• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Xu Feng, Cheng Peng, Guo Zongwei, Xu Yanglei. Research progress on the fractionation and structural properties of lignin based on deep eutectic solvents[J]. Journal of Beijing Forestry University, 2021, 43(4): 158-168. DOI: 10.12171/j.1000-1522.20200410
Citation: Xu Feng, Cheng Peng, Guo Zongwei, Xu Yanglei. Research progress on the fractionation and structural properties of lignin based on deep eutectic solvents[J]. Journal of Beijing Forestry University, 2021, 43(4): 158-168. DOI: 10.12171/j.1000-1522.20200410

Research progress on the fractionation and structural properties of lignin based on deep eutectic solvents

More Information
  • Received Date: December 23, 2020
  • Revised Date: January 16, 2021
  • Available Online: March 07, 2021
  • Published Date: April 29, 2021
  • As the most abundant natural and renewable aromatic compounds, lignin has been recognized as a raw material for producing biofuels and chemicals. The commercial lignin is mostly obtained by pulping processes, such as soda lignin and lignosulfonates, which are operated at harsh conditions and cause high energy consumption and sever water pollution. The commercial lignin has low purity and inhomogeneous structure, which hinder its valorization. Therefore, it is urgent to find a facile, efficient, and environmentally friendly method for lignin fractionation to reduce energy consumption and pollution. As a promising and green solvent, deep eutectic solvent (DES) consists of hydrogen bond donor and hydrogen bond acceptor counterpart in a certain molar ratio that result in the formation of eutectic mixture, showing an unusually low freezing point. DES has the characteristics of simple preparation, high stability, fine biocompatibility, high selectivity and recyclability. In recent years, DES has been widely used in the field of biomass treatment due to the excellent delignification. The fractionation abilities for lignin by different types of DES are quite different. Generally speaking, the fractionation ability for lignin by carboxylic-based DES is stronger than that by amide-based DES. The lignin fractionated by DES has the characteristics of high purity, low molecular mass, and polydispersity, which has an application potential compared with commercial lignin. In this review, it begined with the effect of DES types on the lignin fractionation efficiency followed by the influencing factors (composition of DES, reaction temperature, time, and solid-liquor ratio) on the fractionation efficiency and lignin structure. Additionally, the recycling experiments of DES were introduced. According to the existing challenges in the lignin fractionation with DES, it covers the selection of DES, the combination of other pretreatment methods, optimization of reaction conditions, the recycling of DES, and the valorization of lignin to provide some references for the clean and efficient fractionation of lignin.
  • [1]
    裴继诚, 杨淑慧, 平清伟, 等. 植物纤维化学[M]. 北京: 中国轻工业出版社, 2016.

    Pei J C, Yang S H, Ping Q W, et al. Lignocellulosic chemistry[M]. Beijing: China Light Industry Press, 2016.
    [2]
    Chen L, Dou J, Ma Q, et al. Rapid and near-complete dissolution of wood lignin at ≤ 80 ℃ by a recyclable acid hydrotrope[J]. Science Advances, 2017, 3(9): e1701735. doi: 10.1126/sciadv.1701735
    [3]
    刘金科, 杨桂花, 齐乐天, 等. 胆碱类低共熔溶剂选择性分离杨木中木质素的研究[J]. 中国造纸, 2020, 39(4):1−9.

    Liu J K, Yang G H, Qi L T, et al. Selective extraction of poplar lignin with choline-based deep eutectic solvents[J]. China Pulp & Paper, 2020, 39(4): 1−9.
    [4]
    van Osch D, Kollau L, van den Bruinhorst A, et al. Ionic liquids and deep eutectic solvents for lignocellulosic biomass fractionation[J]. Physical Chemistry Chemical Physics, 2017, 19(4): 2636−2665. doi: 10.1039/C6CP07499E
    [5]
    Lyu G, Wu Q, Li T, et al. Thermochemical properties of lignin extracted from willow by deep eutectic solvents (DES)[J]. Cellulose, 2019, 26(15): 8501−8511. doi: 10.1007/s10570-019-02489-8
    [6]
    马晓振, 罗清, 秦冬冬, 等. 木质素基生物质聚氨酯[J]. 化学进展, 2020, 32(5):617−626.

