• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Lai Yue, Kang Jiaqi, Xie Huainan, Ge Xiaoyu. Runoff collection and irrigation utilization cost of park green space in semi humid area: a case study of the green space of East Binhu Road in Qian’an City, Hebei Province of northern China[J]. Journal of Beijing Forestry University, 2022, 44(5): 115-123. DOI: 10.12171/j.1000-1522.20200392
Citation: Lai Yue, Kang Jiaqi, Xie Huainan, Ge Xiaoyu. Runoff collection and irrigation utilization cost of park green space in semi humid area: a case study of the green space of East Binhu Road in Qian’an City, Hebei Province of northern China[J]. Journal of Beijing Forestry University, 2022, 44(5): 115-123. DOI: 10.12171/j.1000-1522.20200392

Runoff collection and irrigation utilization cost of park green space in semi humid area: a case study of the green space of East Binhu Road in Qian’an City, Hebei Province of northern China

More Information
  • Received Date: December 10, 2020
  • Revised Date: December 03, 2021
  • Accepted Date: December 09, 2021
  • Available Online: April 11, 2022
  • Published Date: May 24, 2022
  •   Objective  In order to explore the feasibility and economy of urban park green space sponge city construction in semi humid area and provide economic decision-making reference for designers and decision makers, this paper takes the cost-effectiveness of rainwater runoff collection and irrigation as the research content, and takes the built rainwater collection green space on Binhu East Road, Qian’an City, Hebei Province of northern China as the research object to study the cost of rainwater collection and irrigation of park green space in semi humid area.
      Method  The volume of rainwater storage tank was determined according to the site runoff. Based on the daily measured rainfall data from 2014 to 2021 and the predicted rainfall data from 2022 to 2024, the volume method was used to calculate the annual collected runoff. The cost savings were obtained by comparing the cost of green land irrigation with tap water and the cost of irrigation with collected runoff and tap water, and the construction benefits were obtained by comparing the construction cost and maintenance cost.
      Result  Based on the actual rainfall data from 2014 to 2021, the predicted rainfall data from 2022 to 2024 and the calculation of construction cost, when the catchment area was 155.37 ha and the irrigation area was 151.410 ha, for the purpose of solving runoff and from the perspective of long-term benefits, the best scheme for the scale of regulating and storage tank was 3 000 m3, and the average annual irrigation cost was 101114.15 CNY, the average annual benefit was 65 424.15 CNY.
      Conclusion  Runoff collection and irrigation utilization in semi humid areas has certain benefits. Taking the irrigation demand of plants in a certain period of time as the standard of runoff collection can significantly reduce the construction cost and increase the runoff utilization efficiency.
  • [1]
    张伟, 车伍. 海绵城市建设内涵与多视角解析[J]. 水资源保护, 2016, 32(6): 19−26. doi: 10.3880/j.issn.1004-6933.2016.06.003

    Zhang W, Che W. Connotation and multi-angle analysis of sponge city construction[J]. Water Resources Protection, 2016, 32(6): 19−26. doi: 10.3880/j.issn.1004-6933.2016.06.003
    [2]
    张盼盼. 基于CNKI的我国海绵城市研究文献计量分析[J]. 人民长江, 2020, 51(增刊1): 16−19.

    Zhang P P. Bibliometric analysis on sponge city in China based on CNKI[J]. Yangtze River, 2020, 51(Suppl.1): 16−19.
    [3]
    王俊岭, 聂练桃, 张雅君, 等. 低影响开发雨洪管理技术费效分析[J]. 工业安全与环保, 2018, 44(4): 99−103. doi: 10.3969/j.issn.1001-425X.2018.04.025

    Wang J L, Nie L T, Zhang Y J, et al. Analysis on cost and benefit of low impact development in storm-water management[J]. Industrial Safety and Environmental Protection, 2018, 44(4): 99−103. doi: 10.3969/j.issn.1001-425X.2018.04.025
    [4]
    USEPA. Reducing stormwater costs through low impact development (LID) strategies and practices[Z/OL]. Washington: United States Environmental Protection Agency Nonpoint Source Control Branch, 2007[2020−08−18]. http://sarasota.wateratlas.usf.edu/upload/documents/Reducing-Stormwater-Costs-through-LID.pdf.
    [5]
    李大龙, 贾绍凤, 吕爱锋, 等. 中国城市LID技术设施的成本效益区域差异[J]. 地理科学进展, 2017, 36(11): 1402−1412. doi: 10.18306/dlkxjz.2017.11.009

