• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Ren Ruifen, Li Zedi, Zhu Mengting, Liu Yan, Zhang Kongying. Effects of ROS-induced oxidative stress and programmed cell death on pollen viability after cryopreservation[J]. Journal of Beijing Forestry University, 2022, 44(2): 82-90. DOI: 10.12171/j.1000-1522.20210027
Citation: Ren Ruifen, Li Zedi, Zhu Mengting, Liu Yan, Zhang Kongying. Effects of ROS-induced oxidative stress and programmed cell death on pollen viability after cryopreservation[J]. Journal of Beijing Forestry University, 2022, 44(2): 82-90. DOI: 10.12171/j.1000-1522.20210027

Effects of ROS-induced oxidative stress and programmed cell death on pollen viability after cryopreservation

More Information
  • Received Date: January 26, 2021
  • Revised Date: May 07, 2021
  • Accepted Date: November 24, 2021
  • Available Online: January 27, 2022
  • Published Date: February 24, 2022
  •   Objective  After cryopreservation, pollen viability shows various changes, studies show that ROS is one of the main reasons for the changes of pollen viability after cryopreservation. Therefore, this study investigated the relationship between pollen viability and ROS induced oxidative stress and programmed cell death after cryopreservation, to further reveal the role of ROS in pollen viability changes after cryopreservation.
      Method  The pollen of P. lactiflora ‘Fen Yu Nu’ was used as material, the changes of pollen viability, ROS production, oxidative stress and programmed cell death after cryopreservation for different lengths of time were compared and analyzed.
      Result  During the cryopreservation of pollen, the O2•− content of ROS components was relatively high after 1 and 3 months of cryopreservation, and the H2O2 content significantly increased with the extension of storage time, while •OH content began to decrease after 3 months, both H2O2 and •OH contents were significantly correlated with pollen viability. Secondly, the content of malondialdehyde (MDA), an index of oxidative damage, was significantly increased after 3 months of liquid nitrogen (LN) storage, which was significantly correlated with pollen viability, H2O2 and •OH contents. The activity of caspase-3-like protease, an indicator of programmed cell death (PCD), was higher than that of the fresh pollen after 1 and 3 months of liquid nitrogen freezing, and the apoptosis rate was significantly increased after 5 and 8 months of LN stored, and the apoptosis rate was significantly correlated with pollen viability, H2O2 and •OH contents. In addition, appropriate concentration of exogenous oxidative damage inhibitors (AsA, GSH) and apoptosis-like inhibitors (caspase-3 inhibitors) significantly improved pollen viability after 8 months of cryopreservation.
      Conclusion  During the cryopreservation of P. lactiflora ‘Fen Yu Nu’ pollen, ROS components have an important effect on pollen viability after cryopreservation, the effects of H2O2 and •OH are particularly prominent. The oxidative stress response and programmed cell death induced by H2O2 and •OH are important reasons for the changes of pollen viability after liquid nitrogen cryopreservation.
  • [1]
    Rowe A W. Cryopreservation of red cells and platets[M]. Baltimore: University Park Press, 1980.
    [2]
    张亚利, 尚晓倩, 刘燕. 花粉超低温保存研究进展[J]. 北京林业大学学报, 2006, 28(4): 139−147. doi: 10.3321/j.issn:1000-1522.2006.04.026