    Ma X Z, Luo Q, Qin D D, et al. Lignin-based polyurethane[J]. Progress in Chemistry, 2020, 32(5): 617−626.
    [7]
    罗通, 吕高金, 王超, 等. 工业木质素活化改性及其在复合材料中的应用进展[J]. 中国造纸, 2020, 39(9):60−67.

    Luo T, Lü G J, Wang C, et al. Modification of industrial lignin and its application in composite materials: a review[J]. China Pulp & Paper, 2020, 39(9): 60−67.
    [8]
    李小玉, 李广慈, 李学兵. 不同化学法分离解聚过程对木质素结构的影响[J]. 辽宁石油化工大学学报, 2020, 40(1):1−9. doi: 10.3969/j.issn.1672-6952.2020.01.001

    Li X Y, Li G C, Li X B, et al. Effect of chemical separation and depolymerization processes on lignin structure[J]. Journal of Liaoning Petrochemical University, 2020, 40(1): 1−9. doi: 10.3969/j.issn.1672-6952.2020.01.001
    [9]
    Haldar D, Purkait M K. A review on the environment-friendly emerging techniques for pretreatment of lignocellulosic biomass: mechanistic insight and advancements[J]. Chemosphere, 2021, 264: 128523. doi: 10.1016/j.chemosphere.2020.128523
    [10]
    Li C L, Knierim B, Manisseri C, et al. Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification[J]. Bioresource Technology, 2010, 101(13): 4900−4906. doi: 10.1016/j.biortech.2009.10.066
    [11]
    刘振, 孙海红, 郝静静. 离子液体对玉米秸秆组分的溶解选择性[J]. 可再生能源, 2014, 32(6):871−875.

    Liu Z, Sun H H, Hao J J. Solubility selectivity of ionic liquids to components of corn straw[J]. Renewable Energy Resources, 2014, 32(6): 871−875.
    [12]
    周全伟. 基于醇胺型离子液体处理的奇岗草木质素的分离机制及其用于膜材料制备[D]. 济南: 齐鲁工业大学, 2020.

