• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Geng Hongkai, Bi Chunzhu, Wei Linxin, Song Zhenqi, Li Qingwei. Effects of mixed salt stress on the growth and physiological and biochemical characteristics of Elaeagnus angustifolia seedlings from different provenances[J]. Journal of Beijing Forestry University, 2021, 43(10): 9-17. DOI: 10.12171/j.1000-1522.20210066
Citation: Geng Hongkai, Bi Chunzhu, Wei Linxin, Song Zhenqi, Li Qingwei. Effects of mixed salt stress on the growth and physiological and biochemical characteristics of Elaeagnus angustifolia seedlings from different provenances[J]. Journal of Beijing Forestry University, 2021, 43(10): 9-17. DOI: 10.12171/j.1000-1522.20210066

Effects of mixed salt stress on the growth and physiological and biochemical characteristics of Elaeagnus angustifolia seedlings from different provenances

More Information
  • Received Date: February 24, 2021
  • Revised Date: March 26, 2021
  • Available Online: September 30, 2021
  • Published Date: October 29, 2021
  •   Objective  The physiological responses of different provenances of Elaeagnus angustifolia to mixed salt stress were studied to provide basis for the selection of excellent salt tolerant germplasm and landscape application of Elaeagnus angustifolia.
      Method  Two-year-old Elaeagnus angustifolia seedlings from Yinchuan of Ningxia and Zhangye of Gansu of northwestern China were used as experimental materials. The mixed salt solution of 1∶1 (volume ratio) of NaCl and Na2SO4 was used to stress for 40 days, and the growth and physiological indexes of seedlings were observed.
      Result  With the increase of salt concentration and stress time, the leaf length, leaf width, shoot growth, ground diameter growth and chlorophyll content (Chl) of Elaeagnus angustifolia seedlings from two provenances decreased. The membrane permeability (MP), MDA content, proline content (Pro) and soluble sugar content (SS) of leaves showed an upward trend; the soluble protein content (SP) first increased, then decreased, and then increased; the activities of SOD and POD first increased and then decreased. With the increase of salt concentration, the net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr) of seedlings decreased, while the intercellular CO2 concentration (Ci) increased. With the extension of stress time, the Pn of Elaeagnus angustifolia from two provenances decreased first, then increased and then decreased; stomatal conductance of leaves decreased first, then increased and then decreased; intercellular CO2 concentration decreased first and then increased; transpiration rate of leaves showed a downward trend. The salt tolerance thresholds of Ningxia and Gansu provenances were 1.088% and 1.153%, respectively.
      Conclusion  Comprehensive analysis showed that the salt tolerance of Elaeagnus angustifolia seedlings in different provenances was different, and the salt tolerance of Elaeagnus angustifolia seedlings in Gansu provenance was stronger than that in Ningxia provenance. Chl, Ci, MDA, Tr, MP, Pro and other six indicators can be used as important indicators to evaluate the salt tolerance of Elaeagnus angustifolia. Leaf length, leaf width, shoot growth, ground diameter growth and other indicators can be used as auxiliary evaluation reference indicators. The results of this study are of great significance for the evaluation of salt tolerance and the introduction and cultivation of germplasm of Elaeagnus angustifolia, as well as the enrichment of plant landscape and improvement of ecological environment in saline-alkali area.
  • [1]
    刘正祥, 张华新, 杨秀艳, 等. NaCl胁迫下沙枣幼苗生长和阳离子吸收、运输与分配特性[J]. 生态学报, 2014, 34(2):326−336.

    Liu Z X, Zhang H X, Yang X Y, et al. Growth, and cationic absorption, transportation and allocation of Elaeagnus angustifolia seedlings under NaCl stress[J]. Acta Ecologica Sinica, 2014, 34(2): 326−336.
    [2]
    郑秀玲, 林静, 信健, 等. 同一种源地两种沙枣对NaCl胁迫的响应及耐盐阈值[J]. 作物杂志, 2017(4):143−149.

    Zheng X L, Lin J, Xin J, et al. Response to NaCl stress and salinity threshold by two species of Elaeagnus from the same provenance[J]. Crops, 2017(4): 143−149.
    [3]
    王利军. 不同种源沙枣对水分和盐分胁迫生长的响应[D]. 北京: 北京林业大学, 2010.

