• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Jiang Shuaifei, Cui Ying, Zhao Ruirui, Qi Shuaizheng, Kong Lisheng, Zhao Jian, Li Shanshan, Zhang Jinfeng. Agrobacterium tumefaciens-mediated transformation of hybrid sweetgum embryogenic callus[J]. Journal of Beijing Forestry University, 2021, 43(8): 9-17. DOI: 10.12171/j.1000-1522.20210032
Citation: Jiang Shuaifei, Cui Ying, Zhao Ruirui, Qi Shuaizheng, Kong Lisheng, Zhao Jian, Li Shanshan, Zhang Jinfeng. Agrobacterium tumefaciens-mediated transformation of hybrid sweetgum embryogenic callus[J]. Journal of Beijing Forestry University, 2021, 43(8): 9-17. DOI: 10.12171/j.1000-1522.20210032

Agrobacterium tumefaciens-mediated transformation of hybrid sweetgum embryogenic callus

More Information
  • Received Date: January 28, 2021
  • Revised Date: February 21, 2021
  • Available Online: July 14, 2021
  • Published Date: August 30, 2021
  •   Objective  Hybrid sweetgum is an important timber and ornamental tree resources in China, but its genetic transformation system has not been established yet. Establishing genetic transformation system of hybrid sweetgum provides a useful approach for trait improvement and allows us to conduct a functional identification of gene in hybrid sweetgum.
      Method  Based on the efficient somatic embryogenesis of hybrid sweetgum, the embryogenic calluses were transformed by Agrobacterium tumefaciens-mediated genetic transformation. Factors influencing transformation were studied by orthogonal experiment, including hygromycin selective pressure, concentration of Agrobacterium, infection time, co-culture time and co-culture temperature.
      Result  Results showed that the minimum lethal concentration of hygromycin to embryogenic callus was 10 mg/L. The number of Gus positive spots was highest when bacterium solution (OD600) was 0.8, co-culture time was 3 d, infection time was 10 min, co-culture temperature was 25 ℃. The most transgenic positive resistant calluses were obtained when bacterium solution (OD600) was 0.2, co-culture time was 2 d, infection time was 10 min, co-culture temperature was 23 ℃. And the optimal treatment combination was 0.2 bacterium solution (OD600), 2 d co-culture time, 20 min infection time, 23 ℃ co-culture temperature.
      Conclusion  A total of 210 positive transgenic callus were obtained by molecular identification. The genetic transformation system was established, which provides more feasible foundation for the transformation of broadleaf tree callus.
  • [1]
    佘新松, 方乐金. 枫香树幼林生长节律的观察研究[J]. 江苏林业科技, 2001, 28(2):13−14,36. doi: 10.3969/j.issn.1001-7380.2001.02.004

    She X S, Fang L J. An investigation on growth rhythm of young trees of liquidambar[J]. Journal of Forestry Science & Technology, 2001, 28(2): 13−14,36. doi: 10.3969/j.issn.1001-7380.2001.02.004
    [2]
    徐金林. 枫香培育技术及其在园林绿化中的应用[J]. 现代农业科技, 2020(9):174−175. doi: 10.3969/j.issn.1007-5739.2020.09.106

    Xu J L. Cultivation technology of sweetgum and its application in landscaping[J]. Modern Agriculture Sciences and Technology, 2020(9): 174−175. doi: 10.3969/j.issn.1007-5739.2020.09.106
    [3]
    江聂, 姜卫兵, 翁忙玲, 等. 枫香的园林特性及其开发利用[J]. 江西农业学报, 2008, 20(12):46−49. doi: 10.3969/j.issn.1001-8581.2008.12.016

    Jiang N, Jiang W B, Weng M L, et al. Landscape characters of Liquidambar formosana and its exploitation[J]. Acta Agriculturae Jiangxi, 2008, 20(12): 46−49. doi: 10.3969/j.issn.1001-8581.2008.12.016
    [4]
    陈凤毛, 刘亮东, 高捍东. 美国枫香苗木培育技术研究概述[J]. 林业科技开发, 2001(4):9−11. doi: 10.3969/j.issn.1000-8101.2001.04.003