    Zhou Q W. Separation of Miscanthus × giganteus lignin based on the treatment of alcoholamine-type ionic liquid system and its application in preparation of composite membrane material[D]. Jinan: Qilu University of Technology, 2020.
    [13]
    Maki-Arvela P, Anugwom I, Virtanen P, et al. Dissolution of lignocellulosic materials and its constituents using ionic liquids: a review[J]. Industrial Crops and Products, 2010, 32(3): 175−201. doi: 10.1016/j.indcrop.2010.04.005
    [14]
    Shen Y, Sun J K, Yi Y X, et al. One-pot synthesis of levulinic acid from cellulose in ionic liquids[J]. Bioresource Technology, 2015, 192: 812−816. doi: 10.1016/j.biortech.2015.05.080
    [15]
    Abbott A P, Boothby D, Capper G, et al. Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids[J]. Journal of the American Chemical Society, 2004, 126(29): 9142−9147. doi: 10.1021/ja048266j
    [16]
    Sanchez P B, Gonzalez B, Salgado J, et al. Physical properties of seven deep eutectic solvents based on L-proline or betaine[J]. Journal of Chemical Thermodynamics, 2019, 131: 517−523. doi: 10.1016/j.jct.2018.12.017
    [17]
    Tian D, Guo Y, Hu J, et al. Acidic deep eutectic solvents pretreatment for selective lignocellulosic biomass fractionation with enhanced cellulose reactivity[J]. International Journal of Biological Macromolecules, 2020, 142: 288−297. doi: 10.1016/j.ijbiomac.2019.09.100
    [18]
    Francisco M, van den Bruinhorst A, Kroon M C. New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing[J]. Green Chemistry, 2012, 14(8): 2153. doi: 10.1039/c2gc35660k
    [19]
    Francisco M, van den Bruinhorst A, Kroon M C. Low-transition-temperature mixtures (LTTMs): a new generation of designer solvents[J]. Angewandte Chemie International Edition, 2013, 52(11): 3074−3085. doi: 10.1002/anie.201207548
    [20]
    Smith E L, Abbott A P, Ryder K S. Deep eutectic solvents (DESs) and their applications[J]. Chemical Reviews, 2014, 114(21): 11060−11082. doi: 10.1021/cr300162p
    [21]
    Liu Q, Zhao X, Yu D, et al. Novel deep eutectic solvents with different functional groups towards highly efficient dissolution of lignin[J]. Green Chemistry, 2019, 21(19): 5291−5297. doi: 10.1039/C9GC02306B
    [22]
    Nam M W, Zhao J, Lee M S, et al. Enhanced extraction of bioactive natural products using tailor-made deep eutectic solvents: application to flavonoid extraction from Flos sophorae[J]. Green Chemistry, 2015, 17(3): 1718−1727. doi: 10.1039/C4GC01556H
    [23]
    Lim W L, Gunny A A N, Kasim F H, et al. Alkaline deep eutectic solvent: a novel green solvent for lignocellulose pulping[J]. Cellulose, 2019, 26(6): 4085−4098. doi: 10.1007/s10570-019-02346-8
    [24]
    Skulcova A, Majova V, Sima J, et al. Mechanical properties of pulp delignified by deep eutectic solvents[J]. Bioresources, 2017, 12(4): 7479−7486.
    [25]
    Li P, Sirviö J A, Hong S, et al. Preparation of flame-retardant lignin-containing wood nanofibers using a high-consistency mechano-chemical pretreatment[J]. Chemical Engineering Journal, 2019, 375: 122050. doi: 10.1016/j.cej.2019.122050
    [26]
    Sirvio J A, Visanko M. Highly Transparent nanocomposites based on poly (vinyl alcohol) and sulfated UV-absorbing wood nanofibers[J]. Biomacromolecules, 2019, 20(6): 2413−2420. doi: 10.1021/acs.biomac.9b00427
    [27]
    Xu G C, Ding J C, Han R Z, et al. Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation[J]. Bioresource Technology, 2016, 203: 364−369. doi: 10.1016/j.biortech.2015.11.002
    [28]
    Cai Z, Long J, Li Y, et al. Selective production of diethyl maleate via oxidative cleavage of lignin aromatic unit[J]. Chem, 2019, 5(9): 2365−2377. doi: 10.1016/j.chempr.2019.05.021
    [29]
    Kumar A K, Sharma S, Shah E, et al. Technical assessment of natural deep eutectic solvent (NADES) mediated biorefinery process: a case study[J]. Journal of Molecular Liquids, 2018, 260: 313−322. doi: 10.1016/j.molliq.2018.03.107
    [30]
    Alvarez-Vasco C, Ma R, Quintero M, et al. Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): a source of lignin for valorization[J]. Green Chemistry, 2016, 18(19): 5133−5141. doi: 10.1039/C6GC01007E
    [31]
    Tan Y T, Ngoh G C, Chua A S M. Evaluation of fractionation and delignification efficiencies of deep eutectic solvents on oil palm empty fruit bunch[J]. Industrial Crops and Products, 2018, 123: 271−277. doi: 10.1016/j.indcrop.2018.06.091
    [32]
    Teh S S, Loh S K, Mah S H. Development of choline-based deep eutectic solvents for efficient concentrating of hemicelluloses in oil palm empty fruit bunches[J]. Korean Journal of Chemical Engineering, 2019, 36(10): 1619−1625. doi: 10.1007/s11814-019-0348-1
    [33]
    周敏姑, 郭英杰, 郝子越, 等. 氯化胆碱/乳酸低共熔溶剂预处理对杨木酶水解特性的影响[J]. 西北农林科技大学学报(自然科学版), 2020, 48(12):1−8.

