Citation: | Ren Ruifen, Li Zedi, Zhu Mengting, Liu Yan, Zhang Kongying. Effects of ROS-induced oxidative stress and programmed cell death on pollen viability after cryopreservation[J]. Journal of Beijing Forestry University, 2022, 44(2): 82-90. DOI: 10.12171/j.1000-1522.20210027 |
[1] |
Rowe A W. Cryopreservation of red cells and platets[M]. Baltimore: University Park Press, 1980.
|
[2] |
张亚利, 尚晓倩, 刘燕. 花粉超低温保存研究进展[J]. 北京林业大学学报, 2006, 28(4): 139−147. doi: 10.3321/j.issn:1000-1522.2006.04.026
Zhang Y L, Shang X Q, Liu Y. Advances in research of pollen cryopreservation[J]. Journal of Beijing Forestry University, 2006, 28(4): 139−147. doi: 10.3321/j.issn:1000-1522.2006.04.026
|
[3] |
Ren R F, Li Z D, Li B L, et al. Changes of pollen viability of ornamental plants after long-term preservation in a cryopreservation pollen bank[J]. Cryobiology, 2019, 89: 14−20.
|
[4] |
Len J S, Koh W S, Tan S X. The roles of reactive oxygen species and antioxidants in cryopreservation [J/OL]. Bioscience Reports, 2019, 39(8): BSR20191601[2021−01−01] https://doi.org/10.1042/BSR20191601.
|
[5] |
Jia M X, Shi Y, Di W, et al. ROS-induced oxidative stress is closely related to pollen deterioration following cryopreservation[J]. In Vitro Cellular & Developmental Biology-Plant, 2017, 53(4): 433−439.
|
[6] |
Mittler R. Oxidative stress, antioxidatnts and stress tolerance[J]. Trends in Plant Science, 2002, 7(9): 405−410. doi: 10.1016/S1360-1385(02)02312-9
|
[7] |
Jia M X, Jiang X R, Xu J, et al. CAT and MDH improve the germination and alleviate the oxidative stress of cryopreserved Paeonia and Magnolia pollen[J]. Acta Physiologiae Plantarum, 2018, 40(2): 37−47. doi: 10.1007/s11738-018-2612-0
|
[8] |
Ren R F, Jiang X R, Di W, et al. HSP70 improves the viability of cryopreserved Paeonia lactiflora pollen by regulating oxidative stress and apoptosis-like programmed cell death events[J]. Plant Cell, Tissue and Organ Culture, 2019, 139(2): 53−64.
|
[9] |
Ren R F, Li Z D, Zhang L L, et al. Enzymatic and nonenzymatic antioxidant systems impact the viability of cryopreserved Paeonia suffruticosa pollen[J]. Plant Cell, Tissue and Organ Culture, 2021, 144(1): 233−246. doi: 10.1007/s11240-020-01794-6
|
[10] |
Ren R F, Li Z D, Zhou H, et al. Changes in apoptosis-like programmed cell death and viability during the cryopreservation of pollen from Paeonia suffruticosa[J]. Plant Cell, Tissue and Organ Culture, 2020, 140(1): 357−368.
|
[11] |
Jiang X R, Di W, Jia M X, et al. MDH and CAT increase the germination of cryopreserved Paeonia pollen by regulating the ROS and apoptosis-like events[J]. Acta Horticulturae, 2019, 1234: 105−112.
|
[12] |
Mittler R, Vanderauwera S, Gollery M, et al. Reactive oxygen gene network of plants[J]. Trends in Plant Science, 2004, 9(10): 490−498. doi: 10.1016/j.tplants.2004.08.009
|
[13] |
Chen G Q, Ren L, Zhang J, et al. Cryopreservation affects ROS-induced oxidative stress and antioxidant response in Arabidopsis seedlings[J]. Cryobiology, 2015, 70(1): 38−47. doi: 10.1016/j.cryobiol.2014.11.004
|
[14] |
王爱国, 罗广华. 植物的超氧物自由基与羟胺反应的定量关系[J]. 植物生理学通讯, 1990(6): 55−57.
Wang A G, Luo G M. Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plants[J]. Plant Physiology Communications, 1990(6): 55−57.
|
[15] |
李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000: 260−261.