    Chen F M, Liu L D, Gao H D. Study on breeding technology of Liquidambar styraciflua seedlings[J]. China Forestry Science and Technology, 2001(4): 9−11. doi: 10.3969/j.issn.1000-8101.2001.04.003
    [5]
    Sullivan J, Lagrimini L M. Transformation of Liquidambar styraciflua using Agrobacterium tumefaciens[J]. Plant Cell Reports, 1993, 12: 303−306.
    [6]
    Dowda P F, Lagrimini L M, Herms D A. Differential leaf resistance to insects of transgenic sweetgum (Liquidambar styraciflua) expressing tobacco anionic peroxidase[J]. Cellular and Molecular Life Sciences, 1998, 54: 712−720. doi: 10.1007/s000180050198
    [7]
    Walsh M J. Genetic transformation of sweetgum (Liquidambar styraciflua L.) proembryogenic masses by microprojectile bombardment[D]. Athens: University of Georgia, 2003.
    [8]
    许林. 枫香基因转化体系的研究以及枫香AGAMOUS基因的初步功能分析[D]. 武汉: 华中农业大学, 2008.

    Xu L. Studies on Agrobacterium-medited transformation system and preliminary functional analysis of AGAMOUS gene in Liquidambar formasana Hance[D]. Wuhan: Huazhong Agricultural University, 2008.
    [9]
    刘冉冉. 枫香遗传转化体系的优化及转化PaFT基因的研究[D]. 武汉: 华中农业大学, 2010.

    Liu R R. Optimization of Agrobacterium-medited transformation system and genetic transformation with PaFT genes in Liquidambar formosana Hance[D]. Wuhan: Huazhong Agricultural University, 2010.
    [10]
    雷莎. 根癌农杆菌介导不育基因转化枫香以及美国枫香再生体系的建立[D]. 武汉: 华中农业大学, 2011.

    Lei S. Agrobacterium-medited transformation of sterility genes in Liquidambar formasana and establishment of in vivo plant regeneration of Liquidambar styraciflua[D]. Wuhan: Huazhong Agricultural University, 2011.
    [11]
    乔桂荣, 栾维江, 潘红伟, 等. 利用农杆菌介导法获得RNAi 转基因枫香的研究[J]. 浙江林学院学报, 2007, 24(2):140−144.

    Qiao G R, Luan W J, Pan H W, et al. The LEAFY gene in RNA interference (RNAi) transgenic Liquidambar formosana mediated by Agrobacterium tumefaciems[J]. Journal of Zhejiang Forestry College, 2007, 24(2): 140−144.
    [12]
    Vendrame W A, Holliday C P, Merkle S A. Clonal propagation of hybrid sweetgum (Liquidambar styraciflua × L. formosana) by somatic embryogenesis[J]. Plant Cell Reports, 2001, 20: 691−695. doi: 10.1007/s00299-001-0394-z
    [13]
    Scott A M, Klmeberly A N, Patricia J B, et al. Somatic embryogenesis and plantlet regeneration from immature and mature tissues of sweetgum (Liquidambar styraciflua)[J]. Plant Science, 1998(132): 169−178.
    [14]
    Pratheesh P T, Vineetha M, Kurup G M. An efficient protocol for the Agrobacterium-mediated genetic transformation of microalga Chlamydomonas reinhardtii[J]. Molecular Biotechnology, 2014, 56(6): 507−515. doi: 10.1007/s12033-013-9720-2
    [15]
    于波, 朱玉, 袁霖, 等. 金花茶花丝愈伤组织培养及其对抗生素敏感性研究[J]. 广东农业科学, 2017, 44(11):38−43, 2.

    Yu B, Zhu Y, Yuan L, et al. Calli tissue induction for Camellia nitidissima anther filaments and its sensitivity to antibiotics[J]. Guangdong Agricultural Sciences, 2017, 44(11): 38−43, 2.
    [16]
    杨凤美, 王飞, 张雯, 等. 葡萄风信子体细胞胚再生体系的建立及抗生素敏感性试验[J]. 西北农林科技大学学报(自然科学版), 2013, 41(6):109−116.

