• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Yu Peiyang, Tong Xiaojuan, Li Jun, Zhang Jingru, Liu Peirong, Xie Han. Simulation analysis on phenology of woody plants in the warm-temperate region of China[J]. Journal of Beijing Forestry University, 2021, 43(11): 28-39. DOI: 10.12171/j.1000-1522.20200367
Citation: Yu Peiyang, Tong Xiaojuan, Li Jun, Zhang Jingru, Liu Peirong, Xie Han. Simulation analysis on phenology of woody plants in the warm-temperate region of China[J]. Journal of Beijing Forestry University, 2021, 43(11): 28-39. DOI: 10.12171/j.1000-1522.20200367

Simulation analysis on phenology of woody plants in the warm-temperate region of China

More Information
  • Received Date: November 22, 2020
  • Revised Date: May 11, 2021
  • Available Online: October 29, 2021
  • Published Date: November 29, 2021
  •   Objective  Under the global warming, the study of phenology is critical in carbon cycle of the terrestrial ecosystem. Phenology is sensitive to climate change, therefore climatic warming is one of the main factors impacting spring and autumn phenological phases. Simulating spring phenological phase had got some similar conclusions, while the leaf coloring date still needs to be explored. This study will contribute to develop phenology model and the study on phenological phase.
      Method  In this study, we used 10 species in 10 sites to examine the phenological data (leaf bud opening date, leaf out date, first flowering date and leaf coloring date) and meteorological data, and evaluated the accuracy and applicability of spring warming (SW) model. The changing trends of temperature and phenology were analyzed. In addition, the error between the simulated and observed phenological information from the biological characteristics of plants was explored. Based on the observed phenological and meteorological data, the parameters of SW model were estimated. Internal and cross checks were used to assess the validity of SW model.
      Result  During the past 50 years, temperature of all sites showed an upward trend. Except for Luoyang site in Henan Province of northern China and Dezhou site in Shandong Province of eastern China, spring phenological phase advanced significantly in other sites. Especially, the first flowering date of Lagerstroemia indica in Tai’an of Shandong Province advanced most significantly at a speed of −4.96 d per decade. In Beijing, the leaf bud opening date of Ginkgo biloba advanced least significantly by −0.72 d per decade. In autumn, the leaf coloring date delayed, and it delayed at a speed of 0.12 to 0.49 d per decade in Beijing region. In Qinhuangdao, Hebei Province of northern China, the leaf coloring date of Lagerstroemia indica delayed by 1.05 d per decade. Model performance was assessed according to the root mean square error (RMSE) and the coefficient of determination (R2). SW model performed better in simulating spring phenological phase than simulating autumn phenological phase, simulating arbor better than shrubs. Among trees, the simulation on leaf out date of Populus canadensis was most accurate, with R2 of 0.958 and RMSE of 3.5 d. Among shrubs, the simulation effect on first flowering date of Syringa oblata was best, with R2 of 0.942 and RMSE of 3.6 d. Compared with simulation on spring phenological phase, the simulation on leaf coloring date in autumn had a large deviation, with R2 only of 0.030 to 0.574.
      Conclusion  In the past 50 years, with the increase of temperature, the spring phenological phase in most sites showed an advanced trend, whereas the autumn phenological phase showed a delayed trend, and there were some differences among species and sites. SW model is suitable for simulation on phenological phase of different life forms, and the difference of simulation effect is not significant. The simulation effects of SW model on varied phenological phases were different, among which, the simulation on leaf out date and first flowering date was most accurate, followed by leaf bud opening date, and the accuracy of simulating leaf coloring date was least. Therefore, the SW model considering only the temperature factor can not truly simulate the autumn phenological phase, and the model should be improved by coupling the factors such as photoperiod and precipitation to improve the accuracy of SW model simulation.
  • [1]
    Beaubien E G, Freeland H J. Spring phenology trends in Alberta, Canada: links to ocean temperature[J]. International Journal of Biometeorology, 2000, 44(2): 53−59. doi: 10.1007/s004840000050
    [2]
    Fu Y H, Zhao H F, Piao S L, et al. Declining global warming effects on the phenology of spring leaf unfolding[J]. Nature, 2015, 526: 104−107. doi: 10.1038/nature15402
    [3]
    陶泽兴, 仲舒颖, 葛全胜, 等. 1963-2012年中国主要木本植物花期长度时空变化[J]. 地理学报, 2017, 72(1):53−63. doi: 10.11821/dlxb201701005

