• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Xia Xi, Gong Rui, Feng Shucheng, Zhang Chunying. Types and quantitative analysis of anthocyanins in F1 hybrid among varieties in Rhododendron subgenus Tsutsusi[J]. Journal of Beijing Forestry University, 2022, 44(5): 105-114. DOI: 10.12171/j.1000-1522.20210060
Citation: Xia Xi, Gong Rui, Feng Shucheng, Zhang Chunying. Types and quantitative analysis of anthocyanins in F1 hybrid among varieties in Rhododendron subgenus Tsutsusi[J]. Journal of Beijing Forestry University, 2022, 44(5): 105-114. DOI: 10.12171/j.1000-1522.20210060

Types and quantitative analysis of anthocyanins in F1 hybrid among varieties in Rhododendron subgenus Tsutsusi

More Information
  • Received Date: February 18, 2021
  • Revised Date: March 19, 2021
  • Available Online: April 01, 2022
  • Published Date: May 24, 2022
  •   Objective  Color is the major ornamental characteristics of plants, anthocyanins are the key compounds of flower colors. The types and contents of anthocyanins can provide insight into the mechanism of petal color.
      Method  In this study, 36 samples of three pairs of Rhododendron subgenus Tsutsusi parents and their hybrids were subjected to anthocyanins profiling in petals and their separation characteristics using UPLC –Q –TOF –MS.
      Result  This study identified 17 compounds, including peonindin 3-O-galactoside, delphinidin 3-galactoside, malvidin 3-O-galactoside, and petunidin 3-galactoside, which were detected for the first time in Rhododendron subgenus Tsutsusi. A majority of anthocyanins in Rhododendron subgenus Tsutsusi are cyanidin, peonidin, and petunidin in the form of arabinosides. Cyanidin 3-arabinoside, cyanidin 3-O-glucoside and peonidin are responsible for the red-colored petals in Rhododendron subgenus Tsutsusi. Delphinidin 3-arabinoside, delphinidin 3-O-glucoside, malvidin 3-arabinoside, and malvidin 3-O-glucoside contribute to the petal’s purple color, while petunidin 3-O-arabinoside contributes to their purplish red color. The anthocyanin segregation analysis revealed that peonidin and cyanidin had transgressive inheritance, whereas malvidin 3-arabinoside, malvidin 3-O-glucoside, and petunidin 3-O-arabinoside had paternal inheritance.
      Conclusion  In this study, we demonstrate the coloring mechanism of Rhododendron subgenus Tsutsusi, which provides a reference for parent selection in breeding.
  • [1]
    Tanaka Y, Ohmiya A. Seeing is believing: engineering anthocyanin and carotenoid biosynthetic pathways[J]. Current Opinion in Biotechnology, 2008, 19(2): 190−197. doi: 10.1016/j.copbio.2008.02.015
    [2]
    Du Q Z, Jerz G, Winterhalter P. Isolation of two anthocyanin sambubiosides from bilberry (Vaccinium myrtillus) by high-speed counter-current chromatography[J]. Journal of Chromatography A, 2004, 1045: 59−63. doi: 10.1016/j.chroma.2004.06.017
    [3]
    Zhang J J, Wang L S, Shu Q Y, et al. Comparison of anthocyanins in non-blotches and blotches of the petals of Xibei tree peony[J]. Scientia Horticulture, 2007, 114(2): 104−111. doi: 10.1016/j.scienta.2007.05.009
    [4]
    Li J B, Hashimoto F, Shimizu K, et al. A new acylated anthocyanin from the red flowers of Camellia hongkongensis and characterization of anthocyanins in the Section Camellia species[J]. Journal of Integrative Plant Biology, 2009, 51(6): 545−552. doi: 10.1111/j.1744-7909.2009.00828.x
    [5]
    Diaconeasa Z, Stirbu I, Xiao J B, et al. Anthocyanins, vibrant color pigments, and their role in skin cancer prevention[J/OL]. Biomedicines, 2020, 8(9): 336[2021−01−01]. https://doi.org/10.3390/biomedicines8090336.
    [6]
    Li J B, Hashimoto F, Shimizu K, et al. Anthocyanins from red flowers of Camellia cultivar ‘Dalicha’[J]. Phytochemistry, 2008, 69(18): 3166−3171.
    [7]
    de Loose R. The flower pigments of the Belgian hybrids of Rhododendron simsii and other species and varieties from Rhododendron subseries obtusum[J]. Phytochemistry, 1969, 8(1): 253−259. doi: 10.1016/S0031-9422(00)85822-7
    [8]
    de Loose R. Flavonoid glycosides in the petals of some Rhododendron species and hybrids[J]. Phytochemistry, 1970, 9(4): 875−879. doi: 10.1016/S0031-9422(00)85196-1
    [9]
    Mizuta D, Ban T, Miyajima I, et al. Comparison of flower color with anthocyanin composition patterns in evergreen azalea[J]. Scientia Horticulturae, 2009, 122(4): 594−602. doi: 10.1016/j.scienta.2009.06.027
    [10]
    Du H, Lai L M, Wang F, et al. Characterization of flower coloration in 30 Rhododendron species via anthocyanin and flavonol identification and quantitative traits[J]. Plant Biology, 2018, 20(1): 121−129. doi: 10.1111/plb.12649
    [11]
    李崇辉, 王亮生, 舒庆艳, 等. 迎红杜鹃花色素组成及花色在开花过程中的变化[J]. 园艺学报, 2008, 35(7): 1023−1030. doi: 10.3321/j.issn:0513-353X.2008.07.013