    Zhou M G, Guo Y J, Hao Z Y, et al. Effects of choline chloride/lactic acid deep eutectic solvents pretreatment on enzymatic hydrolysis of poplar[J]. Journal of Northwest A&F University (Natural Science Edition), 2020, 48(12): 1−8.
    [34]
    Wang S Z, Su S H, Xiao L P, et al. Catechyl lignin extracted from castor seed coats using deep eutectic solvents: characterization and depolymerization[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(18): 7031−7038.
    [35]
    Li T, Lyu G, Liu Y, et al. Deep eutectic solvents (DESs) for the isolation of willow lignin (Salix matsudana cv. Zhuliu)[J]. International Journal of Molecular Sciences, 2017, 18(11): 2266. doi: 10.3390/ijms18112266
    [36]
    Shen X J, Wen J L, Mei Q Q, et al. Facile fractionation of lignocelluloses by biomass-derived deep eutectic solvent (DES) pretreatment for cellulose enzymatic hydrolysis and lignin valorization[J]. Green Chemistry, 2019, 21(2): 275−283. doi: 10.1039/C8GC03064B
    [37]
    Guo Z W, Zhang Q L, You T T, et al. Short-time deep eutectic solvent pretreatment for enhanced enzymatic saccharification and lignin valorization[J]. Green Chemistry, 2019, 21(11): 3099−3108. doi: 10.1039/C9GC00704K
    [38]
    Lynam J G, Kumar N, Wong M J. Deep eutectic solvents’ ability to solubilize lignin, cellulose, and hemicellulose; thermal stability; and density[J]. Bioresource Technology, 2017, 238: 684−689. doi: 10.1016/j.biortech.2017.04.079
    [39]
    Kohli K, Katuwal S, Biswas A, et al. Effective delignification of lignocellulosic biomass by microwave assisted deep eutectic solvents[J]. Bioresource Technology, 2020, 303: 122897. doi: 10.1016/j.biortech.2020.122897
    [40]
    Tan Y T, Ngoh G C, Chua A S M. Effect of functional groups in acid constituent of deep eutectic solvent for extraction of reactive lignin[J]. Bioresource Technology, 2019, 281: 359−366. doi: 10.1016/j.biortech.2019.02.010
    [41]
    Liang Y, Duan W J, An X X, et al. Novel betaine-amino acid based natural deep eutectic solvents for enhancing the enzymatic hydrolysis of corncob[J]. Bioresource Technology, 2020, 310: 123389. doi: 10.1016/j.biortech.2020.123389
    [42]
    Zhang C W, Xia S Q, Ma P S. Facile pretreatment of lignocellulosic biomass using deep eutectic solvents[J]. Bioresource Technology, 2016, 219: 1−5. doi: 10.1016/j.biortech.2016.07.026
    [43]
    Ling Z, Guo Z W, Huang C X, et al. Deconstruction of oriented crystalline cellulose by novel levulinic acid based deep eutectic solvents pretreatment for improved enzymatic accessibility[J]. Bioresource Technology, 2020, 305: 123025. doi: 10.1016/j.biortech.2020.123025
    [44]
    Kim K H, Dutta T, Sun J, et al. Biomass pretreatment using deep eutectic solvents from lignin derived phenols[J]. Green Chemistry, 2018, 20(4): 809−815. doi: 10.1039/C7GC03029K
    [45]
    Mamilla J L K, Novak U, Grilc M, et al. Natural deep eutectic solvents (DES) for fractionation of waste lignocellulosic biomass and its cascade conversion to value-added bio-based chemicals[J]. Biomass and Bioenergy, 2019, 120: 417−425. doi: 10.1016/j.biombioe.2018.12.002
    [46]
    Yu Q, Zhang A, Wang W, et al. Deep eutectic solvents from hemicellulose-derived acids for the cellulosic ethanol refining of Akebia’ herbal residues[J]. Bioresource Technology, 2018, 247: 705−710. doi: 10.1016/j.biortech.2017.09.159
    [47]
    Chen Z, Reznicek W D, Wan C X. Deep eutectic solvent pretreatment enabling full utilization of switchgrass[J]. Bioresource Technology, 2018, 263: 40−48. doi: 10.1016/j.biortech.2018.04.058
    [48]
    Xia Q, Liu Y, Meng J, et al. Multiple hydrogen bond coordination in three-constituent deep eutectic solvents enhances lignin fractionation from biomass[J]. Green Chemistry, 2018, 20(12): 2711−2721. doi: 10.1039/C8GC00900G
    [49]
    Chen Z, Jacoby W A, Wan C. Ternary deep eutectic solvents for effective biomass deconstruction at high solids and low enzyme loadings[J]. Bioresource Technology, 2019, 279: 281−286. doi: 10.1016/j.biortech.2019.01.126
    [50]
    Guo Z W, Ling Z, Wang C, et al. Integration of facile deep eutectic solvents pretreatment for enhanced enzymatic hydrolysis and lignin valorization from industrial xylose residue[J]. Bioresource Technology, 2018, 265: 334−339. doi: 10.1016/j.biortech.2018.06.027
    [51]
    Chen Z, Bai X L, Lusi A, et al. High-solid lignocellulose processing enabled by natural deep eutectic solvent for lignin extraction and industrially relevant production of renewable chemicals[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 12205−12216.
    [52]
    Ji Q, Yu X, Yagoub A G A, et al. Efficient removal of lignin from vegetable wastes by ultrasonic and microwave-assisted treatment with ternary deep eutectic solvent[J]. Industrial Crops and Products, 2020, 149: 112357. doi: 10.1016/j.indcrop.2020.112357
    [53]
    Thi S, Lee K M. Comparison of deep eutectic solvents (DES) on pretreatment of oil palm empty fruit bunch (OPEFB): cellulose digestibility, structural and morphology[J]. Bioresource Technology, 2019, 282: 525−529. doi: 10.1016/j.biortech.2019.03.065
    [54]
    Procentese A, Johnson E, Orr V, et al. Deep eutectic solvent pretreatment and subsequent saccharification of corncob[J]. Bioresource Technology, 2015, 192: 31−36. doi: 10.1016/j.biortech.2015.05.053
    [55]
    Tan Y T, Chua A S M, Ngoh G C. Deep eutectic solvent for lignocellulosic biomass fractionation and the subsequent conversion to bio-based products: a review[J]. Bioresource Technology, 2020, 297: 122522. doi: 10.1016/j.biortech.2019.122522
    [56]
    金永灿, 谷峰. 木质素清洁高效分离研究进展[J]. 中国造纸, 2019, 38(6):65−72. doi: 10.11980/j.issn.0254-508X.2019.06.010