    Zhang Y L, Shang X Q, Liu Y. Advances in research of pollen cryopreservation[J]. Journal of Beijing Forestry University, 2006, 28(4): 139−147. doi: 10.3321/j.issn:1000-1522.2006.04.026
    [3]
    Ren R F, Li Z D, Li B L, et al. Changes of pollen viability of ornamental plants after long-term preservation in a cryopreservation pollen bank[J]. Cryobiology, 2019, 89: 14−20.
    [4]
    Len J S, Koh W S, Tan S X. The roles of reactive oxygen species and antioxidants in cryopreservation [J/OL]. Bioscience Reports, 2019, 39(8): BSR20191601[2021−01−01] https://doi.org/10.1042/BSR20191601.
    [5]
    Jia M X, Shi Y, Di W, et al. ROS-induced oxidative stress is closely related to pollen deterioration following cryopreservation[J]. In Vitro Cellular & Developmental Biology-Plant, 2017, 53(4): 433−439.
    [6]
    Mittler R. Oxidative stress, antioxidatnts and stress tolerance[J]. Trends in Plant Science, 2002, 7(9): 405−410. doi: 10.1016/S1360-1385(02)02312-9
    [7]
    Jia M X, Jiang X R, Xu J, et al. CAT and MDH improve the germination and alleviate the oxidative stress of cryopreserved Paeonia and Magnolia pollen[J]. Acta Physiologiae Plantarum, 2018, 40(2): 37−47. doi: 10.1007/s11738-018-2612-0
    [8]
    Ren R F, Jiang X R, Di W, et al. HSP70 improves the viability of cryopreserved Paeonia lactiflora pollen by regulating oxidative stress and apoptosis-like programmed cell death events[J]. Plant Cell, Tissue and Organ Culture, 2019, 139(2): 53−64.
    [9]
    Ren R F, Li Z D, Zhang L L, et al. Enzymatic and nonenzymatic antioxidant systems impact the viability of cryopreserved Paeonia suffruticosa pollen[J]. Plant Cell, Tissue and Organ Culture, 2021, 144(1): 233−246. doi: 10.1007/s11240-020-01794-6
    [10]
    Ren R F, Li Z D, Zhou H, et al. Changes in apoptosis-like programmed cell death and viability during the cryopreservation of pollen from Paeonia suffruticosa[J]. Plant Cell, Tissue and Organ Culture, 2020, 140(1): 357−368.
    [11]
    Jiang X R, Di W, Jia M X, et al. MDH and CAT increase the germination of cryopreserved Paeonia pollen by regulating the ROS and apoptosis-like events[J]. Acta Horticulturae, 2019, 1234: 105−112.
    [12]
    Mittler R, Vanderauwera S, Gollery M, et al. Reactive oxygen gene network of plants[J]. Trends in Plant Science, 2004, 9(10): 490−498. doi: 10.1016/j.tplants.2004.08.009
    [13]
    Chen G Q, Ren L, Zhang J, et al. Cryopreservation affects ROS-induced oxidative stress and antioxidant response in Arabidopsis seedlings[J]. Cryobiology, 2015, 70(1): 38−47. doi: 10.1016/j.cryobiol.2014.11.004
    [14]
    王爱国, 罗广华. 植物的超氧物自由基与羟胺反应的定量关系[J]. 植物生理学通讯, 1990(6): 55−57.

    Wang A G, Luo G M. Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plants[J]. Plant Physiology Communications, 1990(6): 55−57.
    [15]
    李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000: 260−261.