    Li D L, Jia S F, Lü A F, et al. Regional difference of cost effectiveness of low impact development (LID) technical facilities in Chinese cities[J]. Progress in Geography, 2017, 36(11): 1402−1412. doi: 10.18306/dlkxjz.2017.11.009
    [6]
    黄初冬, 彭祖平, 邹澄昊, 等. 基于SWMM模型与成本效益的LID布局优化方法研究: 以嘉兴某住宅小区为例[J]. 建筑与文化, 2019(10): 62−65. doi: 10.3969/j.issn.1672-4909.2019.10.023

    Huang C D, Peng Z P, Zou C H, et al. A study on an optimization method of LID distribution based on SWMM and cost-effectiveness: a case study in Jiaxing residence community[J]. Architecture & Culture, 2019(10): 62−65. doi: 10.3969/j.issn.1672-4909.2019.10.023
    [7]
    陈韬, 李业伟, 张雅君. 典型城市雨水低影响开发(LID)措施的成本−效益分析[J]. 西南给排水, 2014, 36(2): 41−46.

    Chen T, Li Y W, Zhang Y J. Cost-benefit analysis of typical urban rainwater low-impact development (LID) measures[J]. Southwest China Water Supply and Drainage, 2014, 36(2): 41−46.
    [8]
    樊超, 孙学良. 建筑小区的海绵化改造效益核算: 以固原市玫瑰苑小区为例[J]. 环境工程技术学报, 2020, 10(2): 316−322. doi: 10.12153/j.issn.1674-991X.20190019

    Fan C, Sun X L. Benefit accounting analysis of sponge transformation in building and communities: taking Rose Communities in Guyuan City as an example[J]. Journal of Environmental Engineering Technology, 2020, 10(2): 316−322. doi: 10.12153/j.issn.1674-991X.20190019
    [9]
    Icekson-Tal N, Avraham O, Sack J, et al. Water reuse in Israel: the Dan Region Project: evaluation of water quality and reliability of plant’s operation[J]. Water Science and Technology: Water Supply, 2003, 3(4): 231−237. doi: 10.2166/ws.2003.0067
    [10]
    Roseen R M, Janeski T V, Simpson M, et al. Economic and adaptation benefits of low impact development[C]//Proceedings of low impact development technology: implementation and economics. Reston: American Society of Civil Engineers, 2015: 74−92.
    [11]
    林辰松. 半湿润地区集雨型绿地设计研究[D]. 北京: 北京林业大学, 2017.

    Lin C S. The research on rainwater harvesting green space design in semi-humid region[D]. Beijing: Beijing Forestry University, 2017.
    [12]
    戈晓宇, 李雄. 基于海绵城市建设指引的迁安市集雨型绿色基础设施体系构建策略初探[J]. 风景园林, 2016, 23(3): 27−34.

    Ge X Y, Li X. Research on building of rainwater-harvesting green infrastructure pattern of Qian’an based on the instruction of sponge city construction[J]. Landscape Architecture, 2016, 23(3): 27−34.
    [13]
    康嘉奇, 戈晓宇. 半湿润地区外源径流型海绵绿地设计方法研究: 以迁安市滨湖东路绿地为例[J]. 风景园林, 2019, 26(8): 77−82.

    Kang J Q, Ge X Y. Method for designing exogenous runoff sponge green space in semi-humid region: a case study of the green space of East Binhu Road in Qian’an City[J]. Landscape Architecture, 2019, 26(8): 77−82.
    [14]
    阳烨, 何俊超, 朱江, 等. 西北半干旱河谷型城市海绵城市专项规划方法研究: 以青海省西宁市为例[J]. 风景园林, 2021, 28(3): 56−61.

    Yang Y, He J C, Zhu J, et al. Research on sponge city special planning method in semi-arid valley cities in Northwest China: a case study of Xining City, Qinghai Province[J]. Landscape Architecture, 2021, 28(3): 56−61.
    [15]
    王立鹏, 王颖, 刘晓红. 浅谈迁安市园林绿化树种的选择[J]. 太原科技, 2007(7): 47−48.