    Jin Y C, Gu F. Research progress in clean and efficient separation of lignin[J]. China Pulp & Paper, 2019, 38(6): 65−72. doi: 10.11980/j.issn.0254-508X.2019.06.010
    [57]
    Kumar A K, Parikh B S, Pravakar M. Natural deep eutectic solvent mediated pretreatment of rice straw: bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue[J]. Environmental Science Pollution Research, 2016, 23(10): 9265−9275. doi: 10.1007/s11356-015-4780-4
    [58]
    D’Agostino C, Harris R C, Abbott A P, et al. Molecular motion and ion diffusion in choline chloride based deep eutectic solvents studied by 1H pulsed field gradient NMR spectroscopy[J]. Physical Chemistry Chemical Physics, 2011, 13(48): 21383−21391. doi: 10.1039/c1cp22554e
    [59]
    Liu Y, Chen W, Xia Q, et al. Efficient cleavage of lignin-carbohydrate complexes and ultrafast extraction of lignin oligomers from wood biomass by microwave-assisted treatment with deep eutectic solvent[J]. ChemSusChem, 2017, 10(8): 1692−1700. doi: 10.1002/cssc.201601795
    [60]
    Li C, Tanjore D, He W, et al. Scale-up and evaluation of high solid ionic liquid pretreatment and enzymatic hydrolysis of switchgrass[J]. Biotechnology for Biofuels, 2013, 6: 154. doi: 10.1186/1754-6834-6-154
    [61]
    Yuan X, Duan Y, He L, et al. Characterization of white poplar and eucalyptus after ionic liquid pretreatment as a function of biomass loading using X-ray diffraction and small angle neutron scattering[J]. Bioresource Technology, 2017, 232: 113−118. doi: 10.1016/j.biortech.2017.02.014
    [62]
    Chen Z, Ragauskas A, Wan C. Lignin extraction and upgrading using deep eutectic solvents[J]. Industrial Crops and Products, 2020, 147: 112241. doi: 10.1016/j.indcrop.2020.112241
    [63]
    Das L, Li M, Stevens J, et al. Characterization and catalytic transfer hydrogenolysis of deep eutectic solvent extracted sorghum lignin to phenolic compounds[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 10408−10420.
    [64]
    Haldar D, Purkait M K. Lignocellulosic conversion into value-added products: a review[J]. Process Biochemistry, 2020, 89: 110−133. doi: 10.1016/j.procbio.2019.10.001
    [65]
    Hong S, Shen X, Pang B, et al. In-depth interpretation of the structural changes of lignin and formation of diketones during acidic deep eutectic solvent pretreatment[J]. Green Chemistry, 2020, 22(6): 1851−1858. doi: 10.1039/D0GC00006J
    [66]
    Guo Z, Li D, You T, et al. New Lignin streams derived from heteropoly acids enhanced neutral deep eutectic solvent fractionation: toward structural elucidation and antioxidant performance[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(32): 12110−12119.
    [67]
    Wang Z K, Hong S, Wen J L, et al. Lewis acid-facilitated deep eutectic solvent (DES) pretreatment for producing high-purity and antioxidative lignin[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(2): 1050−1057.
    [68]
    Li W, Amos K, Li M, et al. Fractionation and characterization of lignin streams from unique high-lignin content endocarp feedstocks[J]. Biotechnology for Biofuels, 2018, 11: 304. doi: 10.1186/s13068-018-1305-7
    [69]
    Cronin D, Chen X, Moghaddam L, et al. Deep eutectic solvent extraction of high purity lignin from a corn stover hydrolysate[J]. ChemSusChem, 2020, 13: 4678−4690. doi: 10.1002/cssc.202001243
    [70]
    周金梅, 李思明, 覃春芳, 等. 有机溶剂法纯化蔗渣木质素[J]. 应用化工, 2017, 46(8):1447−1450. doi: 10.3969/j.issn.1671-3206.2017.08.001