    Tao Z X, Zhong S Y, Ge Q S, et al. Spatiotemporal variations in flowering duration of woody plants in China from 1963 to 2012[J]. Acta Geographica Sinica, 2017, 72(1): 53−63. doi: 10.11821/dlxb201701005
    [4]
    Rosenzweig C, Casassa G, Karoly D J, et al. Assessment of observed changes and responses in natural and managed systems//Parry M L, Canziani O F, Palutikof J P, et al. Contribution of working groupⅡto the fourth assessment report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press, 2007: 79−131.
    [5]
    Scheifinger H, Templ B. Is citizen science the recipe for the survival of paper-based phenological networks in Europe?[J]. BioScience, 2016, 66(7): 533−534. doi: 10.1093/biosci/biw069
    [6]
    Park H, Jeong S J, Ho C H, et al. Slowdown of spring green-up advancements in boreal forests[J]. Remote Sensing of Environment, 2018, 217: 191−202. doi: 10.1016/j.rse.2018.08.012
    [7]
    Dai J H, Wang H J, Ge Q S. Multiple phenological responses to climate change among 42 plant species in Xi’an, China[J]. International Journal of Biometeorology, 2013, 57(5): 749−758. doi: 10.1007/s00484-012-0602-2
    [8]
    杨扬, 罗贤, 李荣平, 等. 气象要素对植物物候影响及其驱动机制研究进展[J]. 气象与环境学报, 2016, 32(5):154−159. doi: 10.3969/j.issn.1673-503X.2016.05.021

    Yang Y, Luo X, Li R P, et al. A review of the effect of meteorological factors on plant phenology and its driving mechanisms[J]. Journal of Meteorology and Environment, 2016, 32(5): 154−159. doi: 10.3969/j.issn.1673-503X.2016.05.021
    [9]
    Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural systems[J]. Nature, 2003, 421: 37−42. doi: 10.1038/nature01286
    [10]
    Gonsamo A, Chen J M, Wu C Y. Citizen science: linking the recent rapid advances of plant flowering in Canada with climate variability[J/OL]. Scientific Reports, 2013, 3: 2239 (2013−07−19) [2020−10−10]. https://www.nature.com/articles/srep02239.
    [11]
    邢小艺, 郝培尧, 李冠衡, 等. 北京植物物候的季节动态特征: 以北京植物园为例[J]. 植物生态学报, 2018, 42(9):906−916. doi: 10.17521/cjpe.2018.0113

    Xing X Y, Hao P Y, Li G H, et al. Seasonal dynamic of plant phenophases in Beijing Botanical Garden[J]. Chinese Journal of Plant Ecology, 2018, 42(9): 906−916. doi: 10.17521/cjpe.2018.0113
    [12]
    Ge Q S, Wang H J, Rutishauser T, et al. Phenological response to climate change in China: a meta-analysis[J]. Global Change Biology, 2015, 21(1): 265−274. doi: 10.1111/gcb.12648
    [13]
    Panchen Z A, Primack R B, Nordt B, et al. Leaf out times of temperate woody plants are related to phylogeny, deciduousness, growth habit and wood anatomy[J]. New Phytologist, 2014, 203(4): 1208−1219. doi: 10.1111/nph.12892
    [14]
    代武君, 金慧颖, 张玉红, 等. 植物物候学研究进展[J]. 生态学报, 2020, 40(19):6705−6719.

    Dai W J, Jin H Y, Zhang Y H, et al. Advances in plant phenology[J]. Acta Ecologica Sinica, 2020, 40(19): 6705−6719.
    [15]
    Cleland E E, Chuine I, Menzel A, et al. Shifting plant phenology in response to global change[J]. Trends in Ecology & Evolution, 2007, 22: 357−365.
    [16]
    邬定荣, 霍治国, 王培娟, 等. 陕西苹果花期机理性预报模型的适用性评价[J]. 应用气象学报, 2019, 30(5):555−564. doi: 10.11898/1001-7313.20190504

    Wu D R, Huo Z G, Wang P J, et al. The applicability of mechanism phenology models to simulating apple flowering date in Shaanxi Province[J]. Journal of Applied Meteorological Science, 2019, 30(5): 555−564. doi: 10.11898/1001-7313.20190504
    [17]
    Botta A, Viovy N, Ciais P, et al. A global prognostic scheme of leaf onset using satellite data[J]. Global Change Biology, 2000, 6(7): 709−725. doi: 10.1046/j.1365-2486.2000.00362.x
    [18]
    王炳赟, 范广洲, 魏鸣, 等. 基于温度影响因子的植物物候模型的应用研究[J]. 生物数学学报, 2015, 30(2):253−262.