    Li H S. Assay of malondialdehyde in plants: experiment principle and technology of plant physiology and biochemistry [M]. Beijing: Higher Education Press, 2000: 260−261.
    [16]
    Gogorcena Y, Iturbe-Omaetxe I, Escuredo P, et al. Antioxidant defenses against activated oxygen in pea nodules subjected to water stress[J]. Plant Physiology, 1995, 108(2): 753−759. doi: 10.1104/pp.108.2.753
    [17]
    Ma W W, Xu W A, Xu H, et al. Nitric oxide modulates cadmium influx during cadmium-induced programmed cell death in tobacco BY-2 cells[J]. Planta, 2010, 232(2): 325−335. doi: 10.1007/s00425-010-1177-y
    [18]
    Prochazkova D, Sairam R K, Srivastava G C, et al. Oxidative stress and antioxidant activity as the basis of senescence in maize leaves[J]. Plant Science, 2001, 161(4): 765−771. doi: 10.1016/S0168-9452(01)00462-9
    [19]
    Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J]. Plant and Cell Physiology, 1981, 22(5): 867−880.
    [20]
    Kampfenkel K, Montagu M V, Inzé D. Extraction and determination of ascorbate and dehydroascorbate from plant tissue[J]. Analytical Biochemistry, 1995, 225: 165−167. doi: 10.1006/abio.1995.1127
    [21]
    Fang J Y, Wetten A, Johnston J. Headspace volatile markers for sensitivity of cocoa (Theobroma cacao L.) somatic embryos to cryopreservation[J]. Plant Cell Reports, 2008, 27(3): 453−461. doi: 10.1007/s00299-007-0487-4
    [22]
    Zhang D, Ren L, Chen G Q, et al. ROS-induced oxidative stress and apoptosis-like event directly affect the cell viability of cryopreserved embryogenic callus in Agapanthus praecox[J]. Plant Cell Reports, 2015, 34(9): 1499−1513. doi: 10.1007/s00299-015-1802-0
    [23]
    Fleck R A, Benson E E, Bremner D H, et al. A comparative study of antioxidant protection in cryopreserved unicellular algae Euglena gracilis and Haematococcus pluvialis[J]. Cryoletters, 2003, 24(4): 213−228.
    [24]
    Dröge W. Free radicals in the physiological control of cell function[J]. Physiology Review, 2002, 82(1): 47−95.
    [25]
    Asada K. The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1990, 50: 601−639.
    [26]
    Agarwal S. Increased antioxidant activity in Cassia seedlings under UV-B radiation[J]. Biologia Plantarum, 2007, 51(1): 157−160. doi: 10.1007/s10535-007-0030-z
    [27]
    Benson E E. Free radical damage in stored plant germplasm [M]. Rome: International Board for Plant Genetic Resources, 1990.
    [28]
    Benson E E, Bremner D. Oxidative stress in the frozen plant: a free radical point of view [M]//Fuller B J, Lane N, Benson E E. Life in the frozen state. Boca Raton: CRC Press, 2004: 205−241.
    [29]
    Uchendu E E, Leonard S W, Traber M G, et al. Vitamins C and E improve regrowth and reduce lipid peroxidation of blackberry shoot tips following cryopreservation[J]. Plant Cell Reports, 2010, 29: 25−35.
    [30]
    Uchendu E E, Muminova M, Gupta S, et al. Antioxidant and anti-stress compounds improve regrowth of cryopreserved Rubus shoot tips[J]. In Vitro Cellular & Developmental Biology-Plant, 2010, 46(4): 386−393.
    [31]
    Reape T J, McCabe P F. Apoptotic-like regulation of programmed cell death in plants[J]. Apoptosis, 2010, 15: 249−256. doi: 10.1007/s10495-009-0447-2
    [32]
    Baust J M, Buskirk R V, Baust J G. Gene activation of the apoptotic caspase cascade following cryogenic storage[J]. Cell Preservation Technology, 2002, 1(1): 63−80. doi: 10.1089/15383440260073301
    [33]
    Bissoyi A, Pramanik K. Role of the apoptosis pathway in cryopreservation-induced cell death in mesenchymal stem cells derived from umbilical cord blood[J]. Biopreservation and Biobanking, 2014, 12(4): 246−254. doi: 10.1089/bio.2014.0005
  • Related Articles

