• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Song Runxian, Li Xiang, Mao Xiuhong, Wang Li, Chen Xiangli, Yao Junxiu, Zhao Xiyang, Li Shanwen. Transcriptome analysis of clone Populus deltoides ‘Zhonghe 1’ under cadmium stress[J]. Journal of Beijing Forestry University, 2021, 43(7): 12-21. DOI: 10.12171/j.1000-1522.20210037
Citation: Song Runxian, Li Xiang, Mao Xiuhong, Wang Li, Chen Xiangli, Yao Junxiu, Zhao Xiyang, Li Shanwen. Transcriptome analysis of clone Populus deltoides ‘Zhonghe 1’ under cadmium stress[J]. Journal of Beijing Forestry University, 2021, 43(7): 12-21. DOI: 10.12171/j.1000-1522.20210037

Transcriptome analysis of clone Populus deltoides ‘Zhonghe 1’ under cadmium stress

More Information
  • Received Date: January 31, 2021
  • Revised Date: March 10, 2021
  • Available Online: June 22, 2021
  • Published Date: July 24, 2021
  •   Objective  Our objective was to explore the molecular mechanism of cadmium stress in Populus deltoides ‘Zhonghe 1’, search for anti-cadmium genes by transcriptome analysis and provide candidate plants for phytoremediation.
      Method  The experiment used sand to cultivate the P. deltoides ‘Zhonghe 1’. Different mass concentrations (0 mg/L (ZH1C0), 10 mg/L (ZH1C1), 20 mg/L (ZH1C2)) of cadmium ionic liquor were used to stress the clones. Then RNA extracted from leaves was sequenced by the system Illumina HiSeqTM2500.
      Result  PC1 is the principal component which can distinguish samples at different concentrations. The comparison between ZH1C0 and ZH1C2 in differential expression analysis revealed that 4 109 differential genes were detected, among which 2 741 were up-regulated and 1 368 were down-regulated. Similarly, in comparison with the ZH1C1 and ZH1C2 in differential expression analysis, 3 710 differential genes were detected with 1 969 up-regulated genes and 1 741 down-regulated ones. It was found by the annotation, which were in different databases that cadmium stress could affect the electron transport in chloroplasts and mitochondria. Transcription factor analysis showed that WRKY, MYB, ZIP, bHLH and ERF played an important role in cadmium stress.
      Conclusion  The results indicate that HIPPs play a crucial part in preventing the Cd2+ from entering the cell. GSH could not only promote the Cd2+ binding but also alleviate intracellular oxidative stress. The ABC family proteins and the MATE family proteins are the key carriers for the transfer of the Cd-PCs in the P. deltoides ‘Zhonghe 1’.
  • [1]
    高彪. 土壤重金属污染程度分析及等级评估研究[J]. 山西化工, 2020, 40(5):186−188.

    Gao B. Analysis and grade assessment of soil heavy metal pollution[J]. Shanxi Chemical Industry, 2020, 40(5): 186−188.
    [2]
    孙鑫, 娄燕宏, 王会, 等. 重金属污染土壤的植物强化修复研究进展[J]. 土壤通报, 2017, 48(4):1008−1013.

    Sun X, Lou Y H, Wang H, et al. Review on enhancing phytoremediation of soil contamination by heavy metals[J]. Chinese Journal of Soil Science, 2017, 48(4): 1008−1013.
    [3]
    Upadhyay R K. Metal stress in plants: its detoxification in natural environment[J]. Brazilian Journal of Botany, 2014, 37(4): 377−382. doi: 10.1007/s40415-014-0087-9
    [4]
    Pavla Z, Michal H, Stanislava V, et al. Distribution of P, K, Ca, Mg, Cd, Cu, Fe, Mn, Pb and Zn in wood and bark age classes of willows and poplars used for phytoextraction on soils contaminated by risk elements[J]. Environmental Science and Pollution Research, 2015, 22(23): 18801−18813. doi: 10.1007/s11356-015-5043-0
    [5]
    邹花莉, 马倩, 常江峰, 等. 不同物种龙葵对镉胁迫的生理响应研究[J]. 陕西科技大学学报, 2021, 39(1):32−38, 57.