    Wang L J. Water and salt stress response on the growth of different provenances Elaeagnus angustifolia[D]. Beijing: Beijing Forestry University, 2010.
    [4]
    Zalesny R S, Stange C M, Birr B A. Survival, height growth, and phytoextraction potential of hybrid poplar and Russian olive (Elaeagnus Angustifolia L.) established on soils varying in salinity in North Dakota, USA [J/OL]. Forests 2019, 10, 672 [2020−12−09]. https://doi.org/10.3390/f10080672.
    [5]
    陈春晓, 谢秀华, 王宇鹏, 等. 盐分和干旱对沙枣幼苗生理特性的影响[J]. 生态学报, 2019, 39(12):4540−4550.

    Chen C X, Xie X H, Wang Y P, et al. Effects of salt and drought on the physiological characteristics of Elaeagnus angustifolia L. seedlings[J]. Acta Ecologica Sinica, 2019, 39(12): 4540−4550.
    [6]
    Liu X J, Chen C X, Liu Y, et al. The presence of moderate salt can increase tolerance of Elaeagnus angustifolia seedlings to waterlogging stress [J/OL]. Plant Signaling & Behavior, 2020, 15(4): 1743518 [2020−12−26]. https://doi.org/10.1080/15592324.2020.1743518.
    [7]
    杨升, 张华新, 陈秋夏, 等. NaCl 胁迫下不同种源沙枣的生理特性[J]. 核农学报, 2015, 29(11):2215−2223. doi: 10.11869/j.issn.100-8551.2015.11.2215

    Yang S, Zhang H X, Chen Q X, et al. Physiological characteristics of different Elaeagnus angustifolia L. provenances under NaCl stress[J]. Journal of Nuclear Agricultural Sciences, 2015, 29(11): 2215−2223. doi: 10.11869/j.issn.100-8551.2015.11.2215
    [8]
    杨升, 张华新, 杨秀艳, 等. NaCl 胁迫下不同种源沙枣的生长表现差异[J]. 林业科学, 2015, 51(9):51−58.

    Yang S, Zhang H X, Yang X Y, et al. Differential growth performance of Elaeagnus angustifolia provenances under NaCl stress[J]. Scientia Silvae Sinicae, 2015, 51(9): 51−58.
    [9]
    王利军, 马履一, 王爽, 等. 水盐胁迫对沙枣幼苗叶绿素荧光参数和色素含量的影响[J]. 西北农业学报, 2010, 19(12):122−127. doi: 10.3969/j.issn.1004-1389.2010.12.024

    Wang L J, Ma L Y, Wang S, et al. Effects of water and salt stress on chlorophyll fluorescence parameters and pigment contents of Elaeagnus angustifolia L. seedlings[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2010, 19(12): 122−127. doi: 10.3969/j.issn.1004-1389.2010.12.024
    [10]
    陈爱葵, 韩瑞宏, 李东洋, 等. 植物叶片相对电导率测定方法比较研究[J]. 广东教育学院学报, 2010, 30(5):88−91.

    Chen A K, Han R H, Li D Y, et al. A comparison of two methods for electrical conductivity about plant leaves[J]. Journal of Guangdong University of Education, 2010, 30(5): 88−91.
    [11]
    李合生. 植物生理生化试验原理和技术[M]. 北京: 高等教育出版社, 2006.

    Li H S. Principles and techniques of plant physiological and biochemical experiments [M]. Beijing: Higher Education Press, 2006.
    [12]
    高俊凤, 植物生理学试验指导[M]. 北京: 高等教育出版社, 2006.

    Gao J F, Plant physiology experiment guidance [M]. Beijing: Higher Education Press, 2006.
    [13]
    王殿, 袁芳, 王宝山, 等. 能源植物杂交狼尾草对NaCl胁迫的响应及其耐盐阈值[J]. 植物生态学报, 2012, 36(6):572−577.

    Wang D, Yuan F, Wang B S, et al. Response of plant biofuel hybrid Pennisetum to NaCl stress and its salinity threshold[J]. Chinese Journal of Plant Ecology, 2012, 36(6): 572−577.
    [14]
    李彦, 张英鹏, 孙明, 等. 盐分胁迫对植物的影响及植物耐盐机理研究进展[J]. 中国农学通报, 2008, 24(1):258−265.