    Wang B Y, Fan G Z, Wei M, et al. Application research of plant phenology model based on temperature[J]. Journal of Biomathematics, 2015, 30(2): 253−262.
    [19]
    徐韵佳, 仲舒颖, 戴君虎, 等. 1978-2014 年牡丹江地区植物花期变化及模型模拟[J]. 地理研究, 2017, 36(4):779−789.

    Xu Y J, Zhong S Y, Dai J H, et al. Changes in flowering phenology of plants and their model simulation in Mudanjiang, China[J]. Geographical Research, 2017, 36(4): 779−789.
    [20]
    陶泽兴, 葛全胜, 徐韵佳, 等. 西安和宝鸡木本植物花期物候变化及温度敏感性对比[J]. 生态学报, 2020, 40(11):3666−3676.

    Tao Z X, Ge Q S, Xu Y J, et al. Comparison of changes in flowering phenology of woody plants and temperature sensitivity between Xi’an and Baoji[J]. Acta Ecologica Sinica, 2020, 40(11): 3666−3676.
    [21]
    Hunter A F, Lechowicz M J. Predicting the timing of budburst in temperate trees[J]. Journal of Applied Ecology, 1992, 29: 597−604. doi: 10.2307/2404467
    [22]
    于裴洋, 同小娟, 李俊, 等. 中国东部暖温带刺槐物候模型比较[J]. 中国农业气象, 2020, 41(10):609−621. doi: 10.3969/j.issn.1000-6362.2020.10.001

    Yu P Y, Tong X J, Li J, et al. Comparison of phenological models of Robinia pseudoacacia L. in the warm-temperate region of eastern China[J]. Chinese Journal of Agrometeorology, 2020, 41(10): 609−621. doi: 10.3969/j.issn.1000-6362.2020.10.001
    [23]
    Murray M B, Cannell M G R, Smith R I. Date of budburst of fifteen tree species in Britain following climatic warming[J]. Journal of Applied Ecology, 1989, 26: 693−700. doi: 10.2307/2404093
    [24]
    祝廷成, 钟章成, 李建东. 植物生态学[M]. 北京: 高等教育出版社, 1988.

    Zhu T C, Zhong Z C, Li J D. Phytoecology[M]. Beijing: Higher Education Press, 1988.
    [25]
    Chuine I, Cour P, Rousseau D D. Fitting models predicting dates of flowering of temperate-zone trees using simulated annealing[J]. Plant Cell and Environment, 1998, 21: 455−466. doi: 10.1046/j.1365-3040.1998.00299.x
    [26]
    周祎鸣, 张莹, 田晓华, 等. 基于积温的文冠果开花物候期预测模型的构建[J]. 北京林业大学学报, 2019, 41(6) : 62−74.

    Zhou Y M, Zhang Y, Tian X H, et al. Establishment of the flowering phenological model of Xanthoceras sorbifolium based on accumulated temperature[J]. Journal of Beijing Forestry University, 2019, 41(6): 62−74.
    [27]
    韩翠华, 郝志新, 郑景云. 1951−2010年中国气温变化分区及其区域特征[J]. 地理科学进展, 2013, 32(6): 887−896.

    Han C H, Hao Z X, Zheng J Y. Regionalization of temperature changes in China and characteristics of temperature in different regions during 1951−2010[J]. Progress in Geography, 2013, 32(6): 887−896.
    [28]
    高新月, 陶泽兴, 王焕炯, 等. 北京地区东京樱花花期对气候变化的分段响应[J]. 气象科学, 2018, 38(6):832−837.

