    [29]
    王岩松, 马保明, 高海平, 等. 晋西黄土区油松和刺槐人工林土壤养分及其化学计量比对林分密度的响应[J]. 北京林业大学学报, 2020, 42(8): 81−93. doi: 10.12171/j.1000-1522.20190287

    Wang Y S, Ma B M, Gao H P, et al. Response of soil nutrients and their stoichiometric ratios to stand density in Pinus tabuliformis and Robinia pseudoacacia plantations in the loess region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2020, 42(8): 81−93. doi: 10.12171/j.1000-1522.20190287
    [30]
    刘平, 韩金城, 于磊, 等. 辽东山区油松人工林生物量研究[J]. 沈阳农业大学学报, 2019, 50(6): 740−746.

    Liu P, Han J C, Yu L, et al. Study on biomass of Pinus tabulaeformis plantation in the mountainous area of eastern Liaoning Province[J]. Journal of Shenyang Agricultural University, 2019, 50(6): 740−746.
    [31]
    郭子武, 杨清平, 李迎春, 等. 密度对四季竹地上生物量分配格局及异速增长模式的制约性调节[J]. 生态学杂志, 2013, 32(3): 515−521.

    Guo Z W, Yang Q P, Li Y C, et al. Restrictive regulation of stand density on aboveground biomass allocation and allometric pattern of Oligostachyum lubricum[J]. Chinese Journal of Ecology, 2013, 32(3): 515−521.
    [32]
    黄宝灵, 吕成群, 蒙钰钗, 等. 尾叶桉人工林种群密度的研究[J]. 应用生态学报, 2000, 11(1): 31−33.

    Huang B L, Lü C Q, Meng Y C, et al. Population density of Eucalyptus urophylla plantation[J]. Chinese Journal of Applied Ecology, 2000, 11(1): 31−33.
    [33]
    Weiner J. Allocation, plasticity and allometry in plants[J]. Perspectives in Plant Ecology, Evolution and Systematics, 2004, 6(4): 207−215. doi: 10.1078/1433-8319-00083
    [34]
    Li F Y, Yuan C Y, Lao D Q, et al. Drip irrigation with organic fertilizer application improved soil quality and fruit yield[J]. Agronomy Journal, 2020, 112(1): 608−623. doi: 10.1002/agj2.20052
    [35]
    Panagiotis M, Alexandra S. Effects of conventional and organic (manure) fertilization on soil, plant tissue nutrients and berry yields in vineyards. The use of the original native soil as a control[J]. Journal of Plant Nutrition, 2019, 42(18): 2287−2298. doi: 10.1080/01904167.2019.1656246
    [36]
    郭岩辉, 顾小平, 吴晓丽, 等. 撑绿竹纸浆原料林施肥效应研究[J]. 福建林学院学报, 2010, 30(3): 279−283. doi: 10.3969/j.issn.1001-389X.2010.03.019

    Guo Y H, Gu X P, Wu X L, et al. Study on the effect of fertilization in Bambusa pervariabilis × Dendrocalamopsis daii pulpwood timber[J]. Journal of Fujian College of Forestry, 2010, 30(3): 279−283. doi: 10.3969/j.issn.1001-389X.2010.03.019
    [37]
    朱强根, 金爱武, 王意锟, 等. 不同营林模式下毛竹枝叶的生物量分配: 异速生长分析[J]. 植物生态学报, 2013, 37(9): 811−819.

    Zhu Q G, Jin A W, Wang Y K, et al. Biomass allocation of branches and leaves in Phyllostachys heterocycla ‘Pubescens’ under different management modes: allometric scaling analysis[J]. Chinese Journal of Plant Ecology, 2013, 37(9): 811−819.
    [38]
    侯会静, 韩正砥, 杨雅琴, 等. 生物有机肥的应用及其农田环境效应研究进展[J]. 中国农学通报, 2019, 35(14): 82−88. doi: 10.11924/j.issn.1000-6850.casb18040088

    Hou H J, Han Z D, Yang Y Q, et al. Bio-organic fertilizer: application and farmland environmental effects[J]. Chinese Agricultural Science Bulletin, 2019, 35(14): 82−88. doi: 10.11924/j.issn.1000-6850.casb18040088
    [39]
    苏文会, 曾宪礼, 范少辉, 等. 带状采伐对毛竹非结构性碳与生物量分配的影响[J]. 生态学杂志, 2019, 38(10): 2934−2940.

    Su W H, Zeng X L, Fan S H, et al. Effects of strip clear-cutting on the allocation of non-structural carbohydrates and aboveground biomass of Phyllostachys edulis[J]. Chinese Journal of Ecology, 2019, 38(10): 2934−2940.
    [40]
    张文元, 刘顺, 江斌, 等. 施肥对硬头黄竹林地上部分生物量结构的影响[J]. 西北林学院学报, 2016, 31(5): 61−67. doi: 10.3969/j.issn.1001-7461.2016.05.10

    Zhang W Y, Liu S, Jiang B, et al. Effects of fertilization on above-ground biomass structure of Bambusa rigida[J]. Journal of Northwest Forestry University, 2016, 31(5): 61−67. doi: 10.3969/j.issn.1001-7461.2016.05.10
    [41]
    彭颖, 范少辉, 苏文会, 等. 箣竹地上生物量分配格局及秆形结构特征[J]. 四川农业大学学报, 2013, 31(3): 296−301. doi: 10.3969/j.issn.1000-2650.2013.03.011

    Peng Y, Fan S H, Su W H, et al. Distribution pattern of above-ground biomass and culm form characteristics of Bambusa blumeana[J]. Journal of Sichuan Agricultural University, 2013, 31(3): 296−301. doi: 10.3969/j.issn.1000-2650.2013.03.011
    [42]
    赵宝泉, 王茂文, 丁海荣, 等. 密度和有机肥对苏北滩涂蓖麻群体生长及产量构成的影响[J]. 中国生态农业学报, 2017, 25(9): 1306−1316.