    Li C H, Wang L S, Shu Q Y, et al. Pigments composition of petals and floral color change during the blooming period in Rhododendron mucronulatum[J]. Acta Horticulturae Sinica, 2008, 35(7): 1023−1030. doi: 10.3321/j.issn:0513-353X.2008.07.013
    [12]
    吴丽媛, 罗向东, 戴亮芳, 等. 杜鹃花色素的分离与鉴定分析[J]. 食品科学, 2011, 32(13): 19−23.

    Wu L Y, Luo X D, Dai L F, et al. Extraction and primary identification of anthocyanidins in Rhododendron flowers[J]. Food Science, 2011, 32(13): 19−23.
    [13]
    赵歌. 杜鹃(Rhododendron ripense)花色素的研究与应用[D]. 苏州: 苏州大学, 2012.

    Zhao G. Research and application of anthocyanidin extraction from flower of Rhododendron ripense [D]. Suzhou: Soochow University, 2012.
    [14]
    郑茜子, 赵冰, 曾慧敏, 等. 3 种不同颜色秦岭美容杜鹃花瓣中色素组成和含量比较分析[J]. 西北林学院学报, 2017, 32(1): 62−68. doi: 10.3969/j.issn.1001-7461.2017.01.10

    Zheng X Z, Zhao B, Zeng H M, et al. Comparative analysis of composition and content of pigments in petals of three different colors of Rhododendron calophytum in Qinling Mountains[J]. Journal of Northwest Forestry University, 2017, 32(1): 62−68. doi: 10.3969/j.issn.1001-7461.2017.01.10
    [15]
    Chamberlain D F, Rae S J. A revision of Rhododendron IV subgenus Tsutsusi[J]. Edinburgh Journal of Botany, 1990, 47: 89−200.
    [16]
    Eeckhaut T, Keyser D, Huylenbroeck V, et al. Application of embryo rescue after interspecific crosses in the genus Rhododendron[J]. Plant Cell Tissue and Organ Culture, 2007, 89: 29−35. doi: 10.1007/s11240-007-9209-4
    [17]
    董雪娜, 陈希, 蒋甲福, 等. 非洲菊F代观赏性状的遗传表现[J]. 南京农业大学学报, 2015, 38(2): 226−232. doi: 10.7685/j.issn.1000-2030.2015.02.008

    Dong X N, Chen X, Jiang J F, et al. Heredity of ornamental traits in F1 of Gerbera jamesonii Bolus[J]. Journal of Nanjing Agricultural University, 2015, 38(2): 226−232. doi: 10.7685/j.issn.1000-2030.2015.02.008
    [18]
    王欢, 孔滢, 郎利新, 等. 亚洲百合与大花卷丹杂种 F1 重要性状的遗传分析[J]. 华北农学报, 2017, 32(4): 114−121. doi: 10.7668/hbnxb.2017.04.019