    Gao X Y, Tao Z X, Wang H J, et al. Responses of flowering date of Cerasus yedoensis to climate change in different periods in Beijing[J]. Journal of Meteorological Sciences, 2018, 38(6): 832−837.
    [29]
    丁抗抗, 李辑, 张皓宇. 辽宁省旱柳物候对气候变化的响应[J]. 气象与环境学报, 2017, 33(4):86−92. doi: 10.3969/j.issn.1673-503X.2017.04.011

    Ding K K, Li J, Zhang H Y. Response of Salix matsudana phenology to the change in temperature in Liaoning Province[J]. Journal of Meteorology and Environment, 2017, 33(4): 86−92. doi: 10.3969/j.issn.1673-503X.2017.04.011
    [30]
    Xu L, Chen X Q. Spatial modeling of the Ulmus pumila growing season in China ’s temperate zone[J]. Science China Earth Sciences, 2012, 55(4): 656−664. doi: 10.1007/s11430-011-4299-6
    [31]
    邓晨晖, 白红英, 高山, 等. 1964—2015年气候因子对秦岭地区植物物候的综合影响效应[J]. 地理学报, 2018, 73(5):917−931. doi: 10.11821/dlxb201805011

    Deng C H, Bai H Y, Gao S, et al. Comprehensive effect of climatic factors on plant phenology in Qinling Mountains region during 1964−2015[J]. Acta Geographica Sinica, 2018, 73(5): 917−931. doi: 10.11821/dlxb201805011
    [32]
    王焕炯, 陶泽兴, 葛全胜. 气候波动对西安39种木本植物展叶始期及其积温需求的影响[J]. 植物生态学报, 2019, 43(10):877−888. doi: 10.17521/cjpe.2019.0178

    Wang H J, Tao Z X, Ge Q S. Effects of climate variation on the first leaf dates of 39 woody species and their thermal requirements in Xi’an, China[J]. Chinese Journal of Plant Ecology, 2019, 43(10): 877−888. doi: 10.17521/cjpe.2019.0178
    [33]
    Basler D. Evaluating phenological models for the prediction of leaf-out dates in six temperate tree species across central Europe[J]. Agricultural and Forest Meteorology, 2016, 217: 10−21.
    [34]
    张爱英, 王焕炯, 戴君虎, 等. 物候模型在北京观赏植物开花期预测中的适用性[J]. 应用气象学报, 2014, 25(4):483−492. doi: 10.3969/j.issn.1001-7313.2014.04.012

    Zhang A Y, Wang H J, Dai J H, et al. Applicability analysis of phenological models in the flowering time prediction of ornamental plants in Beijing area[J]. Journal of Applied Meteorological Science, 2014, 25(4): 483−492. doi: 10.3969/j.issn.1001-7313.2014.04.012
    [35]
    张爱英, 张建华, 高迎新, 等. SW物候模型在北京樱花始花期预测中的应用[J]. 气象科技, 2015, 43(2):309−313. doi: 10.3969/j.issn.1671-6345.2015.02.024

    Zhang A Y, Zhang J H, Gao Y X, et al. Prediction of first flowering date of Prunnus discoidea in Beijing Yuyuantan Park using phenological model[J]. Meteogological Science and Technology, 2015, 43(2): 309−313. doi: 10.3969/j.issn.1671-6345.2015.02.024
    [36]
    郑彦佳, 徐琳, 于瑶. 光温耦合的中国温带地区旱柳花期时空格局模拟[J]. 生态学报, 2020, 40(17):6147−6160.

    Zheng Y J, Xu L, Yu Y. Modeling spatio-temporal patterns of Salix matsudana flowering dates based on temperature and photoperiod in temperate zone of China[J]. Acta Ecologica Sinica, 2020, 40(17): 6147−6160.
    [37]
    Laube J, Sparks T H, Estrella N, et al. Chilling outweighs photoperiod in preventing precocious spring development[J]. Global Change Biology, 2014, 20(1): 170−182. doi: 10.1111/gcb.12360
    [38]
    徐佳, 樊海东, 倪健. 1950-2015年中国植物物候变化的集成分析[J]. 亚热带资源与环境学报, 2019, 14(2):1−11. doi: 10.3969/j.issn.1673-7105.2019.02.002

    Xu J, Fan H D, Ni J. Meta-analysis of plant phonological change in China during 1950 and 2015[J]. Journal of Subtropical Resources and Environment, 2019, 14(2): 1−11. doi: 10.3969/j.issn.1673-7105.2019.02.002
  • Related Articles