    Yang F M, Wang F, Zhang W, et al. Plant regeneration from somatic embryogenesis in Muscari armeniacum Blue Spike and antibiotics sensitivity test[J]. Journal of North west A&F University (Nat. Sci. Ed.), 2013, 41(6): 109−116.
    [17]
    Brasileiro A C, Leple J C, Muzzin J, et al. An alternative approach for gene transfer in trees using wild-type Agrobacterium strains[J]. Plant Molecular Biology, 1991, 17(3): 441−452. doi: 10.1007/BF00040638
    [18]
    Leple J C, Brasileiro A C, Michel M F, et al. Transgenic poplars: expression of chimeric genes using four different constructs[J]. Plant Cell Reports, 1992, 11(3): 137−141.
    [19]
    陈仲, 廖维华, 王静澄, 等. 影响农杆菌介导的杨树遗传转化技术的因素[J]. 植物生理学报, 2014, 50(8):1126−1134.

    Chen Z, Liao W H, Wang J C, et al. Factors influencing frequency of Agrobacterium-mediated Populus transformation[J]. Plant Physiology Journal, 2014, 50(8): 1126−1134.
    [20]
    Tzfira T, Jensen C S, Wang W, et al. Transgenic Populus tremula: a step-by-step protocol for its Agrobacterium-mediated transformation. Plant Molecular Biology Reporter, 1997, 15 (3): 219−235.
    [21]
    甄成. 毛果杨组培再生及遗传转化体系研究[D]. 哈尔滨: 东北林业大学, 2016.

    Zhen C. Study on regeneration and genetic transformation system of Populus trichocarpa[D]. Harbin: Northeast Forestry University, 2016.
    [22]
    郭水欢. 桃叶片愈伤组织诱导及遗传转化体系构建[D]. 郑州: 河南农业大学, 2017.

    Guo S H. Callus induction and establishment of transformation system on the leaf of peach[D]. Zhengzhou: Henan Agricultural University, 2017.
    [23]
    龚丽. 香榧体胚发生体系的优化及遗传体系的构建[D]. 杭州: 浙江农林大学2018, .

    Gong L. Optimization of somatic embryogenesis system and constructing genetic system of Torreya grandis ‘Merrillii’[D]. Hangzhou: Zhejiang Agriculture & Forestry University, 2018.
    [24]
    牛淑庆, 陈丽, 李雨欣, 等. 根癌农杆菌介导苹果愈伤组织遗传转化体系的优化[J]. 北京农学院学报, 2021, 36(1):37−41.

    Niu S Q, Chen L, Li Y X, et al. Optimization of Agobacterium tumefaciens mediated genetic transformation system of apple callus[J]. Journal of Beijing University of Agriculture, 2021, 36(1): 37−41.
    [25]
    郝贵霞, 朱祯, 朱之悌. 毛白杨遗传转化系统优化的研究[J]. 植物学报, 1999, 41(9):936−940.

    Hao G X, Zhu Z, Zhu Z T. Study on optimization of transformation of Populus tomentosa[J]. Acta Botanica Sinica, 1999, 41(9): 936−940.
    [26]
    曾黎辉, 吕柳新. 根癌农杆菌介导荔枝遗传转化研究[J]. 果树学报, 2003, 20(4):287−290.

    Zeng L H, Lü L X. A preliminary report on Agrobacterium tumefaciens mediated genetic transformation of litchi[J]. Journal of Fruit Science, 2003, 20(4): 287−290.
    [27]
    王关林, 方宏筠. 植物基因工程(第二版)[M]//那杰. 植物基因转化受体系统的建立. 北京: 科学出版社, 2002: 388−389.

    Wang G L, Fang H J. Plant genetic engineering (2nd ed.)[M]//Na J. Establishment of plant transformation receptor system. Beijing: Science Press, 2002: 388−389.
    [28]
    王关林, 方宏筠. 植物基因工程[M]. 北京: 科学出版社, 2002: 345−346.