    Wang L P, Wang Y, Liu X H. Talk about the choice of garden afforestation seeds in Qian’an City[J]. Taiyuan Science and Technology, 2007(7): 47−48.
    [16]
    中华人民共和国住房和城乡建设部. 海绵城市建设技术指南: 低影响开发雨水系统构建(试行)[M]. 北京: 中国建筑工业出版社, 2014.

    Ministry of Housing and Urban-Rural Development. Technical guide for sponge city construction: construction of low-impact development rainwater system (trial)[M]. Beijing: China Building Industry Press, 2014.
    [17]
    上海市建设和交通委员会. 室外排水设计标准: GB 50014—2021[S]. 北京: 中国计划出版社, 2021.

    Shanghai Construction and Transportation Commission. Design standard for outdoor drainage: GB 50014−2021[S]. Beijing: China Planning Press, 2021.
    [18]
    北京清华同衡规划设计研究院有限公司. 迁安市海绵城市专项规划(2015—2030)(修编稿)[Z]. 北京: 北京清华同衡规划设计研究院有限公司, 2016.

    Beijing Tsinghua Tongheng Planning and Design Institute Co., Ltd. Qian’an City: an sponge city special planning (2015−2030) (revised draft)[Z]. Beijing: Beijing Tsinghua Tongheng Planning and Design Institute Co., 2016.
    [19]
    河北省城乡规划设计研究院. 迁安市城市排水(雨水)防涝综合规划说明书[Z]. 石家庄: 河北省城乡规划设计研究院, 2014.

    Hebei Urban and Rural Planning and Design Institute. Qian’an City urban drainage (rainwater) waterlogging prevention comprehensive planning manual[Z]. Shijiazhuang: Hebei Urban and Rural Planning and Design Institute, 2014.
    [20]
    上海同济城市规划研究院. 迁安市中心城区雨水工程规划图[Z]. 上海: 上海同济城市规划研究院, 2013.

    Shanghai Tongji Urban Planning and Research Institute. Planning map of rainwater engineering in Qian ’an City Center[Z]. Shanghai: Shanghai Tongji Urban Planning and Research Institute, 2013.
    [21]
    中国建筑标准设计院. 国家建筑标准设计图集10SS705: 雨水综合利用: GJBT—1147[S]. 北京: 中国计划出版社, 2010.

    China Building Standard Design Institute. Comprehensive utilization of rainwater 10SS705: GJBT−1147[S]. Beijing: China Planning Press, 2010.
    [22]
    中国建筑标准设计院. 国家建筑标准设计图集05S804: 矩形钢筋混凝土蓄水池: GJBT—873[S]. 北京: 中国计划出版社, 2007.

    China Building Standard Design Institute. Rectangular reinforced concrete reservoir 05S804: GJBT−873[S]. Beijing: China Planning Press, 2007.
    [23]
    于淼, 戈晓宇. 基于SWMM模拟的首钢西十地块低影响开发系统雨洪调控效果研究[J]. 北京林业大学学报, 2018, 40(12): 97−109.

    Yu M, Ge X Y. Effects of rain flood control about low impact development system in west 10 plot of Shougang based on the SWMM simulation[J]. Journal of Beijing Forestry University, 2018, 40(12): 97−109.
    [24]
    林辰松, 邵明, 葛韵宇, 等. 基于SWMM情境模拟的外源雨水型公园绿地雨洪调控效果研究[J]. 北京林业大学学报, 2016, 38(12): 92−103.

    Lin C S, Shao M, Ge Y Y, et al. Research of storm flood regulation efficiency of the low impact development of exogenous-rainwater park based on the SWMM simulation[J]. Journal of Beijing Forestry University, 2016, 38(12): 92−103.
    [25]
    邱振存, 管健. 园林绿化植物灌溉需水量估算[J]. 节水灌溉, 2011(4): 48−50, 54.

    Qiu Z C, Guan J. Estimation of irrigation water demand for landscaping plants[J]. Water Saving Irrigation, 2011(4): 48−50, 54.
    [26]
    陈泓宇, 董宇翔, 林辰松. 集雨节水型绿地设计研究[J]. 给水排水, 2020, 46(12): 56−59.