    Li Y, Zhang Y P, Sun M, et al. Research advance in the effects of salt stress on plant and the mechanism of plant resistance[J]. Chinese Agricultural Science Bulletin, 2008, 24(1): 258−265.
    [15]
    李思思. NaCl和Na2SO4盐胁迫对沙枣生长和生理生化特性的影响[D]. 北京: 北京林业大学, 2017.

    Li S S. Effects of NaCl and Na2SO4 salt stress on the growth and physiological and biochemical characteristics of Elaeagnus angustifolia[D]. Beijing: Beijing Forestry University, 2017.
    [16]
    赵海燕, 魏宁, 孙聪聪, 等. NaCl胁迫对银杏幼树组织解剖结构和光合作用的影响[J]. 北京林业大学学报, 2018, 40(11):28−41.

    Zhao H Y, Wei N, Sun C C, et al. Effects of salt stress on anatomic structure of tissue and photosynthesis in Ginkgo biloba seedlings[J]. Journal of Beijing Forestry University, 2018, 40(11): 28−41.
    [17]
    魏秀君, 殷云龙, 芦治国, 等. NaCl胁迫对5种绿化植物幼苗生长和生理指标的影响及耐盐性综合评价[J]. 植物资源与环境学报, 2011, 20(2):35−42. doi: 10.3969/j.issn.1674-7895.2011.02.006

    Wei X J, Yin Y L, Lu Z G, et al. Effects of NaCl stress on growth and physiological indexes of five greening plant seedlings and comprehensive evaluation of their salt tolerance[J]. Plant Resources and Environment, 2011, 20(2): 35−42. doi: 10.3969/j.issn.1674-7895.2011.02.006
    [18]
    王忠. 植物生理学[M]. 北京: 中国农业出版社, 2000: 422−439.

    Wang Z. Plant physiology [M]. Beijing: China Agriculture Press, 2000: 422−439.
    [19]
    Farooq S, Azam F. The use of cell membrane stability (CMS) technique to screen for salt tolerant wheat varieties[J]. Journal of Plant Physiology, 2006, 163(6): 629−637.
    [20]
    Marcelo F P, Ricardo B L, Hermerson S V, et al. Photosynthesis, photoprotection and antioxidant activity of purging nut under drought deficit and recovery[J]. Biomass and Bioenergy, 2010, 34(8): 1207−1215.
    [21]
    赵福庚, 刘友良. 胁迫条件下高等植物体内脯氨酸代谢及调节的研究进展[J]. 植物学通报, 1999, 16(5):540−546.

    Zhao F G, Liu Y L. Advances in study on metabolism and rgulation of proline in higher plants under stress[J]. Chinese Bulletin of Botany, 1999, 16(5): 540−546.
    [22]
    Close T J, Bray E A. Plant responses to cellular dehydration during environment stress[J]. Plant Physiology, 1993, 103(10): 91−93.
    [23]
    张海燕, 赵可夫. 盐分和水分胁迫对盐地碱蓬幼苗渗透调节效应的研究[J]. 植物学报, 1998, 40(1): 56−61.

    Zhang H Y, Zhao K F. Effect of salt and water stress on osmotic adjustment of Suaeda salsa seedlings[J]. Acta Botanica Sinica, 1998, 40(1): 56−61.
    [24]
    杨艳, 黎云祥, 胥晓. 珙桐种子休眠解除和萌发过程中主要抗氧化酶活性和代谢产物含量的变化[J]. 植物分类与资源学报, 2015, 37(6):779−789.

