• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Yang Xiong, Yang Ning, Yuan Qihua, Zhao Guijuan, Li Guolei, Jia Liming, Chen Zhong. Development and application of EST-SSR molecular markers in Pinus bungeana[J]. Journal of Beijing Forestry University, 2021, 43(7): 1-11. DOI: 10.12171/j.1000-1522.20210094
Citation: Yang Xiong, Yang Ning, Yuan Qihua, Zhao Guijuan, Li Guolei, Jia Liming, Chen Zhong. Development and application of EST-SSR molecular markers in Pinus bungeana[J]. Journal of Beijing Forestry University, 2021, 43(7): 1-11. DOI: 10.12171/j.1000-1522.20210094

Development and application of EST-SSR molecular markers in Pinus bungeana

More Information
  • Received Date: March 12, 2021
  • Revised Date: April 17, 2021
  • Available Online: May 31, 2021
  • Published Date: July 24, 2021
  •   Objective  As an endangered native tree species in China, Pinus bungeana has important economic and garden ornamental values. In order to further develop and utilize the species germplasm resources, the study evaluated the genetic diversity of three populations from different provenances in P. bungeana.
      Method  Simple sequence repeats were selected from the transcriptome data in P. bungeana, and then 96 pairs of primers were developed, and the genetic diversity of 60 individuals in Beijing Hot Spring Nursery collected from three different provenances (Beijing, Shandong, and Shanxi) was analyzed, and genetic diversity parameters between intra- and inter-population were analyzed.
      Result  The variation ranges of the observed heterozygosity, expected heterozygosity, polymorphism information content and the number of allele loci for 5 pairs of polymorphic primers were 0.203−0.433, 0.211−0.530, 0.187−0.484 and 2−5, respectively. The number of alleles, effective alleles, Shannon diversity index, observed heterozygosity and fixed index of the three populations ranged in 2.400−3.000, 1.516−1.761, 0.484−0.606, 0.295−0.362 and −0.075−0.081, the average values were 2.677, 1.632, 0.560, 0.333 and −0.007, respectively. The ranges of genetic differentiation coefficient and gene flows were 0.021 6−0.115 3 and 1.399 6−11.340 0, and the average values were 0.090 2 and 2.521 2, respectively. AMOVA analysis showed that genetic variation mainly comed from within the population, with small differences between populations, accounting for only 11%.
      Conclusion  This study obtained 5 pairs of polymorphic EST-SSR primers in P. bungeana, which can be used for subsequent analysis of the population genetic diversity and molecular marker-assisted breeding. Genetic diversity analysis about the three populations of P. bungeana shows that the existing populations in Beijing Hot Spring Nursery have high genetic similarity, and the populations from other provenances should be considered for the future germplasm resource preservation and seedling breeding work.
  • [1]
    彭重华, 薄楠林. 白皮松研究进展[J]. 中国农学通报, 2007, 23(11):174−178. doi: 10.3969/j.issn.1000-6850.2007.11.039

    Peng Z H, Bo N L. Research progress in Pinus bungeana[J]. Chinese Agricultural Science Bulletin, 2007, 23(11): 174−178. doi: 10.3969/j.issn.1000-6850.2007.11.039
    [2]
    李斌, 顾万春. 白皮松分布特点与研究进展[J]. 林业科学研究, 2003, 16(2):225−232. doi: 10.3321/j.issn:1001-1498.2003.02.017

    Li B, Gu W C. Distribution characteristics and research progress in Pinus bungeana[J]. Forest Research, 2003, 16(2): 225−232. doi: 10.3321/j.issn:1001-1498.2003.02.017
    [3]
    Cai Q, Li B, Lin F, et al. De novo sequencing and assembly analysis of transcriptome in Pinus bungeana Zucc. ex Endl[J]. Forests, 2018, 9(3): 156.
    [4]
    李斌, 顾万春, 卢宝明. 白皮松天然群体种实性状表型多样性研究[J]. 生物多样性, 2002, 10(2):181−188. doi: 10.3321/j.issn:1005-0094.2002.02.008

    Li B, Gu W C, Lu B M. A study on phenotypic diversity of seeds and cones characteristics in Pinus bungeana[J]. Biodiversity Science, 2002, 10(2): 181−188. doi: 10.3321/j.issn:1005-0094.2002.02.008
    [5]
    王小平, 刘晶岚, 王九龄, 等. 白皮松种子及球果形态特征的地理变异[J]. 北京林业大学学报, 1998, 20(3):28−34.