    Chen H Y, Dong Y X, Lin C S. Study on design of rainwater harvesting and water-saving green space[J]. Water Supply and Drainage, 2020, 46(12): 56−59.
    [27]
    霍治澎, 吴小强. 下沉式绿地和雨水回收中水利用相结合绿色建筑技术在延安地区的具体应用[J]. 建筑节能, 2017, 45(12): 70−72.

    Huo Z P, Wu X Q. Green building techniques applied in Yan’an: sunken green land and rainwater as reclaimed water[J]. Building Energy Efficiency, 2017, 45(12): 70−72.
  • Related Articles

    [1]Wang Yuning, Feng Tianjiao, Sun Long, Liu Xiru, Liu Yabo, Wang Ping. Differences and influencing factors of understory vegetation species diversity between typical plantations and natural forests in the loess area of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240228
    [2]Zhang Zixuan, Meng Xiaoqian, Zhang Xinna, Xu Chengyang, Chen Tao, Wang Wenxue, Ning Qiuling. Responses of phyllosphere microbial communities in understory vegetation under plant life form and light intensity[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20250088
    [3]Gao Minglei, Man Xiuling, Duan Beixing. Short-term effects of understory vegetation and litter on soil CO2 flux of natural forests in cold temperate zone of China[J]. Journal of Beijing Forestry University, 2021, 43(3): 55-65. DOI: 10.12171/j.1000-1522.20200249
    [4]Jiang Jun, Liu Xianzhao, Jia Hongyan, Ming Angang, Chen Beibei, Lu Yuanchang. Effects of stand density on understory species diversity and soil physicochemical properties after close-to-nature transformation management of Chinese fir plantation[J]. Journal of Beijing Forestry University, 2019, 41(5): 170-177. DOI: 10.13332/j.1000-1522.20190022
    [5]Wei Anqi, Wei Tianxing, Liu Haiyan, Wang Sha. PLFA analysis of soil microorganism under Robinia pseudoacacia and Pinus tabuliformis plantation in loess area[J]. Journal of Beijing Forestry University, 2019, 41(4): 88-98. DOI: 10.13332/j.1000-1522.20180287
    [6]SUN Cao-wen, JIA Li-ming, YE Hong-lian, GAO Yuan, XIONG Chen-yan, WENG Xue-huang. Geographic variation evaluating and correlation with fatty acid composition of economic characters of Sapindus spp. fruits.[J]. Journal of Beijing Forestry University, 2016, 38(12): 73-83. DOI: 10.13332/j.1000-1522.20160143
    [7]LIU Hai-yan, WEI Tian-xing, WANG Xian. Soil microbial community structure and functional diversity in typical plantations marked by PLFA in hilly loess region[J]. Journal of Beijing Forestry University, 2016, 38(1): 28-35. DOI: 10.13332/j.1000--1522.20150262
    [8]ZHOU Xiao-jing, LI Ke, FAN Hang, LIU Tong, LI Chun-fang, MA Chao, LIU Yu-jun. Composition and amounts of fatty acids in Perilla frutescens seed oils of different varieties and areas.[J]. Journal of Beijing Forestry University, 2015, 37(1): 98-114. DOI: 10.13332/j.cnki.jbfu.2015.01.005
    [9]LI Guo-lei, LIU Yong, L Rui-heng, YU Hai-qun, LI Rui-sheng. Responses of understory vegetation development to regulation of tree density in Larix principisrupprechtii plantations.[J]. Journal of Beijing Forestry University, 2009, 31(1): 19-24.
    [10]LU Shao-wei, WANG Xiong-bin1, YU Xin-xiao1, LU Shao-bo1, 3, LI Jin-hai4, WU Jun4. Influence of closing hillsides on vegetation diversity restoration in artificial coniferous forests.[J]. Journal of Beijing Forestry University, 2008, 30(supp.2): 121-126.
  • Cited by

    Periodical cited type(22)

