• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wang Yahui, Mu Changcheng, Yang Zhihui, Liu Ting, Li Xuannan. Effects of release cutting intensity on the carbon storage of Korean pine forests by planting conifer and reserving broadleaved trees in Xiaoxing’an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2021, 43(10): 54-64. DOI: 10.12171/j.1000-1522.20200361
Citation: Wang Yahui, Mu Changcheng, Yang Zhihui, Liu Ting, Li Xuannan. Effects of release cutting intensity on the carbon storage of Korean pine forests by planting conifer and reserving broadleaved trees in Xiaoxing’an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2021, 43(10): 54-64. DOI: 10.12171/j.1000-1522.20200361

Effects of release cutting intensity on the carbon storage of Korean pine forests by planting conifer and reserving broadleaved trees in Xiaoxing’an Mountains of northeastern China

More Information
  • Received Date: November 20, 2020
  • Revised Date: May 04, 2021
  • Available Online: May 27, 2021
  • Published Date: October 29, 2021
  •   Objective  This paper aims to reveal the influencing rule of liberation cutting intensity on the medium and long term carbon sink of Korean pine forests by planting conifer and reserving broadleaved trees (PCRBT), and to provide basis for the restoration of zonal climax vegetation broadleaved Korean pine forest.
      Method  The carbon storage (vegetation and soil), net primary productivity (NPP) and net annual carbon sequestration (ANCS) of the mid-term (35 years) Korean pine forests by PCRBT under different liberation cutting (LC) intensities (control(C), low-intensity LC(L)-1/7, moderate-intensity LC(M)-1/5, and high-intensity LC(H)-1/4 (volume ratio)) were measured simultaneously by the relative growth equation and carbon/nitrogen analysis method in temperate Xiaoxing’an Mountains of northeastern China, to reveal the law and mechanism of the effect of liberation cutting on carbon sink of Korean pine forest.
      Result  (1) The vegetation carbon storage ((81.15 ± 3.63) − (85.48 ± 2.30) t/ha) of the Korean pine forests by PCRBT was significantly lower than that of control ((100.24 ± 1.10) t/ha) by 14.7%−19.0% (P < 0.05) after liberation cutting 30 years, but the difference of vegetation carbon reserves was not significant among the low-, medium-, and high-intensity liberation cutting (because the carbon reserves of upper canopy broadleaf trees decreased with liberation cutting intensity (21.1%−31.2%), while the carbon reserves of Korean pine under canopy increased by 39.0%−107.4%). (2) The soil carbon storage ((108.32 ± 6.27) − (121.42 ± 11.75) t/ha) of the Korean pine forests by PCRBT was similar to that of control (−8.4%−2.7%, P > 0.05), however, the spatial distribution patterns of soil carbon storage were changed by the liberation cutting (on the horizontal distribution, the soil surface carbon storage decreased with increasing of liberation cutting intensity; on the vertical distribution, low-intensity and moderate-intensity liberation cutting made its vertical distribution changed from upper soil layer > middle soil layer ≈ lower soil layer in control forest to upper soil layer > middle soil layer > lower soil layer, or upper soil layer ≈ middle soil layer > lower soil layer). (3) The carbon storage of ecosystem ((189.47 ± 5.16) − (218.44 ± 10.65) t/ha) of the Korean pine forest by PCRBT had been recovered under low intensity LC (−5.3%, P > 0.05), but moderate-intensity and high-intensity LC still made them significantly lower than that of control by 9.3% and 13.3% (P < 0.05), and the carbon storage distribution ratio of the ecosystem was slightly changed by all the three intensity LC treatments (the carbon storage ratio of vegetation was reduced by 3.06% − 4.57%). (4) The NPP ((8.02 ± 0.79) − (9.51 ± 0.79) t/ha) and ANCS ((3.72 ± 0.37) − (4.42 ± 0.37) t/ha) of the Korean pine forest under low intensity liberation cutting treatment had been restored (−11.5% and −9.7%, P > 0.05), while moderate-intensity and high-intensity liberation cutting still made them significantly lower than that of control by 15.4%−15.7% and 14.0%−15.8% (P < 0.05), but there was no significant difference among the different liberation cutting intensity treatments (which because the net primary productivity and the annual net carbon sequestration of upper canopy broadleaf trees decreased by 20.8%−25.6% and 19.3%−24.5%, however, those of Korean pine under canopy increased by 0.90−1.12 t/ha and 0.43−0.52 t/ha, with the liberation cutting intensities increasing).
      Conclusion  Low-intensity liberation cutting has made the ecosystem carbon storage and annual net carbon sequestration amount of the Korean pine forests by planting conifer and reserving broadleaved tree restored after 30 years, while moderate-intensity and high-intensity liberation cutting made them significantly reduce by 9.1%−14.3% and 14.3%−16.7% in the Xiaoxing’an Mountains. Therefore, from the perspective of maintaining forest carbon sink, it is more appropriate to adopt low intensity liberation cutting in the management practice of the secondary forest restoring zonal climax vegetation.
  • [1]
    Six J, Callewaert P, Lenders S, et al. Measuring and understanding carbon storage in afforested soils by physical fractionation[J]. Soil Science Society of America Journal, 2002, 66(6): 1981−1987. doi: 10.2136/sssaj2002.1981
    [2]
    Alemu B. The role of forest and soil carbon sequestrations on climate change mitigation[J]. Research Journal of Agriculture and Environmental Management, 2014, 3(10): 492−505.
    [3]
    王振鹏, 陈金磊, 李尚益, 等. 湘中丘陵区不同恢复阶段森林生态系统的碳储量特征[J]. 林业科学, 2020, 56(5):22−31.