    Zhou H L, Ma Q, Chang J F, et al. Studies on the physiological response of different species of Solanum nigrum to cadmium stress[J]. Journal of Shaanxi University of Science, 2021, 39(1): 32−38, 57.
    [6]
    杨琴, 樊战辉, 孙家宾, 等. 东南景天种植及对土壤重金属锌和Cd的去除研究[J]. 农业与技术, 2020, 40(2):3−6.

    Yang Q, Fan Z H, Sun J B, et al. Planting and removal of heavy metals Zn and Cd from soil of Sedum sativum L.[J]. Agriculture and Technology, 2020, 40(2): 3−6.
    [7]
    杨园, 王艮梅. 杨树对Cd胁迫的响应及抗性机制研究进展[J]. 世界林业研究, 2017, 30(4):29−34.

    Yang Y, Wang G M. Poplar response to Cd stress and its resistance mechanism[J]. World Forestry Research, 2017, 30(4): 29−34.
    [8]
    吉亚飞. 不同林种对土壤重金属污染修复影响研究[J]. 农村经济与科技, 2019, 30(21):9−10. doi: 10.3969/j.issn.1007-7103.2019.21.005

    Ji Y F. Effects of different forest species on remediation of soil heavy metal pollution[J]. Rural Economy and Science, 2019, 30(21): 9−10. doi: 10.3969/j.issn.1007-7103.2019.21.005
    [9]
    余国营, 吴燕玉, 王新. 杨树落叶前后重金属元素内外迁移循环规律研究[J]. 应用生态学报, 1996, 7(2):201−206.

    Yu G Y, Wu Y Y, Wang X. Transfer and cycling of heavy metals in and out of the larch trees (Larix olgensis var. koreana Nakai) before and after leaf fallen[J]. Chinese Journal of Applied Ecology, 1996, 7(2): 201−206.
    [10]
    朱珍珍, 张明锦, 张健, 等. 外源NO对铅胁迫下雌雄美洲黑杨生理特征的影响[J]. 云南农业大学学报(自然科学), 2019, 34(3):494−502.

    Zhu Z Z, Zhang M J, Zhang J, et al. The effects of an exogenous nitric oxide on the physiological characteristics in females and males of Populus deltoides exposed to Pb stress[J]. Journal of Yunnan Agricultural University(Natural Science), 2019, 34(3): 494−502.
    [11]
    陈良华, 胡相伟, 杨万勤, 等. 接种丛枝菌根真菌对雌雄美洲黑杨吸收铅镉的影响[J]. 环境科学学报, 2017, 37(1):308−317.

    Chen L H, Hu X W, Yang W Q, et al. Effects of arbuscular mycorrhizae fungi inoculation on absorption of Pb and Cd in females and males of Populus deltoides when exposed to Pb and Cd pollution[J]. Acta Scientiae Circumstantiae, 2017, 37(1): 308−317.
    [12]
    姚俊修, 乔艳辉, 杨庆山, 等. 重金属镉胁迫对黑杨派无性系光合生理及生长的影响[J]. 西北林学院学报, 2020, 35(2):40−46, 107. doi: 10.3969/j.issn.1001-7461.2020.02.06

    Yao J X, Qiao Y H, Yang Q S, et al. Effects of cadmium stress on the growth and photosynthesis of Aigeiros clones[J]. Journal of Northwest Forestry University, 2020, 35(2): 40−46, 107. doi: 10.3969/j.issn.1001-7461.2020.02.06
    [13]
    姚俊修, 陈甘牛, 李善文, 等. 镉胁迫对黑杨派无性系生理生化特性及生长的影响[J]. 北京林业大学学报, 2020, 42(4):12−20. doi: 10.12171/j.1000-1522.20190462

    Yao J X, Chen G N, Li S W, et al. Physiological and biochemical properties and growth of Aigeiros clones under cadmium stress[J]. Journal of Beijing Forestry University, 2020, 42(4): 12−20. doi: 10.12171/j.1000-1522.20190462
    [14]
    刘诺. 杨树对林区土壤铅镉复合污染修复的试验研究[D]. 南京: 南京林业大学, 2020.