    [1]Yang Dongye, Yu Xinxiao, Li Xuhong, Jiang Tao, Jia Guodong. Characteristics of sap flow of degraded Populus simonii in Bashang Area, Hebei Province of northern China and its response to environmental factors[J]. Journal of Beijing Forestry University, 2024, 46(7): 36-43. DOI: 10.12171/j.1000-1522.20230332
    [2]Zheng Dongsheng, Liu Qijing. Effects of environmental factors on forest community distribution in Changbai Mountain Nature Reserve of northeastern China[J]. Journal of Beijing Forestry University, 2023, 45(8): 57-64. DOI: 10.12171/j.1000-1522.20220086
    [3]Ma Jing, Guo Jianbin, Liu Zebin, Wang Yanhui, Zhang Ziyou. Diurnal variations of stand transpiration of Larix principis-rupprechtii forest and its response to environmental factors in Liupan Mountains of northwestern China[J]. Journal of Beijing Forestry University, 2020, 42(5): 1-11. DOI: 10.12171/j.1000-1522.20190468
    [4]LI Xin-yu, LI Yan-ming, SUN Lin, XU Rui, ZHAO Song-ting, GUO Jia. Characteristics of transpiration water consumption and its relationship with environmental factors in Ginkgo biloba[J]. Journal of Beijing Forestry University, 2014, 36(4): 23-29. DOI: 10.13332/j.cnki.jbfu.2014.04.008
    [5]CHI Bo, CAI Ti-jiu, MAN Xiu-ling, LI Yi.. Effects of influencing factors on stem sap flow in Larix gmelinii in northern Da Hinggan Mountains, northeastern China.[J]. Journal of Beijing Forestry University, 2013, 35(4): 21-26.
    [6]WANG Xiu-wei, MAO Zi-jun. Effects of conducting tissue structure on sap flow density and stem CO2 efflux.[J]. Journal of Beijing Forestry University, 2013, 35(4): 9-15.
    [7]WANG Lian-chun, , ZHAI Ming-pu, LIU Dao-ping, ZHOU Zhi-feng. Relationship between stock sap flow rate of Zizyphus acidojujuba Hu and environmental factors.[J]. Journal of Beijing Forestry University, 2009, 31(6): 134-138.
    [8]CHEN Chong, LI Ji-yue, , WANG Yu- tao. Variation of stem sap flow of Salix matsudana and its impact factors.[J]. Journal of Beijing Forestry University, 2008, 30(4): 82-88.
    [9]DONG Bai_li, WANG Miao, JIANG Ping, JI Lan-zhu. Relations between water beetle diversity and environmental factors in northern slope of Changbai Mountain, northeastern China.[J]. Journal of Beijing Forestry University, 2008, 30(1): 74-78.
    [10]TIAN Jing-hui, HE Kang-ning, WANG Bai-tian, ZHANG Wei-qiang, YIN Jing. Relationship between transpiration of Platycladus orientalis and environmental factors in semi-arid region on Loess Plateau[J]. Journal of Beijing Forestry University, 2005, 27(3): 53-56.
  • Cited by

    Periodical cited type(27)