    Wang Z P, Chen J P, Li S Y, et al. Characteristics of forest ecosystem carbon stocks at different vegetation restoration stages in hilly area of central Hunan Province, China[J]. Scientia Silvae Sinicae, 2020, 56(5): 22−31.
    [4]
    葛剑平, 李景文, 郭海燕. 天然红松树木生长特征与林分结构的研究[J]. 东北林业大学学报, 1992, 20(2):9−16.

    Ge J P, Li J W, Guo H Y. Growth character of the tree and stand constitution in old growth Korean pine forest[J]. Journal of Northeast Forestry University, 1992, 20(2): 9−16.
    [5]
    郝占庆, 陶大立, 赵士洞. 长白山北坡阔叶红松林及其次生白桦林高等植物物种多样性比较[J]. 应用生态学报, 1994, 5(1):16−23. doi: 10.3321/j.issn:1001-9332.1994.01.013

    Hao Z Q, Tao D L, Zhao S D. Diversity of higher plants in broadleaved Korean pine and secondary birch forests on northern slope of Changbai Mountain[J]. Chinese Journal of Applied Ecology, 1994, 5(1): 16−23. doi: 10.3321/j.issn:1001-9332.1994.01.013
    [6]
    李俊清, 王业蘧. 天然林内红松种群数量变化的波动性[J]. 生态学杂志, 1986, 5(5):1−5.

    Li J Q, Wang Y J. Wave features of population changes of Pinus koraiensis in natural forest[J]. Journal of Ecology, 1986, 5(5): 1−5.
    [7]
    于大炮, 周莉, 代力民. 长白山区阔叶红松林经营历史与研究历程[J]. 应用生态学报, 2019, 30(5):1426−1434.

    Yu D P, Zhou L, Dai L M. Exploring the history of the management theory and technology of broad leaved Korean pine forest in Changbai Mountain Region, Northeast China[J]. Chinese Journal of Applied Ecology, 2019, 30(5): 1426−1434.
    [8]
    王业蘧. 阔叶红松林[M]. 哈尔滨: 东北林业大学出版社, 1995.

    Wang Y Q. Broadleaved Korean pine forest [M]. Harbin: Northeast Forestry University Press, 1995.
    [9]
    丁壮. 东北林业大学帽儿山实验林场原始红松林的破坏与恢复的雏议[J]. 植物研究, 2013, 33(3):379−384. doi: 10.7525/j.issn.1673-5102.2013.03.020

    Ding Z. Preliminary discussion on the destruction and restoration of primary Korean pine forest in Maoershan Experimental Forest Farm of Northeast Forestry University[J]. Bulletin of Botanical Research, 2013, 33(3): 379−384. doi: 10.7525/j.issn.1673-5102.2013.03.020
    [10]
    陈大珂, 周晓峰, 丁宝永, 等. 黑龙江省天然次生林研究(Ⅰ): 栽针保阔的经营途径[J]. 东北林业大学学报, 1984, 12(4):1−12.