Li H S. Assay of malondialdehyde in plants: experiment principle and technology of plant physiology and biochemistry [M]. Beijing: Higher Education Press, 2000: 260−261.
|
[16] |
Gogorcena Y, Iturbe-Omaetxe I, Escuredo P, et al. Antioxidant defenses against activated oxygen in pea nodules subjected to water stress[J]. Plant Physiology, 1995, 108(2): 753−759. doi: 10.1104/pp.108.2.753
|
[17] |
Ma W W, Xu W A, Xu H, et al. Nitric oxide modulates cadmium influx during cadmium-induced programmed cell death in tobacco BY-2 cells[J]. Planta, 2010, 232(2): 325−335. doi: 10.1007/s00425-010-1177-y
|
[18] |
Prochazkova D, Sairam R K, Srivastava G C, et al. Oxidative stress and antioxidant activity as the basis of senescence in maize leaves[J]. Plant Science, 2001, 161(4): 765−771. doi: 10.1016/S0168-9452(01)00462-9
|
[19] |
Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J]. Plant and Cell Physiology, 1981, 22(5): 867−880.
|
[20] |
Kampfenkel K, Montagu M V, Inzé D. Extraction and determination of ascorbate and dehydroascorbate from plant tissue[J]. Analytical Biochemistry, 1995, 225: 165−167. doi: 10.1006/abio.1995.1127
|
[21] |
Fang J Y, Wetten A, Johnston J. Headspace volatile markers for sensitivity of cocoa (Theobroma cacao L.) somatic embryos to cryopreservation[J]. Plant Cell Reports, 2008, 27(3): 453−461. doi: 10.1007/s00299-007-0487-4
|
[22] |
Zhang D, Ren L, Chen G Q, et al. ROS-induced oxidative stress and apoptosis-like event directly affect the cell viability of cryopreserved embryogenic callus in Agapanthus praecox[J]. Plant Cell Reports, 2015, 34(9): 1499−1513. doi: 10.1007/s00299-015-1802-0
|
[23] |
Fleck R A, Benson E E, Bremner D H, et al. A comparative study of antioxidant protection in cryopreserved unicellular algae Euglena gracilis and Haematococcus pluvialis[J]. Cryoletters, 2003, 24(4): 213−228.
|
[24] |
Dröge W. Free radicals in the physiological control of cell function[J]. Physiology Review, 2002, 82(1): 47−95.
|
[25] |
Asada K. The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1990, 50: 601−639.
|
[26] |
Agarwal S. Increased antioxidant activity in Cassia seedlings under UV-B radiation[J]. Biologia Plantarum, 2007, 51(1): 157−160. doi: 10.1007/s10535-007-0030-z
|
[27] |
Benson E E. Free radical damage in stored plant germplasm [M]. Rome: International Board for Plant Genetic Resources, 1990.
|
[28] |
Benson E E, Bremner D. Oxidative stress in the frozen plant: a free radical point of view [M]//Fuller B J, Lane N, Benson E E. Life in the frozen state. Boca Raton: CRC Press, 2004: 205−241.
|
[29] |
Uchendu E E, Leonard S W, Traber M G, et al. Vitamins C and E improve regrowth and reduce lipid peroxidation of blackberry shoot tips following cryopreservation[J]. Plant Cell Reports, 2010, 29: 25−35.
|
[30] |
Uchendu E E, Muminova M, Gupta S, et al. Antioxidant and anti-stress compounds improve regrowth of cryopreserved Rubus shoot tips[J]. In Vitro Cellular & Developmental Biology-Plant, 2010, 46(4): 386−393.
|
[31] |
Reape T J, McCabe P F. Apoptotic-like regulation of programmed cell death in plants[J]. Apoptosis, 2010, 15: 249−256. doi: 10.1007/s10495-009-0447-2
|
[32] |
Baust J M, Buskirk R V, Baust J G. Gene activation of the apoptotic caspase cascade following cryogenic storage[J]. Cell Preservation Technology, 2002, 1(1): 63−80. doi: 10.1089/15383440260073301
|
[33] |
Bissoyi A, Pramanik K. Role of the apoptosis pathway in cryopreservation-induced cell death in mesenchymal stem cells derived from umbilical cord blood[J]. Biopreservation and Biobanking, 2014, 12(4): 246−254. doi: 10.1089/bio.2014.0005
|