    Zhou J M, Li S M, Qin C F, et al. Organic solvent purify bagasse lignin[J]. Applied Chemical Industry, 2017, 46(8): 1447−1450. doi: 10.3969/j.issn.1671-3206.2017.08.001
    [71]
    康玉. 木质素基防晒霜与纳米纤维素复合膜产品的开发[D]. 北京: 北京化工大学, 2017.

    Kang Y. Preparation of lignin-based sunscreens and cellulose nanocomposite film[D]. Beijing: Beijing University of Chemical Technology, 2017.
    [72]
    Ragauskas A J, Beckham G T, Biddy M J, et al. Lignin valorization: improving lignin processing in the biorefinery[J]. Science, 2014, 344: 1246843. doi: 10.1126/science.1246843
    [73]
    刘天勤, 连海兰, 洪枢, 等. 氯化胆碱/尿素低共熔溶剂改性木质素的环氧固化体系[J]. 东北林业大学学报, 2018, 46(4):78−87. doi: 10.3969/j.issn.1000-5382.2018.04.016

    Liu T Q, Lian H L, Hong S, et al. Effect of modified lignin by choline chloride/urea deep-eutectic solvent on curing properties of epoxy resin[J]. Journal of Northeast Forestry University, 2018, 46(4): 78−87. doi: 10.3969/j.issn.1000-5382.2018.04.016
    [74]
    Xu P, Zheng G W, Zong M H, et al. Recent progress on deep eutectic solvents in biocatalysis[J]. Bioresources and Bioprocessing, 2017, 4(1): 34. doi: 10.1186/s40643-017-0165-5
    [75]
    Satlewal A, Agrawal R, Bhagia S, et al. Natural deep eutectic solvents for lignocellulosic biomass pretreatment: recent developments, challenges and novel opportunities[J]. Biotechnology Advances, 2018, 36(8): 2032−2050. doi: 10.1016/j.biotechadv.2018.08.009
    [76]
    Liang X, Fu Y, Chang J, et al. Effective separation, recovery and recycling of deep eutectic solvent after biomass fractionation with membrane-based methodology[J]. Separation and Purification Technology, 2019, 210: 409−416. doi: 10.1016/j.seppur.2018.08.021
  • Related Articles