    Wang H, Kong Y, Lang L X, et al. Genetic analysis of important characters in F1 hybrids of Lilium Asiatic hybrids and L. leichtlinii var. maximowiczii[J]. Acta Agriculturae Boreali-Sinica, 2017, 32(4): 114−121. doi: 10.7668/hbnxb.2017.04.019
    [19]
    陈艳艳, 黄少华, 冷青云, 等. 不同红掌杂交组合 F1代重要形态性状的遗传分析[J]. 热带作物学报, 2019, 40(8): 1488−1494. doi: 10.3969/j.issn.1000-2561.2019.08.005

    Chen Y Y, Huang S H, Leng Q Y, et al. Genetic analysis of key morphological characters in different cross combinations of anthurium cultivars[J]. Chinese Journal of Tropical Crops, 2019, 40(8): 1488−1494. doi: 10.3969/j.issn.1000-2561.2019.08.005
    [20]
    钟乃盛, 冯桂梅, 黄万坚, 等. 杜鹃红山茶种问杂交F1代实生苗主要性状的遗传表达[C]//中国园艺学会. 中国观赏园艺研究进展2012年会论文集. 北京: 中国林业出版社, 2012: 151−159.

    Zhong N S, Feng G M, Huang W J, et al. Genetic expressions of primary characteristics in the F1 seedlings obtained from camellia azalea ’s inter-specific hybridizations[C]//Chinese Society for Horticultural Science. Proceedings of the 2012 Annual Conference of the advances in Ornamental Horticulture of China. Beijing: China Forestry Publishing House, 2012: 151−159.
    [21]
    刘晓青, 苏家乐, 陈璐, 等. 杜鹃花品种(种)间杂交F1代主要观赏性状的遗传表现[J]. 江苏农业学报, 2012, 28(2): 459−460. doi: 10.3969/j.issn.1000-4440.2012.02.042

    Liu X Q, Su J L, Chen L, et al. Genetic performance of ornamental traits in F1 inter varietal hybrids of Rhododendron[J]. Jiangsu Journal of Agricultural Sciences, 2012, 28(2): 459−460. doi: 10.3969/j.issn.1000-4440.2012.02.042
    [22]
    徐文姬. 野鸢尾与射干种间杂交后代遗传变异及花色形成机理研究[D]. 沈阳: 沈阳农业大学, 2018.

    Xu W J. Mechanism of flower color formation and genetic analysis of hybrid progenies derived from the cross of Iris dichotoma and I. domestica[D]. Shenyang: Shenyang Agricultural University, 2018.
    [23]
    陈越, 李纪元, 倪慧, 等. 杜鹃花花色苷遗传变异的研究[J]. 林业科学研究, 2013, 26(1): 81−87. doi: 10.3969/j.issn.1001-1498.2013.01.014

    Chen Y, Li J Y, Ni H, et al. Research on genetic variations of anthocyanins in azalea petals[J]. Forest Research, 2013, 26(1): 81−87. doi: 10.3969/j.issn.1001-1498.2013.01.014
    [24]
    Wang L S, Hashimoto F, Shiraishi A, et al. Chemical taxonomy of the Xibei tree peony from China by floral pigmentation[J]. Journal of Plant Research, 2004, 117(1): 47−55.
    [25]
    de Riek J, de Keyser E, Calsyn E, et al. Ornamental crops[M]. Berlin: Springer, 2018: 237−271.
    [26]
    于晓南, 张启翔. 观赏植物的花色素苷与花色[J]. 林业科学, 2002, 38(3): 147−153. doi: 10.3321/j.issn:1001-7488.2002.03.026

    Yu X N, Zhang Q X. Anthocyanin in ornamental plant and color express[J]. Scientia Silvae Sinicae, 2002, 38(3): 147−153. doi: 10.3321/j.issn:1001-7488.2002.03.026
    [27]
    张 洁, 王亮生, 高锦明, 等. 贴梗海棠花青苷组成及其与花色的关系[J]. 园艺学报, 2011, 38(3): 527−534.