    Chen D K, Zhou X F, Ding B Y, et al. Research on natural secondary forest in Heilongjiang Province: the management approach of planting conifers and conservating deciduous trees[J]. Journal of Northeast Forestry University, 1984, 12(4): 1−12.
    [11]
    牟长城, 庄宸, 韩阳瑞, 等. 透光抚育对长白山“栽针保阔”红松林植被碳储量影响[J]. 植物研究, 2014, 34(4):529−536. doi: 10.7525/j.issn.1673-5102.2014.04.017

    Mu C C, Zhuang C, Han Y R, et al. Effect of liberation cutting on the vegetation carbon storage of Korean pine forests by planting conifer and reserving broad-leaved tree in Changbai Mountains of China[J]. Bulletin of Botanical Research, 2014, 34(4): 529−536. doi: 10.7525/j.issn.1673-5102.2014.04.017
    [12]
    韩丽冬, 牟长城, 张军辉. 透光抚育对长白山阔叶红松林冠下红松光合作用的影响[J]. 东北林业大学学报, 2016, 44(4):38−40. doi: 10.3969/j.issn.1000-5382.2016.04.008

    Han L D, Mu C C, Zhang J H. Effect of crown thinning on photosynthesis of understory Korean pine of broadleaved Korean pine mixed forests in Changbai Mountain[J]. Journal of Northeast Forestry University, 2016, 44(4): 38−40. doi: 10.3969/j.issn.1000-5382.2016.04.008
    [13]
    韩阳瑞, 牟长城, 张晓亮, 等. 透光抚育对“栽针保阔”红松林中红松生长过程的影响[J]. 安徽农业科学, 2014, 42(8):2365−2367. doi: 10.3969/j.issn.0517-6611.2014.08.057

    Han Y R, Mu C C, Zhang X L, et al. The influence of light transmittance felling on Pinus koraiensis growth process in the “Preserving Deciduous While Planting Coniferous” Korean pine[J]. Journal of Anhui Agricultural Sciences, 2014, 42(8): 2365−2367. doi: 10.3969/j.issn.0517-6611.2014.08.057
    [14]
    鲍国涛. 透光抚育对“栽针保阔”红松林幼苗更新和林下植被多样性的影响[J]. 辽宁林业科技, 2020, 303(5):30−32, 80.

    Bao G T. The influence of light transmittance felling on seedling regeneration and undergrowth vegetation diversity in the “Preserving Deciduous While Planting Coniferous” Korean pine[J]. Liaoning Forestry Science and Technology, 2020, 303(5): 30−32, 80.
    [15]
    Dwyer J M, Fensham R, Buckley Y M. Restoration thinning accelerates structural development and carbon sequestration in an endangered Australian ecosystem[J]. Journal of Applied Ecology, 2010, 47(3): 681−691. doi: 10.1111/j.1365-2664.2010.01775.x
    [16]
    Nunery J S, Keeton W S. Forest carbon storage in the northeastern United States: net effects of harvesting frequency, post-harvest retention, and wood products[J]. Forest Ecology and Management, 2010, 259(8): 1363−1375.
    [17]
    Gomes V M, Jeferson D, Acordi Z J, et al. Reforestation with loblolly pine can restore the initial soil carbon stock relative to a subtropical natural forest after 30 years[J]. European Journal of Forest Research, 2018, 137(5): 593−604. doi: 10.1007/s10342-018-1127-y
    [18]
    Zhang X, Wu Z, Xu Z, et al. Estimated biomass carbon in thinned Cunninghamia lanceolate plantations at different stand-ages[J]. Journal of Forestry Research, 2020, 32: 1−13.
    [19]
    Sullivan T P, Sullivan D S, Lindgren P M F, et al. Twenty-five years after stand thinning and repeated fertilization in Lodgepole pine forest: implications for tree growth, stand structure, and carbon sequestration[J/OL]. Forests, 2020, 11(3): 337 [2020−12−19]. https://doi.org/10.3390/f11030337.
    [20]
    Williams N G, Powers M D. Carbon storage implications of active management in mature Pseudotsuga menziesii forests of western Oregon[J]. Forest Ecology and Management, 2019, 432: 761−775. doi: 10.1016/j.foreco.2018.10.002
    [21]
    Mosier S, Paustian K, Davies C, et al. Soil organic matter pools under management intensification of loblolly pine plantations[J]. Forest Ecology and Management, 2019, 447: 60−66. doi: 10.1016/j.foreco.2019.05.056
    [22]
    Settineri G, Mallamaci C, Mitrovic M, et al. Effects of different thinning intensities on soil carbon storage in Pinus laricio forest of Apennine South Italy[J]. European Journal of Forest Research, 2018, 137: 131−141. doi: 10.1007/s10342-017-1077-9
    [23]
    Ma J, Kang F, Cheng X, et al. Moderate thinning increases soil nitrogen in a Larix principis-rupprechtii (Pinaceae) plantations[J]. Geoderma, 2018, 329: 118−128. doi: 10.1016/j.geoderma.2018.05.021
    [24]
    孙志虎, 王秀琴, 陈祥伟. 不同抚育间伐强度对落叶松人工林生态系统碳储量影响[J]. 北京林业大学学报, 2016, 38(12):1−13.