    [1]Li Yan, Xu Hang, Wu Xiaoyun, Zhang Zhiqiang. Response of soil respiration and its components to different rainfall patterns in riparian poplar plantations[J]. Journal of Beijing Forestry University, 2024, 46(7): 9-17. DOI: 10.12171/j.1000-1522.20240027
    [2]Xu Yixuan, Tong Xiaojuan, Zhang Jinsong, Meng Ping, Li Jun. Time lag between soil respiration and soil temperature in a Robinia pseudoacacia plantation in the south of the Taihang Mountains[J]. Journal of Beijing Forestry University, 2019, 41(4): 78-87. DOI: 10.13332/j.1000-1522.20180398
    [3]Wu Jianzhao, Yan Siwei, Cui Yu, Luo Qinghu, Lin Yongming, Wang Daojie, Wu Chengzhen. Dynamics of soil respiration and its influencing factors at the early stage of ecological restoration of two kinds of climate in earthquake-affected area[J]. Journal of Beijing Forestry University, 2019, 41(3): 93-104. DOI: 10.13332/j.1000-1522.20180192
    [4]SHAO Ying-nan, TIAN Song-yan, LIU Yan-kun, CHEN Yao, SUN Zhi-hu. Effects of density control on soil respiration in Larix olgensis plantation.[J]. Journal of Beijing Forestry University, 2017, 39(6): 51-59. DOI: 10.13332/j.1000-1522.20170029
    [5]LI Si-si, HE Kang-ning, TIAN Yun, ZUO Wei, WANG Wei-lu, TANG Da, ZHANG Tan, LI Qian.. Seasonal changes and the driving factors of soil respiration among five typical forest types in the high-elevation-cold region, Qinghai, northwestern China.[J]. Journal of Beijing Forestry University, 2016, 38(10): 95-103. DOI: 10.13332/j.1000-1522.20160073
    [6]LIU Bo-qi, MOU Chang-cheng, XING Ya-juan, HAN Shi-jie, JIANG Si-ling, WANG Qing-gui. Effect of strong rainfalls on soil respiration in a typical temperate forest in Lesser Xing’an Mountains,northeast China[J]. Journal of Beijing Forestry University, 2016, 38(4): 77-85. DOI: 10.13332/j.1000-1522.20150431
    [7]WU Peng, CUI Ying-chun, ZHAO Wen-jun, SHU De-yuan, YANG Wen-bin, DING Fang-jun. Effects of litter exclusion and addition on soil respiration of major forest communities at two successional stages in Maolan karst forest of southwestern China.[J]. Journal of Beijing Forestry University, 2015, 37(9): 17-27. DOI: 10.13332/j.1000-1522.20150052
    [8]WANG Xiao-guo, , HU Bo, AO Mei-rong, ANG Yan-qiang, HENG Xun-hua. Soil CO2 efflux and simulation of Forest-DNDC model in the mixed plantation of alder and cypress in hilly areas of the central Sichuan Basin[J]. Journal of Beijing Forestry University, 2008, 30(2): 27-32.
    [9]FENG Chao-yang, , L Shi-hai, GAO Ji-xi, LIU Shang-hua, LIN Dong. Soil respiration characteristics of different vegetation types in the mountain areas of north China.[J]. Journal of Beijing Forestry University, 2008, 30(2): 20-26.
    [10]ZHOU Cun-yu, ZHOU Guo-yi, WANG Ying-hong, ZHANG De-qiang, LIU Shi-zhong, WANG Yue-si, SUN Yang. Soil respiration of a coniferous and broad-leaved mixed forest in Dinghushan Mountain, Guangdong Province[J]. Journal of Beijing Forestry University, 2005, 27(4): 23-27.
  • Cited by

    Periodical cited type(20)