    [1]Chen Tingqiao, Yuan Tao, Xie Mengyu, Tang Ying, Zeng Xiuli. Development of secondary branches and apical buds of Paeonia ludlowii under cultivated conditions[J]. Journal of Beijing Forestry University, 2022, 44(6): 106-114. DOI: 10.12171/j.1000-1522.20210144
    [2]LIU Jin-chun, MA Ye, TAO Jian-ping, GAO Kai-min, LIANG Qian-hui. Effects of AM fungus on root growth of Lonicera japonica under alternate dry and wet conditions in karst regions of southwestern China.[J]. Journal of Beijing Forestry University, 2015, 37(10): 110-116. DOI: 10.13332/j.1000-1522.20150057
    [3]CHEN Jie, XIE Jing, TANG Ming. Effects of arbuscular mycorrhizal fungi on the growth and drought resistance of Amorpha fruticosa under water stress.[J]. Journal of Beijing Forestry University, 2014, 36(6): 142-148. DOI: 10.13332/j.cnki.jbfu.2014.06.026
    [4]WEI Bao, DING Guo-dong, WU Bin, ZHANG Yu-qing, BAO Yan-feng, GAO Guang-lei1, SHI Hui-shu, ZHAO Jin-hong. Windbreak mechanism under different shrub cover conditions.[J]. Journal of Beijing Forestry University, 2013, 35(5): 73-78.
    [5]XU Yan, YU Xue-jun, GAO Yan, GAO Pei-jun, ZHANG Ru-min. Effects of NO on seed germination and seedling growth of Haloxylon ammodendron under osmosis stress[J]. Journal of Beijing Forestry University, 2011, 33(6): 65-69.
    [6]MENG Fan-juan, WANG Jian-zhong, HUANG Feng-lan, WANG Yan-jie. Ultrastructure of mesophyll cells in two Robinia pseudoacacia hybrids under NaCl stress.[J]. Journal of Beijing Forestry University, 2010, 32(4): 97-102.
    [7]WANG Jin-li, LIANG Wen-yan, CHEN Li. Separation and purification of microcystin-LR.[J]. Journal of Beijing Forestry University, 2010, 32(2): 184-188.
    [8]XIA Songhua, LI Li, LI Jian-zhang.. Ureaformaldehyde resin modified by nanoTiO2 under ultrasonic treatment[J]. Journal of Beijing Forestry University, 2009, 31(4): 123-129.
    [9]WANG Xing-zu, CHENG Xiang, ZHENG Hui, SUN De-zhi. Autocatalysis in biological decolorization of Reactive Black 5 under anaerobic condition.[J]. Journal of Beijing Forestry University, 2009, 31(3): 135-139.
    [10]ZHENG Yong-hong, , LIANG Er-yuan, ZHU Hai-feng, SHAO Xue-mei. Response of radial growth of Qilian juniper to climatic change under different habitats[J]. Journal of Beijing Forestry University, 2008, 30(3): 7-12.
  • Cited by

    Periodical cited type(8)

    1. 杨灿,范习健,张九于. SSFYOLO:一种面向复杂森林场景的树干检测算法. 北京林业大学学报. 2025(02): 132-142 . 本站查看
    2. 刘伟起,刘洪杰,史璐,杨欣,李建平,王鹏飞. 电动果园作业平台结构设计与试验. 农机化研究. 2024(01): 75-83 .
    3. 刘伟起,刘洪杰,史璐,杨欣,李建平,王鹏飞. 履带式果园作业平台结构稳定性分析与研究. 农机化研究. 2024(04): 42-47 .
    4. 郭昊生,马蓉,张垚鑫,李子迎. 丫形欠驱动库尔勒香梨采摘机械手的设计与仿真分析. 农机化研究. 2023(01): 110-117 .
    5. 虞浪,俞高红,吴浩宇,孙福兴,钱孟波. 欠驱动关节型柑橘采摘末端执行器设计与试验. 农业工程学报. 2023(17): 29-38 .
    6. 于泳超,康峰,郑永军,吕昊暾,王亚雄. 果园高位自动调平作业平台设计及仿真. 北京林业大学学报. 2021(02): 150-159 . 本站查看
    7. 曹琨,张姗姗. 基于机器视觉的蔬果辅助采摘装置系统设计与优化. 食品工业. 2021(05): 362-366 .
    8. 董杰,赵元豪,尚宁宁,蒋创宇,赵秒. 一种旋转式欠驱动自适应水果采摘器. 科学技术创新. 2019(13): 155-156 .

    Other cited types(1)

Catalog

    Article views (1121) PDF downloads (86) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return