    Zhang J, Wang L S, Gao J M, et al. Identification of anthocyanins involving in petal coloration in Chaenomeles speciosa cultivars[J]. Acta Horticulturae Sinica, 2011, 38(3): 527−534.
    [28]
    李辛雷, 殷恒福, 范正琪, 等. 山茶芽变花色与花青苷的关系[J]. 中国农业科学, 2019, 52(11): 1961−1969. doi: 10.3864/j.issn.0578-1752.2019.11.010

    Li X L, Yin H F, Fan Z Q, et al. The relationship between anthocyanins and flower colors of bud mutation in Camellia japonica[J]. Scientia Agricultura Sinica, 2019, 52(11): 1961−1969. doi: 10.3864/j.issn.0578-1752.2019.11.010
    [29]
    陶秀花, 袁媛, 徐怡倩, 等. 风信子花瓣花色苷组成分析[J]. 园艺学报, 2015, 42(2): 301−310.

    Tao X H, Yuan Y, Xu Y Q, et al. Anthocyanin profiles in petals of different Hyacinthus orientalis[J]. Acta Horticulturae Sinica, 2015, 42(2): 301−310.
    [30]
    Miyajima I, Ureshino K, Kobayashi N, et al. Flower color and pigments of intersubgeneric hybrid between white-flowered evergreen and yellow-flowered deciduous azaleas[J]. J Japan Soc Hort Sci, 2000, 69(3): 280−282. doi: 10.2503/jjshs.69.280
    [31]
    李霞, 吴钰滢, 封晔. 风信子不同花色品种花青素苷含量及相关基因表达分析[J]. 分子植物育种, 2020, 18(14): 4562−4571.

    Li X, Wu Y Y, Feng Y. Analysis of anthocyanin content and related gene expression in different varieties of Hyacinthus orientalis[J]. Molecular Plant Breeding, 2020, 18(14): 4562−4571.
    [32]
    Yamagishi M, Yoshida Y, Nakayama M. The transcription factor LhMYB12 determines anthocyanin pigmentation in the tepals of Asiatic hybrid lilies (Lilium spp.) and regulates pigment quantity[J]. Molecular Breeding, 2012, 30(2): 913−925. doi: 10.1007/s11032-011-9675-6
    [33]
    Liu L, Zhang L Y, Wang S L, et al. Analysis of anthocyanins and flavonols in petals of 10 Rhododendron species from the Sygera Mountains in Southeast Tibet[J]. Plant Physiology and Biochemistry, 2016, 104(7): 250−256.
    [34]
    邓娇. 莲花瓣类黄酮色素分析及莲花瓣着色机理研究[D]. 武汉: 中国科学院武汉植物园, 2015.

    Deng J. The analysis of flavonoid pigments in lotus petals and the studies on the coloration mechanism of lotus petals[D]. Wuhan: Wuhan Botanical Garden, Chinese Academy of Sciences, 2015.
  • Related Articles