    Zhao B Q, Wang M W, Ding H R, et al. Effect of organic fertilizer on growth and yield components of castor under different planting densities[J]. Chinese Journal of Eco-Agriculture, 2017, 25(9): 1306−1316.
  • Related Articles

    [1]Ma Erni, Wang Yuyao, Li Jingyu, Zhong Xiang. Research progress on the effect of water on pore structure of wood cell wall[J]. Journal of Beijing Forestry University, 2024, 46(2): 1-8. DOI: 10.12171/j.1000-1522.20230243
    [2]Wang Kaiqing, Zhou Ziyi, Ma Erni. Effects of cell wall pore changes on water of wood modified by furfuryl alcohol[J]. Journal of Beijing Forestry University, 2023, 45(9): 127-136. DOI: 10.12171/j.1000-1522.20230156
    [3]Wu Haiyan, Zhao Yuanyuan, Du Linfang, Chi Wenfeng, Ding Guodong, Gao Guanglei. Effects of land use/cover changes on water retention services in the Beijing-Tianjin Sandstorm Source Control Project Area[J]. Journal of Beijing Forestry University, 2023, 45(4): 88-100. DOI: 10.12171/j.1000-1522.20220245
    [4]Meng Chen, Niu Jianzhi, Yu Hailong, Du Lingtong, Yin Zhengcong. Research progress in influencing factors and measuring methods of three-dimensional characteristics of soil macropores[J]. Journal of Beijing Forestry University, 2020, 42(11): 9-16. DOI: 10.12171/j.1000-1522.20190158
    [5]Lü Jiao, Mustaq Shah, Cui Yi, Xu Chengyang. Effects of soil compactness and litter covering on soil water holding capacity and water infiltration ability in urban forest[J]. Journal of Beijing Forestry University, 2020, 42(8): 102-111. DOI: 10.12171/j.1000-1522.20190476
    [6]Liu Junting, Zhang Jianjun, Sun Ruoxiu, Li Liang. Effects of the conversion time of cropland into forestry on soil physical properties in loess area of western Shanxi Province of northern China[J]. Journal of Beijing Forestry University, 2020, 42(1): 94-103. DOI: 10.12171/j.1000-1522.20180376
    [7]Ma Yuan-yuan, Dai Xian-qing, Peng Shao-hao, Yang Guang, Ji Xiao-dong. Effects of natural zeolite on physical and chemical properties and water retention capacity of chernozem in Songnen Plain of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(2): 51-57. DOI: 10.13332/j.1000-1522.20170218
    [8]XIA Xiang-you, WANG En-heng, YANG Xiao-yan, CHEN Xiang-wei. Pore characteristics of mollisol argillic horizon under simulated freeze-thaw cycles[J]. Journal of Beijing Forestry University, 2015, 37(6): 70-76. DOI: 10.13332/j.1000-1522.20140474
    [9]CHEN Shi-chao, LIN Jian-hui, SUN Yu-rui, Peter Schulze Lammers. Predicting topsoil porosity using soil surface roughness under rainfall influence.[J]. Journal of Beijing Forestry University, 2013, 35(2): 69-74.
    [10]FANG Wei-dong, KANG Xin-gang, ZHAO Hao-yan, HUANG Xin-feng, GONG Zhi-wen, GAO Yan, FENG Qi-xiang. Soil characteristics and water conservation of different forest types in Changbai Mountain[J]. Journal of Beijing Forestry University, 2011, 33(4): 40-47.
  • Cited by

    Periodical cited type(8)

    1. 陈志琪,张海娜,刘佳丽,鲁向晖,杨宝城. 氮添加对稀土尾砂地猴樟幼苗根系生长、生物量分配及非结构性碳水化合物的影响. 植物研究. 2024(01): 86-95 .
    2. 王志保,路兴慧,张演义,王宏骄,谢宪,江洪,韩婧雅,王艺合,梁晶. 氮磷添加对滨海新围垦区大叶女贞细根形态特征和生物量的影响. 广西植物. 2024(08): 1438-1447 .
    3. 孙薇,王斌,楚秀丽,王秀花,张东北,吴小林,周志春. 马尾松容器苗生长和养分性状对磷添加和接种菌根菌的响应及关联. 南京林业大学学报(自然科学版). 2023(01): 226-233 .
    4. 吴莹. 生物炭和氮肥配施对榉树幼苗生长的影响. 绿色科技. 2023(05): 101-103+108 .
    5. 何至杭,刘丽,彭钟通,陈轶群,王艺颖,刘悦,曾曙才,莫其锋. 水氮耦合对辣木幼苗根系形态特征的影响. 广西植物. 2023(05): 936-946 .
    6. 赵玉红. 樟子松种植技术要点. 中国林副特产. 2022(03): 59-61 .
    7. 高文礼 ,陈晓楠 ,伊力努尔·艾力 ,马晓东 . 干旱及复水条件下接种AMF和根瘤菌对疏叶骆驼刺根系生长的影响. 西北植物学报. 2022(07): 1189-1197 .
    8. 郝龙飞,小红,邵东华,刘婷岩,许吉康,张之月,于凡舒. 接种菌根真菌和氮添加处理对樟子松苗木根际微生态环境的影响. 西北林学院学报. 2022(05): 135-140+154 .

    Other cited types(8)

Catalog

    Article views (855) PDF downloads (75) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return