    1. 杨佳悦,丁国玉,田秀君. 最大熵模型在物种生境预测中的应用研究进展. 应用生态学报. 2025(02): 614-624 .
    2. 杨福成,洪兆春,丁红秀,邵明勤. 基于最大熵模型的鸳鸯潜在越冬分布区预测. 湿地科学. 2024(01): 60-71 .
    3. 陈飞,张杰京,王利繁,熊朝永,樊辉. 中国和老挝跨境区域亚洲象生境时空变化及保护成效. 生态学报. 2024(22): 10222-10233 .
    4. 刘夫仁,赛罕,贺伟,张正一,冯中华,张梓琪,鲍伟东. 内蒙古赛罕乌拉自然保护区马鹿夏季肠道菌群多样性. 野生动物学报. 2023(01): 90-97 .
    5. 张洁,王凯,张翼,严如玉,杨军飞,刘星辰,计勇. 潦河中源段水生条背萤生境适宜性评价. 安徽农业科学. 2023(03): 52-56+61 .
    6. 宋慧芳,党晓宏,高永,蒙仲举,孙艳丽. 基于MaxEnt模型的内蒙古自治区樟子松潜在分布研究. 四川农业大学学报. 2023(02): 203-208+248 .
    7. 张杰京,陈飞,谢菲,张鑫,尹文萍,樊辉. 亚洲象生境长时序变化及其对人象冲突的影响——基于融合MaxEnt与HSI模型的生境适宜性评价方法. 生态学报. 2023(09): 3807-3818 .
    8. 张旭,王玲玲,黄峰,田玉清,杨涛,张玉铭,刘亚恒. 长江中游地区麋鹿生境适宜性分析与生态廊道构建. 华中师范大学学报(自然科学版). 2023(03): 404-411 .
    9. 刘伟,李旭琴,李忠伦,李英,油志远,蒋勇,阮光华,鲁碧耕,杨楠. 四川贡嘎山中华斑羚和中华鬣羚的时空分布及重叠性. 应用生态学报. 2023(06): 1630-1638 .
    10. 申立泉,吴佳忆,周鑫,吕青昕,王燕群,袁乃秀,孟秀祥. 基于MaxEnt模型的北京周边山区野生狍(Capreolus pygargus)的生境适宜性评价. 生态学杂志. 2023(10): 2555-2560 .
    11. 吕环鑫,夏少霞,顾婧婧,苏常红,王春晓,崔鹏. 基于MaxEnt模型的仙居县大型兽类和珍稀鸟类栖息地适宜性评价. 生态学杂志. 2023(11): 2797-2805 .
    12. 邹珮雯,徐昉. 生态安全格局构建及景观生态风险预测——以赛罕乌拉国家级自然保护区为例. 生态学报. 2023(23): 9981-9993 .
    13. 杨超,范韦莹,蔡晓斌,王学雷,张玉铭,李鹏飞. 基于MaxEnt模型的湖北石首麋鹿国家级自然保护区散养麋鹿夏季生境适宜性评价. 长江流域资源与环境. 2022(02): 336-344 .
    14. 秦委,张虹,杨明霞,罗汉,江素萍,刘守金. 基于MaxEnt模型和ArcGIS的东南茜草潜在分布研究. 中国中医药信息杂志. 2022(05): 1-4 .
    15. 刘红彩,赵纳勋,庄钰琪,杨梅玲,赵惠茹,叶新平. 基于MaxEnt模型的秦岭山地斑羚生境适宜性评价. 生态学报. 2022(10): 4181-4188 .
    16. 滕扬,张沼,张书理,杨永昕,贺伟,王娜,张正一,鲍伟东. 大兴安岭南段马鹿生境适宜性分析与生态廊道构建. 生态学报. 2022(14): 5990-6000 .
    17. 王金凤,徐基良,李建强,周春发,邓文洪. 基于动物适宜栖息地的北京市自然保护地保护成效评估. 生态学报. 2022(19): 7807-7817 .
    18. 刘艳华,李卫东,张子栋,梁卓,杨娇,牛莹莹,周绍春. 黑龙江省老爷岭南部野猪种群现状及栖息地适宜性. 生态学杂志. 2022(11): 2208-2215 .
    19. 刘夫仁,贺伟,赛罕,冯中华,杨永昕,张正一,鲍伟东. 同域分布马鹿与中华斑羚的冬夏季食物构成比较. 动物学杂志. 2022(06): 845-854 .
    20. 孙珊,齐增湘,周敏,白瑾瑾,吕婧玮,刘鑫. 野生哺乳动物生态廊道构建——以云豹为例. 安徽农业科学. 2021(07): 81-84+96 .
    21. 陈智强,赵增辉,王远飞,韦力,丁国骅,林植华. 基于红外相机技术和MaxEnt模型的黑麂(Muntiacus crinifrons)活动节律分析和潜在适生区预测. 生态学报. 2021(09): 3535-3547 .
    22. 钟雪,杨楠,张龙,程跃红,冯茜,胡强,金义国. 卧龙国家级自然保护区绿尾虹雉种群分布和生境质量评价. 四川动物. 2021(05): 509-516 .
    23. 郭飞龙,徐刚标,卢孟柱,孟艺宏,袁承志,郭恺琦. 基于MaxEnt模型分析胡杨潜在适宜分布区. 林业科学. 2020(05): 184-192 .
    24. 龚旭,付强,王磊,杨彪,张全建,张远彬. 四川鞍子河保护地水鹿和羚牛栖息地适宜性评价与重叠性分析. 生态学报. 2020(14): 4842-4851 .
    25. 李响,张成福,贺帅,王雨晴,苗林. MaxEnt模型综合应用研究进展分析. 绿色科技. 2020(14): 14-17 .
    26. 张晓晨,邵长亮,葛炎,陈晨,徐文轩,杨维康. 新疆卡拉麦里山有蹄类野生动物自然保护区夏季蒙古野驴适宜生境与种群数量评估. 应用生态学报. 2020(09): 2993-3004 .
    27. Jing Yang,Guo-Fen Zhu,Jian Jiang,Chang-Lin Xiang,Fu-Li Gao,Wei-Dong Bao. Non-invasive genetic analysis indicates low population connectivity in vulnerable Chinese gorals:concerns for segregated population management. Zoological Research. 2019(05): 439-448 .

    Other cited types(24)

Catalog

    Article views (955) PDF downloads (59) Cited by(51)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return