    Wang G L, Fang H J. Plant genetic engineering[M]. Beijing: Science Press, 2002: 345−346.
    [29]
    周春丽, 郭卫东, 路梅. 农杆菌介导佛手遗传转化主要影响因素的研究[J]. 热带亚热带植物学报, 2006, 14(5):374−381. doi: 10.3969/j.issn.1005-3395.2006.05.003

    Zhou C L, Guo W D, Lu M. Factors effecting the transformation of Citrus medica L. var. sarcodactlis mediated by Agrobacterium[J]. Journal of Tropical and Subtropical Botany, 2006, 14(5): 374−381. doi: 10.3969/j.issn.1005-3395.2006.05.003
    [30]
    王栋鑫, 彭棣, 张爽. 农杆菌介导木本植物遗传转化的研究进展[J]. 北方园艺, 2018(2):181−185.

    Wang D X, Peng D, Zhang S. Advances in studies on genetic transformation of woody plants mediated by Agrobacterium tumefaciens[J]. Northern Horticulture, 2018(2): 181−185.
    [31]
    查丽燕, 宋舒晴, 王越, 等. 根癌农杆菌介导的巨大口蘑遗传转化体系的构建[J]. 菌物学报, 2020, 39(10):1897−1904.

    Zha L Y, Song S Q, Wang Y, et al. Construction of Agrobacterium-mediated transformation system in Macrocybe gigantea[J]. Mycosystema, 2020, 39(10): 1897−1904.
    [32]
    农友业, 何勇强, 覃燕, 等. 影响农杆菌介导玉米愈伤组织遗传转化因素的研究[J]. 广西植物, 2005(2):142−144. doi: 10.3969/j.issn.1000-3142.2005.02.013

    Nong Y Y, He Y Q, Qin Y, et al. Study of influence factors on transformation of maize embryogenic callus by Agrobacterium tumefaciens[J]. Guihaia, 2005(2): 142−144. doi: 10.3969/j.issn.1000-3142.2005.02.013
    [33]
    Zhuo R Y, Qiao G R, Sun Z X. Transgene expression in Chinese sweetgum driven by the salt induced expressed promoter[J]. Plant Cell, Tissue and Organ Culture, 2007, 88(1): 101−107. doi: 10.1007/s11240-006-9162-7
  • Cited by

    Periodical cited type(25)