    Liu N. Experimental study on poplar remediation of lead and cadmium compound pollution in forest area[D]. Nanjing: Nanjing Forestry University, 2020.
    [15]
    张艳丽. 嫁接杨树对镉胁迫的分子生理响应机制研究[D]. 杨凌: 西北农林科技大学, 2016.

    Zhang Y L. The physiological and molecular mechanisms of grafted poplar species in response to cadmium stress[D]. Yangling: Northwest A&F University, 2016.
    [16]
    何佳丽. 杨树对重金属镉胁迫的分子生理响应机制研究[D]. 杨凌: 西北农林科技大学, 2014.

    He J L. A study on mechanisms of molecular and physiological responses to cadmium in Populus species[D]. Yangling: Northwest A&F University, 2014.
    [17]
    Kersey P J, Allen J E, Armean I, et al. Ensembl genomes 2016: more genomes, more complexity[J]. Nucleic Acids Research, 2016, 44(D1): D574−D580. doi: 10.1093/nar/gkv1209
    [18]
    Kim D, Langmead B, Salzberg S. HISAT: a fast spliced aligner with low memory requirements[J]. Nat Methods, 2015, 12(4): 357−360. doi: 10.1038/nmeth.3317
    [19]
    Langmead B, Salzberg S. Fast gapped-read alignment with Bowtie 2[J]. Nat Methods, 2012, 9(4): 357−359. doi: 10.1038/nmeth.1923
    [20]
    Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools[J]. Bioinformatics, 2009, 25(16): 2078−2079. doi: 10.1093/bioinformatics/btp352
    [21]
    Liao Y, Smyth G K, Shi W. The subread aligner: fast, accurate and scalable read mapping by seed-and-vote[J]. Nucleic Acids Research, 2013, 41(10): e108. doi: 10.1093/nar/gkt214
    [22]
    Michael I, Wolfgang H, Simon A. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology, 2014, 15(12): 550. doi: 10.1186/s13059-014-0550-8
    [23]
    Jaime H, Damian S, Davide H, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses[J]. Nucleic Acids Research, 2019, 47(D1): D309−D314. doi: 10.1093/nar/gky1085
    [24]
    王影, 邱文敏, 李鹤, 等. 东南景天SaWRKY7基因对镉胁迫的响应研究[J]. 南京林业大学学报(自然科学版), 2019, 43(3):59−66.

    Wang Y, Qiu W M, Li H, et al. Research on the response of SaWRKY7 gene to cadmium stress in Sedum alfredii Hance[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2019, 43(3): 59−66.
    [25]
    孟云. 拟南芥WRKY47基因在镉胁迫应答中的作用机理研究[D]. 合肥: 合肥工业大学, 2019.

    Meng Y. Mechanism by which WRKY47 gene regulating the cadmium stress response in Arabidopsis thaliana[D]. Hefei: Hefei University of Technology, 2019.
    [26]
    丁杰, 张晓娜, 朴春兰, 等. 大豆根系中应答镉胁迫的R2R3-MYB基因分析[J]. 生态学杂志, 2018, 37(7):2030−2039.

    Ding J, Zhang X N, Piao C L, et al. Analysis of the R2R3-MYB genes in soybean roots in response to Cd stress[J]. Chinese Journal of Ecology, 2018, 37(7): 2030−2039.
    [27]
    李梦颖. 107杨镉胁迫相关基因表达调控机制研究[D]. 北京: 中国林业科学研究院, 2015.