    Wang X P, Liu J L, Wang J L, et al. Geographical variation of morphologic characteristics of Pinus bungeana seeds and cones[J]. Journal of Beijing Forestry University, 1998, 20(3): 28−34.
    [6]
    李斌, 顾万春. 白皮松保育遗传学: 天然群体遗传多样性评价与保护策略[J]. 林业科学, 2005, 41(1):57−64. doi: 10.3321/j.issn:1001-7488.2005.01.011

    Li B, Gu W C. Conservation genetics of Pinus bungeana: evaluation and conservation of natural populations’ genetic diversity[J]. Scientia Silvae Sinicae, 2005, 41(1): 57−64. doi: 10.3321/j.issn:1001-7488.2005.01.011
    [7]
    张雪霞. 基于SCoT标记的白皮松景观基因组学研究[D]. 郑州: 河南农业大学, 2019.

    Zhang X X. The landscape genomics studies of Pinus bungeana (Pinaceae) based on SCoT molecular markers[D]. Zhengzhou: Henan Agricultural University, 2019.
    [8]
    刘芳. 基于核基因序列的白皮松谱系地理学研究[D]. 西安: 西北大学, 2011.

    Liu F. Phylogeography of Pinus bungeana based on nuclear genes[D]. Xi’an: Northwest University, 2011.
    [9]
    赵罕, 郑勇奇, 李斌, 等. 白皮松天然群体遗传结构的地理变异分析[J]. 植物遗传资源学报, 2013, 14(3):395−401.

    Zhao H, Zheng Y Q, Li B, et al. Genetic structure analysis of natural populations of Pinus bungeana in different geographical regions[J]. Journal of Plant Genetic Resources, 2013, 14(3): 395−401.
    [10]
    赵罕, 郑勇奇, 李斌, 等. 白皮松天然群体遗传多样性的EST-SSR分析[J]. 林业科学研究, 2014, 27(4):474−480.

    Zhao H, Zheng Y Q, Li B, et al. Genetic diversity analysis of Pinus bungeana natural populations with EST-SSR markers[J]. Forest Research, 2014, 27(4): 474−480.
    [11]
    李斌, 孟庆阳, 李言达, 等. 白皮松种质资源鉴定与评价[J]. 湖南林业科技, 2016, 43(2):1−7. doi: 10.3969/j.issn.1003-5710.2016.02.001

    Li B, Meng Q Y, Li Y D, et al. Identification and evaluation of germplasm resources of Pinus bungeana[J]. Hunan Forestry Science Technology, 2016, 43(2): 1−7. doi: 10.3969/j.issn.1003-5710.2016.02.001
    [12]
    李昕蔓, 金卓颖, 苏安然, 等. 白皮松EST-SSR序列分布特征及引物开发[J]. 林业与生态科学, 2019, 34(3):266−272.

    Li X M, Jin Z Y, Su A R, et al. EST-SSR sequnence distribution and primer development of Pinus bungeana[J]. Forestry and Ecological Sciences, 2019, 34(3): 266−272.
    [13]
    Kalia R K, Rai M K, Kalia S, et al. Microsatellite markers: an overview of the recent progress in plants[J]. Euphytica, 2011, 177(3): 309−334. doi: 10.1007/s10681-010-0286-9
    [14]
    Ellis J R, Burke J M. EST-SSRs as a resource for population genetic analyses[J]. Heredity, 2007, 99(2): 125−132. doi: 10.1038/sj.hdy.6801001
    [15]
    张利达, 唐克轩. 植物EST-SSR标记开发及其应用[J]. 基因组学与应用生物学, 2010, 29(3):534−541.

    Zhang L D, Tang K X. Development of plant EST-SSR markers and its application[J]. Genomics and Applied Biology, 2010, 29(3): 534−541.
    [16]
    李永强, 李宏伟, 高丽锋, 等. 基于表达序列标签的微卫星标记(EST-SSRs)研究进展[J]. 植物遗传资源学报, 2004, 5(1):91−95. doi: 10.3969/j.issn.1672-1810.2004.01.020