    1. 成思丽,王丹,贺斌,胡兆柳,陈林,唐军荣,陈诗,许玉兰,蔡年辉. 不同苗龄云南松苗木平茬根系形态特征分析. 浙江农林大学学报. 2024(02): 322-332 .
    2. 蔡年辉,胡兆柳,贺斌,成思丽,陈林,唐军荣,陈诗,许玉兰,李根前. 云南松苗木萌枝能力对截干高度的响应. 西北农林科技大学学报(自然科学版). 2024(04): 85-94 .
    3. 向凌潇,张俊威,李建明. 灌溉量与灌溉频率对番茄根系生长、产量和营养元素吸收的影响. 西北农林科技大学学报(自然科学版). 2024(05): 80-92+123 .
    4. 崔远远,张征云,刘鹏,张运春,张桥英. 镉与聚乙烯微塑料胁迫对小白菜根系的形态特征和分形维数的影响. 生态环境学报. 2023(01): 158-165 .
    5. 覃桂丽,玉舒中. 降香黄檀根系性状对石灰岩石砾的适应响应. 西南林业大学学报(自然科学). 2023(03): 24-32 .
    6. 胡静,张桥英,张运春,崔远远,谭晶华. 水位对若尔盖高原湿地植物群落结构和植物功能性状的影响. 绿色科技. 2023(06): 22-29 .
    7. 石海涛,张大才. 干旱胁迫对高寒草甸不同功能群植物的影响. 林业科技通讯. 2023(08): 48-51 .
    8. 蔡年辉,唐军荣,李亚麒,陈诗,陈林,许玉兰,李根前. 植物生长调节剂对云南松苗木根系形态的影响. 河南农业大学学报. 2022(03): 381-391 .
    9. 代丽丽,张传生,石研. 黄栌个体生长情况与根系结构的关系探究. 现代园艺. 2022(12): 6-8 .
    10. 张燕,葛江琨,李洪亮,杨晨,戴振芬,陈洪年. 高陡岩质边坡体裂隙率与植物生长速度的关系研究. 安全与环境工程. 2022(04): 93-100 .
    11. 蔡年辉,唐军荣,李亚麒,陈诗,陈林,许玉兰,李根前. 云南松苗木根系可塑性对平茬高度的响应. 云南大学学报(自然科学版). 2022(06): 1305-1313 .
    12. 杜志敏,向凌云,杜凯敏,杨文玲,王继雯,雷高,郭雪白,郭亮,周静,巩涛,陈国参,甄静. 磷灰石、石灰对Cd胁迫下黑麦草根形态及Cd吸收影响研究. 农业环境科学学报. 2021(01): 92-101 .
    13. 贾林巧,陈光水,张礼宏,陈廷廷,姜琦,陈宇辉,范爱连,王雪. 常绿阔叶林外生和丛枝菌根树种细根形态和构型性状对氮添加的可塑性响应. 应用生态学报. 2021(02): 529-537 .
    14. 李宝财,梁文汇,蓝金宣,李军集,杨卓颖,黄晓露. 不同沙土配比基质对岗松幼苗根系形态及营养吸收的影响. 广西林业科学. 2021(02): 157-163 .
    15. 郑诚,温仲明,郭倩,樊勇明,杨玉婷,高飞. 基于MaxEnt模型的延河流域草本植物适生分布与功能性状分析. 生态学报. 2021(17): 6825-6835 .
    16. 李佳佳,魏多,徐翎清,王秋红,马龙彪,刘大丽. 甜菜对低氮胁迫的形态学响应机制. 中国农学通报. 2021(36): 41-46 .
    17. 张祖衔,邓薇,李春,徐洪伟,周晓馥. 施加枯草芽孢杆菌和哈茨木霉对黄瓜幼苗生长的影响. 北方园艺. 2021(23): 11-20 .
    18. 张岚,张玲卫,刘会良,陈艳锋. 降水增加对古尔班通古特沙漠两种短命植物生长的影响. 应用生态学报. 2020(01): 9-16 .
    19. 李金航,周玫,朱济友,徐程扬. 黄栌幼苗根系构型对土壤养分胁迫环境的适应性研究. 北京林业大学学报. 2020(03): 65-77 . 本站查看
    20. 李青,祖艳群,王吉秀,杨晶祥,牛秀艳. 铅锌矿区重金属胁迫对野生小花南芥根系特征的影响. 贵州农业科学. 2020(04): 148-152 .
    21. 吴焦焦,张文,高岚,谭星,乐佳兴,田秋玲,冯大兰,黄小辉,齐代华,许一丰,梁洪海,吴铭河,黄诗夏,刘芸. 三峡库区次生黄栌灌木林的群落特征及种间联结性. 生态学报. 2020(12): 4053-4063 .
    22. 李煜,赵国红,尹峰,宁立波. 岩质边坡覆绿植物的根系形态变化特征及影响因子研究. 湖南师范大学自然科学学报. 2020(02): 45-52+81 .
    23. 王效瑾,高巍,赵鹏,于冲冲,刘红恩,聂兆君,秦世玉,李畅. 小麦幼苗根系形态对镉胁迫的响应. 农业环境科学学报. 2019(06): 1218-1225 .
    24. 刘海,韦莉,任永胜,易艳灵,杨倩,李贤伟,范川. 柏木根系分泌物对栾树细根形态及N、P含量的影响. 西北植物学报. 2019(09): 1661-1669 .
    25. 周华健,冯文新,赵国红,尹峰,宁立波,白冰珂. 黄栌在高陡岩质边坡覆绿中的环境适应特征. 湖南师范大学自然科学学报. 2019(05): 60-64+80 .

    Other cited types(18)

Catalog

    Article views (1307) PDF downloads (92) Cited by(43)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return