    Li M Y. The study of regulation mechanism of gene expression for Populus × euramericana (Dode) guineir ‘Neva’ under Cd stress[D]. Beijing: Chinese Academy of Forestry, 2015.
    [28]
    王景晨, 陈信波. 植物非生物胁迫应答相关转录因子研究进展[J]. 湖南农业科学, 2011, 41(17):9−12. doi: 10.3969/j.issn.1006-060X.2011.17.003

    Wang J C, Chen X B. Advances in transcription factors related to plant abiotic stress response[J]. Hunan Agricultural Sciences, 2011, 41(17): 9−12. doi: 10.3969/j.issn.1006-060X.2011.17.003
    [29]
    苏稚喆, 王雪华, 杨华, 等. 镉胁迫下麻疯树转录组测序分析[J]. 中国生物工程杂志, 2016, 36(4):69−77.

    Su Z Z, Wang X H, Yang H, et al. Transcriptome analysis of cadmium exposed Jatropha curcas[J]. China Biotechnology, 2016, 36(4): 69−77.
    [30]
    王艳敏, 白卉, 曹焱. bHLH转录因子研究进展及其在植物抗逆中的应用[J]. 安徽农业科学, 2015, 43(21):34−35, 50. doi: 10.3969/j.issn.0517-6611.2015.21.013

    Wang Y M, Bai H, Cao Y. Research progress of bHLH transcription factor and application in plant abiotic stress tolerance[J]. Journal of Anhui Agricultural Sciences, 2015, 43(21): 34−35, 50. doi: 10.3969/j.issn.0517-6611.2015.21.013
    [31]
    Philip E D, Philip R S, Anne M, et al. A new class of proteins capable of binding transition metals[J]. Plant Molecular Biology, 1999, 41(1): 139−150.
    [32]
    Mark D H, Christopher E J, Marc S, et al. Intracellular copper routing: the role of copper chaperones[J]. Trends in Biochemical Sciences, 2000, 25(1): 29−32.
    [33]
    Nobuaki S, Yube Y, Nozomu K, et al. Functional characterization of a heavy metal binding protein CdI19 from Arabidopsis[J]. The Plant Journal, 2002, 32(2): 165−173.
    [34]
    Giovanni D, Silvia F, Silvia M, et al. How plants cope with cadmium: staking all on metabolism and gene expression[J]. Journal of Integrative Plant Biology, 2008, 50(10): 1268−1280. doi: 10.1111/j.1744-7909.2008.00737.x
    [35]
    刘祉辛, 孙亿敬, 李姣爱, 等. 高等植物硫酸盐吸收与代谢的调控机制[J]. 上海师范大学学报(自然科学版), 2019, 48(4):460−468.

    Liu Z X, Sun Y J, Li J A, et al. Regulation mechanism of sulfate uptake and metabolism in higher plants[J]. Journal of Shanghai Normal University (Natural Sciences), 2019, 48(4): 460−468.
    [36]
    谭利蓉. 阿特拉津胁迫下水稻细胞色素P450酶系的研究[D]. 南京: 南京农业大学, 2015.

    Tan L R. Study on the rice cytochrome P450 enzymes under atrazine exposure[D]. Nanjing: Nanjing Agricultural University, 2015.
    [37]
    曹冠华, 柏旭, 陈迪, 等. ABC转运蛋白结构特点及在植物和真菌重金属耐性中的作用与机制[J]. 农业生物技术学报, 2016, 24(10):1617−1628.

    Cao G H, Bai X, Chen D, et al. Structure characteristics of ABC transporter protein and the function and mechanism on enhancing resistance of plants and fungi to heavy metals[J]. Journal of Agricultural Biotechnology, 2016, 24(10): 1617−1628.
    [38]
    吕泽玉, 王文静, 赵明明, 等. 拟南芥MATE转运蛋白DTX6参与镉离子的胞内运输[J]. 复旦学报(自然科学版), 2020, 59(4):390−398, 411.

    Lü Z Y, Wang W J, Zhao M M, et al. DTX6, a member of the MATE family transporter from Arabidopsis, is involved in intracellular cadmium transport[J]. Journal of Fudan University (Natural Science), 2020, 59(4): 390−398, 411.

Catalog

    Article views (1569) PDF downloads (97) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return