    [1]Zhang Minghui, Yin Yunzhou, Wang Ke, Wang Shuli. Effects of spatial structure characteristics of Fraxinus mandshurica plantation on soil nutrient content[J]. Journal of Beijing Forestry University, 2023, 45(9): 73-82. DOI: 10.12171/j.1000-1522.20220476
    [2]Hui Gangying, Zhao Zhonghua, Hu Yanbo, Zhang Ganggang, Zhang Gongqiao, Cheng Shiping, Lu Yanlei. Research on the measurement method of forest spatial structure diversity based on 4 neighborhood tree relationship[J]. Journal of Beijing Forestry University, 2023, 45(7): 18-26. DOI: 10.12171/j.1000-1522.20220282
    [3]Wang Lina, Wu Junwen, Dong Qiong, Shi Zhuogong, Hu Haocheng, Wu Danzi, Li Luping. Effects of tending and thinning on non-structural carbon and stoichiometric characteristics of Pinus yunnanensis[J]. Journal of Beijing Forestry University, 2021, 43(8): 70-82. DOI: 10.12171/j.1000-1522.20210115
    [4]Hu Xuefan, Zhang Huiru, Zhou Chaofan, Zhang Xiaohong. Effects of different thinning patterns on the spatial structure of Quercus mongolica secondary forests[J]. Journal of Beijing Forestry University, 2019, 41(5): 137-147. DOI: 10.13332/j.1000-1522.20190037
    [5]LI Jian, PENG Peng, HE Huai-jiang, TAN Ling-zhao, ZHANG Xin-na, WU Xiang-ju, LIU Zhao-gang. Effects of thinning intensity on spatial structure of multi-species temperate forest at Jiaohe in Jilin Province, northeastern China[J]. Journal of Beijing Forestry University, 2017, 39(9): 48-57. DOI: 10.13332/j.1000-1522.20170220
    [6]LI Ji-ping, FENG Yao, ZHAO Chun-yan, ZHANG Cai-cai. Quantitative analysis of stand spatial structure of Cunninghamia lanceolata non-commercial forest based on Voronoi diagram.[J]. Journal of Beijing Forestry University, 2014, 36(4): 1-7. DOI: 10.13332/j.cnki.jbfu.2014.04.005
    [7]WANG Ping, JIA Li-ming, WEI Song-po, WANG Qi-feng. Analysis of stand spatial structure of Platycladus orientalis recreational forest based on Voronoi diagram method[J]. Journal of Beijing Forestry University, 2013, 35(2): 39-44.
    [8]DONG Ling-bo, LIU Zhao-gang, MA Yan, NI Bao-long, LI Yuan. A new composite index of stand spatial structure for natural forest.[J]. Journal of Beijing Forestry University, 2013, 35(1): 16-22.
    [9]DUAN Chang-sheng, WANG Jun-hui, MA Jian-wei, YUAN Shi-yun, DU Yan-chang. Evaluation of Quercus aliena var. acuteserrata forest at the western segment of Qinling Mountain,northwestern China[J]. Journal of Beijing Forestry University, 2009, 31(5): 61-66.
    [10]LIU Yan, YU Xin-xiao, YUE Yong-jie, GAN Jing, WANG Xiao-ping, LI Jin-hai. Spatial structure of Robinia pseudoacacia plantation in Miyun Reservoir Watershed of Beijing.[J]. Journal of Beijing Forestry University, 2009, 31(5): 25-28.
  • Cited by

    Periodical cited type(8)

    1. 张慧,燕怡帆,朱雅,陈玉婷,王菁华,崔志鹏,杨迪,任学敏. 林分密度对伏牛山南麓山茱萸人工林林下草本植物多样性和土壤性质的影响. 西南林业大学学报(自然科学). 2025(01): 96-105 .
    2. 赵金同,马俊. 刺槐扦插育苗技术与精细抚育要点. 现代园艺. 2024(08): 49-51 .
    3. 何欢,康必均,尹婧,李菲,彭栋,李桂静,查同刚. 不同营林措施对川东华蓥山杉木林土壤团聚体稳定性及细根分布的影响. 土壤通报. 2024(02): 351-359 .
    4. 史小鹏,苟贺然,何淑勤,刘柏廷,冉兰芳,杨琪琳,扎西拉姆,陈雨馨,骆紫藤. 成都市温江区两种绿地土壤抗蚀抗冲性及其影响因素. 水土保持通报. 2024(04): 117-125 .
    5. 刘忆南,申振宏,都都,张知然,林勇明. 蒋家沟泥石流堆积扇不同植被类型区土壤抗蚀性评价. 应用与环境生物学报. 2024(05): 886-893 .
    6. 王依瑞,王彦辉,段文标,李平平,于澎涛,甄理,李志鑫,尚会军. 黄土高原刺槐人工林郁闭度对林下植物多样性特征的影响. 应用生态学报. 2023(02): 305-314 .
    7. 赵云鹤,钟鹏,高晗,付玉. 土地利用类型对典型黑土团聚体稳定性和抗蚀性的影响. 东北林业大学学报. 2023(09): 112-119 .
    8. 胡亚伟,施政乐,刘畅,徐勤涛,张建军. 晋西黄土区刺槐林密度对林下植物多样性及土壤理化性质的影响. 生态学杂志. 2023(09): 2072-2080 .

    Other cited types(9)

Catalog

    Article views (852) PDF downloads (74) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return