    Sun Z H, Wang X Q, Chen X W. Effects of thinning intensity on carbon storage of Larix olgensis plantation ecosystem[J]. Journal of Beijing Forestry University, 2016, 38(12): 1−13.
    [25]
    Ruiz-Peinado R, Bravo-Oviedo A, Montero G, et al. ‘Carbon stocks in a Scots pine afforestation under different thinning intensities management’[J]. Mitigation & Adaptation Strategies for Global Change, 2016, 21(7): 1059−1072.
    [26]
    Bai Y F, Shen Y Y, Jin Y D, et al. Selective thinning and initial planting density management promote biomass and carbon storage in a chronosequence of evergreen conifer plantations in Southeast China[J/OL]. Global Ecology and Conservation, 2020, 24: e01216 [2020−12−19]. https://doi.org/10.1016/j.gecco.2020.e01216.
    [27]
    Powers M, Kolka R, Palik B, et al. Long-term management impacts on carbon storage in lake states forests[J]. Forest Ecology and Management, 2011, 262(3): 424−431. doi: 10.1016/j.foreco.2011.04.008
    [28]
    Nilsen P, Strand L T. Thinning intensity effects on carbon and nitrogen stores and fluxes in a Norway spruce (Picea abies (L.) Karst.) stand after 33 years[J]. Forest Ecology and Management, 2008, 256(3): 201−208. doi: 10.1016/j.foreco.2008.04.001
    [29]
    张迪祥. 伊春市带岭地区自然地理条件对植物群落分布的影响[J]. 植物科学学报, 1983, 1(2):229−236.

    Zhang D X. The influence of natural geographical condition of Dailing Area in Yichun City to the distribution of plant community[J]. Plant Science Journal, 1983, 1(2): 229−236.
    [30]
    Wang C K. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests[J]. Forest Ecology and Management, 2006, 222(1−3): 9−16. doi: 10.1016/j.foreco.2005.10.074
    [31]
    杨金艳, 王传宽. 东北东部森林生态系统土壤碳贮量和碳通量[J]. 生态学报, 2005, 25(11):2875−2882. doi: 10.3321/j.issn:1000-0933.2005.11.012

    Yang J Y, Wang C K. Soil carbon storage and flux of temperate forest ecosystems in northeastern China[J]. Acta Ecologica Sinica, 2005, 25(11): 2875−2882. doi: 10.3321/j.issn:1000-0933.2005.11.012
    [32]
    闫平. 帽山林场4类天然次生林碳储量研究[J]. 林业资源管理, 2006(4):61−65. doi: 10.3969/j.issn.1002-6622.2006.04.013

    Yan P. Study on carbon storage in four types of natural secondary forests of Maor Mountain Forest Farm[J]. Forest Resources Management, 2006(4): 61−65. doi: 10.3969/j.issn.1002-6622.2006.04.013
    [33]
    齐麟, 于大炮, 周旺明, 等. 采伐对长白山阔叶红松林生态系统碳密度的影响[J]. 生态学报, 2013, 33(10):3065−3073. doi: 10.5846/stxb201203060303

    Qi L, Yu D P, Zhou W M, et al. Impact of logging on carbon density of broadleaved-Korean pine mixed forests on Changbai Mountains[J]. Acta Ecologica Sinica, 2013, 33(10): 3065−3073. doi: 10.5846/stxb201203060303
    [34]
    李景文. 红松混交林生态与经营[M]. 哈尔滨: 东北林业大学出版社, 1997.