    1. 陈子川,潘国营,陈灿,徐云鹏,林晗,陈煜,谢安强,范海兰. 光强对木麻黄幼苗根系形态、解剖结构及其碳氮含量的影响. 生态学报. 2024(10): 4377-4387 .
    2. 陈静航,叶蕊蕊,孙建喜,罗利华,李灿,吴勇,胡田田. 滴灌施肥周期和毛管布设方式对苹果树细根直径时空分布的影响. 干旱地区农业研究. 2023(01): 101-110 .
    3. 吴小健,李秉钧,颜耀,李明,吴鹏飞,马祥庆. 不同种源杉木细根解剖性状的差异分析. 森林与环境学报. 2023(03): 232-239 .
    4. 吴义远,董文渊,浦婵,钟欢,夏莉,袁翎凌,陈新. 土壤水分和养分对筇竹竹鞭解剖特征及其适应可塑性的影响. 竹子学报. 2023(01): 1-10 .
    5. 张家豪,王根绪,王文志,孙守琴. 大气氮沉降增加对树木生长和水碳利用的影响. 西部林业科学. 2023(03): 145-151+159 .
    6. 韩梦豪,李俊杰,王磊,刘晴廙,关庆伟. 间伐对马尾松不同根序细根化学组分的影响. 森林与环境学报. 2023(04): 337-345 .
    7. 张玉慧,谢芳,闫国永. 不同乔木树种根系养分吸收策略的维度性差异. 林业科技. 2023(04): 16-22 .
    8. 刘逸潇,王传宽,上官虹玉,臧妙涵,梁逸娴,全先奎. 兴安落叶松不同径级根碳氮磷钾化学计量特征的种源差异. 应用生态学报. 2023(07): 1797-1805 .
    9. 周诚,刘彤,王庆贵,韩士杰. 长期氮添加对阔叶红松林细根形态、解剖结构和化学组分的影响. 北京林业大学学报. 2022(11): 31-40 . 本站查看
    10. 郝龙飞,郝文颖,刘婷岩,张敏,许吉康,斯钦毕力格. 氮添加及接种处理对1年生樟子松苗木根系形态及养分含量的影响. 北京林业大学学报. 2021(04): 1-7 . 本站查看
    11. 焦海珍,邵陈禹,陈建姣,张晨禹,陈佳豪,李云飞,沈程文. 重度遮阴及复光条件下茶树根系的生理响应及抗氧化酶活性动态变化. 茶叶科学. 2021(05): 695-704 .
    12. 洪梓明,邢亚娟,闫国永,张军辉,王庆贵. 长白山白桦山杨次生林细根形态特征和解剖结构对氮沉降的响应. 生态学报. 2020(02): 608-620 .
    13. 吴义远,董文渊,刘培,张孟楠,谢泽轩,田发坤. 不同土壤水分和养分条件下筇竹竹秆解剖特征及其适应可塑性. 北京林业大学学报. 2020(04): 80-90 . 本站查看
    14. 李秉钧,颜耀,王小虎,孙雪莲,马祥庆. 环境因子对林木细根功能性状的影响研究进展. 福建林业科技. 2020(02): 125-132 .
    15. 张俪予,张军辉,张蕾,陈伟,韩士杰. 兴安落叶松和白桦细根形态对环境变化的响应. 北京林业大学学报. 2019(06): 15-23 . 本站查看
    16. 陈旭,刘洪凯,赵春周,王强,王延平. 山东滨海盐碱地11个造林树种叶解剖特征对土壤条件的响应. 植物生态学报. 2019(08): 697-708 .
    17. 杨阳,熊远兵,郝晓泳. 干旱胁迫对耧斗菜根解剖结构及生理特性的影响. 北方园艺. 2018(17): 82-89 .
    18. 王建宇,胡海清,邢亚娟,闫国永,王庆贵. 大兴安岭兴安落叶松林树木生物量对氮沉降的响应. 林业科学研究. 2018(03): 88-94 .
    19. 杨阳,熊远兵,郝晓泳. 干旱胁迫对耧斗菜根解剖结构及生理特性的影响. 内蒙古农业大学学报(自然科学版). 2018(03): 1-7 .
    20. 钟悦鸣,董芳宇,王文娟,王健铭,李景文,吴波,贾晓红. 不同生境胡杨叶片解剖特征及其适应可塑性. 北京林业大学学报. 2017(10): 53-61 . 本站查看
    21. 毛晋花,邢亚娟,马宏宇,王庆贵. 氮沉降对植物生长的影响研究进展. 中国农学通报. 2017(29): 42-48 .
    22. 张鑫,邢亚娟,贾翔,王庆贵. 北方森林细根对氮沉降和二氧化碳浓度升高的响应. 中国农学通报. 2017(30): 84-90 .

    Other cited types(33)

Catalog

    Article views (896) PDF downloads (75) Cited by(55)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return