    Yang Y, Li Y X, Xu X. The activity of principal antioxidant enzymes and the content of metabolites in dormancy breaking and germination of Davidia involucrate seeds[J]. Plant Diversity, 2015, 37(6): 779−789.
    [25]
    Parida A K, Das A B, Mohanty P. Defense potentials to NaCl in a mangrove, Bruguiera parviflora: differential changes of isoforms of some antioxidative enzymes[J]. Plant Physiology, 2004, 161: 531−542. doi: 10.1078/0176-1617-01084
    [26]
    Al-Saady N A, Khan A J, Rajesh L, et al. Effect of salt stress on germination, proline metabolism and chlorophyll content of fenugreek (Trigonella foenum gracium L.)[J]. Journal of Plant Sciences, 2012, 7(5): 176−185. doi: 10.3923/jps.2012.176.185
    [27]
    Zhani K, Elouer M A, Aloui H, et al. Selection of a salt tolerant Tunisian cultivar of chili pepper (Capsicum frutescens)[J]. EurAsian Journal of BioSciences, 2012, 6: 47−59.
    [28]
    Sneha S, Rishi A, Chandra S. Effect of short term salt stress on chlorophyll content, protein and activities of catalase and ascorbate peroxidase enzymes in pearl millet[J]. American Journal of Plant Physiology, 2014, 9(1): 32−37.
    [29]
    Amal F A, Henrik A, Christer S. High salt stress in wheat leaves causes retardation of chlorophyll accumulation due to a limited rate of protochlorophyllide formation [J]. Physiologia Plantarum, 2007, 130(1): 157−166.
    [30]
    李秀霞. 新疆大果沙枣的抗盐性研究[D]. 乌鲁木齐: 新疆农业大学, 2005.

    Li X X. The study on characteristics of salt-resistance of Elaeagnus mooraroftii in Xinjiang [D]. Urumqi: Xinjiang Agricultural University, 2005.
    [31]
    Brugnoli E, Lauteri M. Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt-tolerant (Gossypium hirsutum L.) and salt-sensitive (Phaseolus vulgaris L.) C(3) non-halophytes[J]. Plant Physiology, 1991, 95(2): 628−635. doi: 10.1104/pp.95.2.628
    [32]
    郑国琦, 许兴, 徐兆桢, 等. 盐胁迫对枸杞光合作用的气孔与非气孔限制[J]. 西北植物学报, 2002, 22(6):75−79.

    Zheng G Q, Xu X, Xu Z Z, et al. The effect of salt stress on the stomatal and non-stomatal limitation of photosynthesis of Lycium barbarum[J]. Acta Botanica Boreali-Occidentalia Sinica, 2002, 22(6): 75−79.
    [33]
    李源, 刘贵波, 高洪文, 等. 紫花苜蓿种质耐盐性综合评价及盐胁迫下的生理反应[J]. 草业学报, 2010, 19(4):79−86.

    Li Y, Liu G B, Gao H W, et al. A comprehensive evaluation of salt-tolerance and the physiological response of Medicago sativa at the seedling stage[J]. Acta Prataculturae Sinica, 2010, 19(4): 79−86.
    [34]
    孙宗玖, 李培英, 阿不来提, 等. 26份偃麦草种质苗期耐盐性评价[J]. 草原与草坪, 2013, 33(3):43−49, 56. doi: 10.3969/j.issn.1009-5500.2013.03.009

    Sun Z J, Li P Y, Abulaiti, et al. Evaluation on salt resistance of 26 Elytrigria repens germplasm in seedling stage[J]. Grassland and Turf, 2013, 33(3): 43−49, 56. doi: 10.3969/j.issn.1009-5500.2013.03.009
  • Cited by

    Periodical cited type(6)

    1. 姜有军. 探究沙木蓼的引种与栽培技术. 农业灾害研究. 2023(03): 40-42 .
    2. 亓守贺,李昊远,张恒,孔凡克,曲威. 复合酶解耦合微生物发酵制备海藻生物有机液肥的研究. 湖北农业科学. 2022(07): 20-24+30 .
    3. 王冠都,王俊,王慧荣,李胜利,张世柏,孙清华,汪强. 有机种植下液肥施用量对番茄生长及品质的影响. 河南科学. 2022(07): 1062-1070 .
    4. 李思,弓瑶,詹保成,李友丽,王利春,郭文忠. 中国有机液肥的应用现状及发展趋势. 中国农学通报. 2021(21): 75-79 .
    5. 刘晓佩,李鸣晓,戴昕,李雪琪,窦润琪,王勇,贾璇,冯作山,安立超. 不同菌剂制备餐厨垃圾液态有机肥过程物质转化规律研究. 环境工程技术学报. 2021(04): 750-755 .
    6. 张世婷. 浅谈沙木蓼的引种与栽培. 中国林业产业. 2021(08): 49-50 .

    Other cited types(4)

Catalog

    Article views (1054) PDF downloads (95) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return