    Li Y Q, Li H W, Gao L F, et al. Prograss of simple sequence repeats derived from expressed sequence tags[J]. Journal of Plant Genetic Resources, 2004, 5(1): 91−95. doi: 10.3969/j.issn.1672-1810.2004.01.020
    [17]
    Jamali S H, Cockram J, Hickey L T. Insights into deployment of DNA markers in plant variety protection and registration[J]. Theoretical and Applied Genetics, 2019, 132(7): 1911−1929. doi: 10.1007/s00122-019-03348-7
    [18]
    Rungis D, Bérubé Y, Zhang J, et al. Robust simple sequence repeat markers for spruce (Picea spp.) from expressed sequence tags[J]. Theoretical and Applied Genetics, 2004, 109(6): 1283−1294. doi: 10.1007/s00122-004-1742-5
    [19]
    Bai T D, Xu L A, Xu M, et al. Characterization of masson pine (Pinus massoniana Lamb.) microsatellite DNA by 454 genome shotgun sequencing[J]. Tree Genetics & Genomes, 2014, 10(2): 429−437.
    [20]
    Xiang X Y, Zhang Z X, Wang Z G, et al. Transcriptome sequencing and development of EST-SSR markers in Pinus dabeshanensis, an endangered conifer endemic to China[J]. Molecular Breeding, 2015, 35(8): 1−10.
    [21]
    Echt C S, Saha S, Deemer D L, et al. Microsatellite DNA in genomic survey sequences and unigenes of loblolly pine[J]. Tree Genet Genomes, 2011, 7(4): 773−780.
    [22]
    Liu L, Zhang S J, Lian C L. De novo transcriptome sequencing analysis of cDNA library and large-scale unigene assembly in Japanese red pine (Pinus densiflora)[J]. International Journal of Molecular Sciences, 2015, 16(12): 29047−29059. doi: 10.3390/ijms161226139
    [23]
    Hulce D, Li X, Snyder-Leiby T, et al. Genemarker genotyping software: tools to increase the statistical power of DNA fragment analysis[J]. Journal of Biomolecular Techniques Jbt, 2011, 22(Suppl.): S35.
    [24]
    Kalinowski S T. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment[J]. Molecular Ecology, 2010, 16(5): 1099−1106.
    [25]
    Peakall R, Smouse P E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research: an update[J]. Bioinformatics, 2012, 28(19): 2537−2539. doi: 10.1093/bioinformatics/bts460
    [26]
    Duan D, Jia Y, Yang J, et al. Comparative transcriptome analysis of male and female conelets and development of microsatellite markers in Pinus bungeana, an endemic conifer in China[J]. Genes, 2017, 8(12): 363.
    [27]
    周惠娟. 濒危植物白皮松遗传多样性及遗传结构研究[D]. 西安: 西北大学, 2013.

    Zhou H J. Genetic diversity and population structure of natural endangered forest tree Pinus bungeana in China[D]. Xi’an: Northwest University, 2013.
    [28]
    杨一欣. 白皮松组植物的群体遗传学和物种形成研究[D]. 西安: 西北大学, 2016.

    Yang Y X. Population genetics and speciation of Sect. Parrya Mayr[D]. Xi’an: Northwest University, 2016.
    [29]
    李为民, 李思锋, 黎斌. 利用SSR分子标记分析秦岭冷杉自然居群的遗传多样性[J]. 植物学报, 2012, 47(4):413−421.

    Li W M, Li S F, Li B. Genetic diversity in natural populations of Abies chensiensis based on nuclear simple sequence repeat markers[J]. Chinese Bulletin of Botany, 2012, 47(4): 413−421.
    [30]
    Tong Y W, Lewis B J, Zhou W M, et al. Genetic diversity and population structure of natural Pinus koraiensis populations[J]. Forests, 2019, 11(1): 39.
    [31]
    Xiang X Y, Zhang Z X, Duan R Y, et al. Genetic diversity and structure of Pinus dabeshanensis revealed by expressed sequence tag-simple sequence repeat (EST-SSR) markers[J]. Biochemical Systematics and Ecology, 2015, 61: 70−77. doi: 10.1016/j.bse.2015.06.001
  • Related Articles