    Li J W. Ecology and management of Korean pine mixed forest[M]. Harbin: Northeast Forestry University Press, 1997.
    [35]
    Lin J C, Chiu C M, Lin Y J, et al. Thinning effects on biomass and carbon stock for Young Taiwania plantations[J/OL]. Scientific Reports, 2018, 8(1): 3070 [2020−11−19]. https://www.nature.com/articles/s41598-018-21510-x.
    [36]
    张晓亮, 牟长城, 张小单, 等. 透光抚育对长白山“栽针保阔”红松林土壤碳储量影响[J]. 北京林业大学学报, 2015, 37(10):22−30.

    Zhang X L, Mu C C, Zhang X D, et al. Effect of liberation cutting on the soil carbon storage of a Korean pine forest restored by planting conifers and reserving broadleaved trees in Changbai Mountains of China[J]. Journal of Beijing Forestry University, 2015, 37(10): 22−30.
    [37]
    Strukelj M, Brais S, Pare D. Nine-year changes in carbon dynamics following different intensities of harvesting in boreal aspen stands[J]. European Journal of Forest Research, 2015, 134(5): 737−754. doi: 10.1007/s10342-015-0880-4
    [38]
    Nave L E, Vance E D, Swanston C W, et al. Harvest impacts on soil carbon storage in temperate forests[J]. Forest Ecology and Management, 2010, 259(5): 857−866. doi: 10.1016/j.foreco.2009.12.009
    [39]
    Achat D L, Fortin M, Landmann G, et al. Forest soil carbon is threatened by intensive biomass harvesting[J/OL]. Scientific Reports, 2015, 5: 15991 [2020−11−14]. https://www.nature.com/articles/srep15991.
    [40]
    Jobbagy E G, Jackson R B. The vertical distribution of soil organic carbon and it’s relation to climate and vegetation[J]. Ecological Applications, 2002, 10(2): 423−436.
    [41]
    韩营营, 黄唯, 孙涛, 等. 不同林龄白桦天然次生林土壤碳通量和有机碳储量[J]. 生态学报, 2015, 35(5):1460−1469.

    Han Y Y, Huang W, Sun T, et al. Soil organic carbon stocks and fluxes in different age stands of secondary Betula platyphylla in Xiaoxing’an Mountain, China[J]. Acta Ecologica Sinica, 2015, 35(5): 1460−1469.
    [42]
    郑瞳, 牟长城, 张毅, 等. 立地类型对张广才岭天然白桦林生态系统碳储量的影响[J]. 生态学报, 2016, 36(19):6284−6294.

    Zheng T, Mu C C, Zhang Y, et al. Effects of site condition on ecosystem carbon storage in a natural Betula platyphylla forest in the Zhangguangcai Mountains[J]. Acta Ecologica Sinica, 2016, 36(19): 6284−6294.
    [43]
    毛德华, 王宗明, 罗玲, 等. 1982—2009年东北多年冻土区植被净初级生产力动态及其对全球变化的响应[J]. 应用生态学报, 2012, 23(6):1511−1519.

    Mao D H, Wang Z M, Luo L, et al. Dynamic changes of vegetation net primary productivity in permafrost zone of Northeast China in 1982−2009 in response to global change[J]. Chinese Journal of Applied Ecology, 2012, 23(6): 1511−1519.
    [44]
    张宪洲. 我国自然植被净第一性生产力的估算与分布[J]. 自然资源, 1993(1):15−21.

    Zhang X Z. Estimation and distribution of net primary productivity of natural vegetation in China[J]. Journal of Natural Resources, 1993(1): 15−21.
    [45]
    周广胜, 张新时. 全球气候变化的中国自然植被的净第一性生产力研究[J]. 植物生态学报, 1996, 20(1):11−19.