    1. 沈健,何宗明,董强,郜士垒,曹光球,林宇,黄政. 滨海沙地两种防护林土壤呼吸月际动态及影响因素. 应用与环境生物学报. 2023(02): 432-439 .
    2. 沈健,何宗明,董强,林宇,郜士垒. 尾巨桉人工林火烧迹地土壤呼吸组分特征及其与土壤因子的关系. 生态学杂志. 2023(07): 1537-1547 .
    3. 沈健,何宗明,董强,郜士垒,林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响. 植物生态学报. 2023(07): 1032-1042 .
    4. 王静,杨建庆,高新磊,吕世杰,屈志强. 枯落物去除对荒漠草原功能群和生产力的影响. 中国草地学报. 2023(11): 24-32 .
    5. 葛照欣,蔡体久,段北星,徐志鹏,郎明翰,满秀玲. 寒温带兴安落叶松和白桦生长季水分利用特征. 生态学报. 2023(24): 10142-10155 .
    6. 张宝权,梁万君,何怀江,包广道,罗也,张忠辉. 退耕还林长白落叶松林地土壤呼吸研究. 吉林林业科技. 2022(03): 5-12 .
    7. 高然,董希斌,曲杭峰,张宝山,刘慧,毛亮亮,高彤. 抚育强度对天然针阔混交林细根化学计量及根系呼吸的影响. 东北林业大学学报. 2022(11): 43-46+71 .
    8. 张雅琪,陈林,庞丹波,何文强,李学斌,吴梦瑶,曹萌豪. 土壤微生物群落对枯落物输入的响应. 应用生态学报. 2022(11): 2943-2953 .
    9. 高明磊,满秀玲,段北星. 林下植被和凋落物对我国寒温带天然林土壤CO_2通量的短期影响. 北京林业大学学报. 2021(03): 55-65 . 本站查看
    10. 张萌,卢杰,任毅华. 土壤呼吸影响因素及测定方法的研究进展. 山东林业科技. 2021(02): 100-106+92 .
    11. 胡琛,贺云龙,黄金莲,雷静品,崔鸿侠,唐万鹏,马国飞,荣道军. 生物炭和氮沉降对落叶松人工林土壤呼吸及其理化性质的影响. 东北林业大学学报. 2021(09): 77-82 .
    12. 张嘉開,魏江生,海龙,杨海峰,杨宏伟,张嘉益. 毛乌素沙地杨柴人工林土壤呼吸与水热因子的关系研究. 内蒙古林业科技. 2021(04): 1-6 .
    13. 高明磊,满秀玲,段北星. 林下植被和凋落物对寒温带森林生长季土壤CH_4通量的影响. 生态学报. 2021(24): 9886-9897 .
    14. 李岳泰,满秀玲,喻武,陈婧,王氏明演. 不同地形樟子松天然林土壤呼吸特征及其影响因素. 森林工程. 2020(01): 1-9+24 .
    15. 段北星,蔡体久,宋浩,肖瑞晗. 寒温带兴安落叶松林凋落物层对土壤呼吸的影响. 生态学报. 2020(04): 1357-1366 .
    16. 王飞,满秀玲,段北星. 春季冻融期寒温带主要森林类型土壤氮矿化特征. 北京林业大学学报. 2020(03): 14-23 . 本站查看
    17. 张彦军,党水纳,任媛媛,梁婷,郁科科,邹俊亮,刘方. 基于Meta分析的土壤呼吸对凋落物输入的响应. 生态环境学报. 2020(03): 447-456 .
    18. 陈蕾,董希斌. 抚育间伐强度对大兴安岭落叶松天然次生林冻融后期土壤呼吸及性质的影响. 东北林业大学学报. 2020(06): 152-156+162 .
    19. 张剑,雷娜. 重构土体土壤呼吸及其水热影响因子日变化特征. 干旱地区农业研究. 2020(02): 251-257 .
    20. 丁令智,满秀玲,肖瑞晗,蔡体久. 寒温带森林根际土壤微生物量碳氮含量生长季内动态变化. 林业科学. 2019(07): 178-186 .

    Other cited types(27)

Catalog

    Article views (2993) PDF downloads (233) Cited by(47)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return