    [1]Wang Min, Guo Guangyu. Coupling and coordination relationship between urbanization and eco-environment in Shanghai metropolitan area: empirical analysis based on panel data from 2011 to 2020[J]. Journal of Beijing Forestry University, 2024, 46(7): 101-111. DOI: 10.12171/j.1000-1522.20230216
    [2]Gao Yushan, Peng Daoli, Zhang Nan, Yang Penghui, Yang Cancan, Chen Mingjie, Chen Jian. Remote sensing classification of stand type coupled with time series features[J]. Journal of Beijing Forestry University, 2024, 46(1): 68-81. DOI: 10.12171/j.1000-1522.20230093
    [3]He Zhongsheng, Gu Xinguang, Jiang Lan, Xu Daowei, Liu Jinfu, Li Wenzhou, Chen Wenwei. Characteristics and its influencing factors of forest soil dominant bacterial community in different elevations on the southern slope of Daiyun Mountain, Fujian Province of eastern China[J]. Journal of Beijing Forestry University, 2022, 44(7): 107-116. DOI: 10.12171/j.1000-1522.20200278
    [4]Xiao Ling, Jiang Qun’ou, Wang Meilin, Lü Kexin. Coupling coordination and prediction analysis of ecological infrastructure, habitat quality and industrial development in the Beijing-Tianjin-Hebei region of northern China[J]. Journal of Beijing Forestry University, 2021, 43(3): 96-105. DOI: 10.12171/j.1000-1522.20200346
    [5]Lian Yuzhen, Cao Lihua, Liu Heman, Yang Hong. Spatial distribution characteristics at small scale of soil organic carbon in topsoil of the west slope in Sejila Mountain, western China[J]. Journal of Beijing Forestry University, 2020, 42(9): 70-79. DOI: 10.12171/j.1000-1522.20190481
    [6]ZHOU Yun-yan, CHEN Jian-ping, YANG Qian, WANG Xiao-mei. In situ measurement of mechanical effect of plant root systems on soil reinforcement and slope protection[J]. Journal of Beijing Forestry University, 2010, 32(6): 66-70.
    [7]ZHANG Zhen-ming, YU Xin-xiao, XU Juan, GAN Jing, WANG Xiao-ping, LI Jin-hai. Spatial variability and prediction of soil available nitrogen of different vegetation types.[J]. Journal of Beijing Forestry University, 2009, 31(5): 12-18.
    [8]FENG Chao-yang, , L Shi-hai, GAO Ji-xi, LIU Shang-hua, LIN Dong. Soil respiration characteristics of different vegetation types in the mountain areas of north China.[J]. Journal of Beijing Forestry University, 2008, 30(2): 20-26.
    [9]XU Chuang-jun, YANG Hong-wei, YANG Li-zhong, ZHANG Jian-qiang. Effectiveness of pretreated rice straw ameliorating soil in eco-engineering for rock slope protection[J]. Journal of Beijing Forestry University, 2008, 30(1): 154-157.
    [10]LI Shao-cai, SUN Hai-long, YANG Zhi-rong, HE Lei, CUI Bao-shan. Effect of grass sowing by spraying for rock slope protection on anti-erosion[J]. Journal of Beijing Forestry University, 2006, 28(1): 43-47.
  • Cited by

    Periodical cited type(9)

    1. 范越,王鹏,王静怡,郭庆启. 基于大数据统计分析松多酚的研究现状和热点展望. 食品工业科技. 2023(24): 34-42 .
    2. 刘梦楠,李晓庆,周军,姚桢,彭茜,李斌,刘卫. 酚醛树脂基铝电解用炭素材料的静态浸润过程. 有色金属(冶炼部分). 2022(04): 49-56 .
    3. 马妮,刘慧燕,方海田,胡海明,辛世华,杨小萍,刘洪涛. 红枣多酚提取工艺优化、成分及抗氧化活性分析. 食品工业科技. 2022(16): 246-254 .
    4. 任维维,吴烨婷,梁宗瑶,李珉梦,魏园园,段旭昌. 青柿子提取物的抗氧化、抑菌、抑癌活性研究. 中国食品学报. 2021(11): 29-38 .
    5. 贡小辉,朱益灵,魏渊,孔令东,韩邦兴,欧阳臻. 石斛甲醇提取物HPLC-MS分析及4种多酚测定. 中成药. 2020(05): 1223-1228 .
    6. 蔡铭,陈思,骆少磊,杨开,孙培龙. 膜分离与醇沉技术纯化猴头菇粗多糖的比较. 食品科学. 2019(09): 83-90 .
    7. 绰尔鹏,赵玉红. 热风干燥温度对老山芹品质的影响. 现代食品科技. 2019(07): 127-136 .
    8. 王晓梅,张忠山,吴酬飞,张立钦. 马尾松松针多酚的提取及其抗氧化活性. 湖州师范学院学报. 2018(04): 30-34 .
    9. 王菲儿,杨跃军,徐剑,巫岳,蔡剑峰,傅青,郑向炜,刘源才,金郁. 板栗壳棕色素的抗氧化活性及其活性成分的分离、鉴定. 食品工业科技. 2018(24): 86-91+96 .

    Other cited types(20)

Catalog

    Article views (1222) PDF downloads (91) Cited by(29)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return