    Zhou G S, Zhang X S. Study on NPP of natural vegetation in China under global climate change[J]. Acta Phytoecologica Sinica, 1996, 20(1): 11−19.
    [46]
    李银鹏, 季劲钧. 全球陆地生态系统与大气之间碳交换的模拟研究[J]. 地理学报, 2001, 56(4):379−389. doi: 10.11821/xb200104001

    Li Y P, Ji J J. Simulations of carbon exchange between global terrestrial ecosystem and the atmosphere[J]. Acta Geographica Sinica, 2001, 56(4): 379−389. doi: 10.11821/xb200104001
    [47]
    何浩, 潘耀忠, 朱文泉, 等. 中国陆地生态系统服务价值测量[J]. 应用生态学报, 2005, 16(6):1122−1127. doi: 10.3321/j.issn:1001-9332.2005.06.029

    He H, Pan Y Z, Zhu W Q, et al. Measurement of terrestrial ecosystem service value in China[J]. Chinese Journal of Applied Ecology, 2005, 16(6): 1122−1127. doi: 10.3321/j.issn:1001-9332.2005.06.029
  • Cited by

    Periodical cited type(18)

    1. 黄鑫,徐国祺,马耀辉. 制备具有荧光示踪功能的硼掺杂银杏叶碳量子点木材防腐剂. 北京林业大学学报. 2025(01): 116-125 . 本站查看
    2. 张景朋,邵闯,蒋明亮. 高效液相色谱法测定防腐材中嘧菌酯含量的方法研究. 木材科学与技术. 2025(01): 64-70 .
    3. 吴喆虹,王文志,罗玲卓,袁超峰,苏勇,朱万泽. 贡嘎山健康与腐朽峨眉冷杉径向生长分异及其气候响应. 生态学报. 2024(23): 10897-10905 .
    4. 储炜,徐明,许琪,李婷,崔兆彦. 加速腐朽环境下重组竹力学及耐腐性能研究. 建筑科学与工程学报. 2023(03): 30-39 .
    5. 宋丽琴,宋太泽,祝席文,程芳超,孙建平. 木材花斑真菌对木材的影响及应用研究进展. 应用与环境生物学报. 2022(03): 805-812 .
    6. 谢启芳,张保壮,张利朋,苗壮. 自然干裂木柱受力性能试验与退化模型研究. 建筑结构学报. 2022(12): 210-222 .
    7. 常旭东,金光泽. 地形和土壤因子对红松活立木腐朽的影响. 林业科学. 2022(11): 71-82 .
    8. 张景朋,蒋明亮,马星霞,张斌. 甲氧基丙烯酸酯类制剂的木材防腐性能研究. 北京林业大学学报. 2021(03): 131-137 . 本站查看
    9. 王玉娇,彭尧,曹金珍. 褐腐初期南方松木材微观形貌与化学成分分析. 北京林业大学学报. 2021(03): 138-144 . 本站查看
    10. 王湘茹,曾飞扬,吕嘉宇,乔宇欣,闫丽. 硅烷偶联剂对水杨酸/二氧化硅微胶囊改性杨木耐腐性的影响. 林产工业. 2021(05): 54-59 .
    11. 贾茹,孙海燕,王玉荣,汪睿,赵荣军,任海青. 杉木无性系新品种‘洋020’和‘洋061’10年生幼龄材微观结构与力学性能的相关性. 林业科学. 2021(05): 165-175 .
    12. 赵艳,张泽宇,金宇乔,庞久寅,孙耀星. 木材表面仿制类玫瑰花超疏水结构研究. 林产工业. 2020(12): 32-34+39 .
    13. 赵博识,于志明,漆楚生,唐睿琳,张扬. 木材微生物变色与调控研究现状和展望. 林产工业. 2019(08): 1-4 .
    14. 郭宇,李超,李英洁,王哲,姚利宏. 木材细胞壁与木材力学性能及水分特性之间关系研究进展. 林产工业. 2019(08): 14-18 .
    15. 徐华东,狄亚楠,邢涛,徐群. 褐腐对白杨木材固碳量的影响规律及机理. 中南林业科技大学学报. 2019(11): 104-109 .
    16. 孙恒,冀晓东,赵红华,杨茂林,丛旭. 人工林刺槐木材物理力学性质研究. 北京林业大学学报. 2018(07): 104-112 . 本站查看
    17. 孙海燕,苏明垒,王玉荣. 木材细胞壁力学性能与细胞壁组分和构造的相关性研究. 林产工业. 2018(10): 22-27 .
    18. 陈继超,姜维娜,曹文静,周徐亮,周晓燕,徐莉. 杨木纤维/Si-B复合材料制备及其防腐性能研究. 南京林业大学学报(自然科学版). 2018(05): 206-210 .

    Other cited types(18)

Catalog

    Article views (950) PDF downloads (91) Cited by(36)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return