Citation: | Tang Shuyuan, Gao Bo, Yu Bo, Wang Xiaodi, Yin Sainan, Shan Yanlong, Han Xiyue, Cao Lili. Temperature changes and main gas release characteristics of Larix gmelinii plantations during smoldering in Daxing’anling Mountain region of Heilongjiang Province, northeastern China[J]. Journal of Beijing Forestry University, 2022, 44(7): 1-7. DOI: 10.12171/j.1000-1522.20210118 |
[1] |
El-Sayed S A, Abdel-Latif A M. Smoldering combustion of dust layer on hot surface[J]. Journal of Loss Prevention in the Process Industries, 2000, 13(6): 509−517. doi: 10.1016/S0950-4230(00)00004-8
|
[2] |
Drysdale D. An introduction to fire dynamics [M]. Chichester: John Wiley & Sons, 2011.
|
[3] |
Hatch L E, Luo W, Pankow J F, et al. Identification and quantification of gaseous organic compounds emitted from biomass burning using two-dimensional gas chromatogra-phy-time-of-flight mass spectrometry[J]. Atmospheric Chemistry and Physics, 2015, 15: 1865−1899. doi: 10.5194/acp-15-1865-2015
|
[4] |
Rein G. Smouldering combustion//The SFPE handbook of fire protection engineering [M]. New York: Springer, 2015: 581−603.
|
[5] |
Page S E, Siegert F, Rieley J O, et al. The amount of carbon released from peat and forest fires in Indonesia during 1997[J]. Nature, 2002, 420: 61−65.
|
[6] |
王明霞,王雅钧,汪凤琴, 等. 基于模拟点烧不同加热时间和腐殖质粒径对森林地下火垂直燃烧的影响[J]. 北京林业大学学报, 2021, 43(3): 66−72. doi: 10.12171/j.1000-1522.20200047
Wang M X, Wang Y J, Wang F Q, et al. Effects of different heating times and humus particle sizes on vertical combustion of forest underground fire based on simulated spot burning[J]. Journal of Beijing Forestry University, 2021, 43(3): 66−72. doi: 10.12171/j.1000-1522.20200047
|
[7] |
舒立福, 王明玉, 田晓瑞, 等. 大兴安岭林区地下火形成火环境研究[J]. 自然灾害学报, 2003, 12(4): 62−67.
Shu L F, Wang M Y, Tian X R, et al. Fire environment mechanism of ground fire formation in Daxing’an Mountains[J]. Journal of Natural Disasters, 2003, 12(4): 62−67.
|
[8] |
杨玖玲. 泥炭阴燃及阴燃气体生成规律的实验与机理研究[D]. 合肥: 中国科学技术大学, 2017.
Yang J L. Experimental and theoretical study on the behavior and gas products of smoldering of peat[D]. Hefei: University of Science and Technology of China, 2017.
|
[9] |
Cancellieri D, Leroy-Cancellieri V, Leoni E, et al. Kinetic investigation on the smouldering combustion of boreal peat[J]. Fuel, 2012, 93: 479−485. doi: 10.1016/j.fuel.2011.09.052
|
[10] |
Huang X, Rein G. Smouldering combustion of peat in wildfires: inverse modeling of the drying and the thermal and oxidative decomposition kinetics[J]. Combustion and Flame, 2014, 161(6): 1633−1644. doi: 10.1016/j.combustflame.2013.12.013
|
[11] |
Huang X, Rein G. Computational study of critical moisture and depth of burn in peat fires[J]. International Journal of Wildland Fire, 2015, 24(6): 798−808. doi: 10.1071/WF14178
|
[12] |
He F, Yi W, Li Y, et al. Effects of fuel properties on the natural downward smoldering of piled biomass powder: experimental investigation[J]. Biomass and Bioenergy, 2014, 67: 288−296. doi: 10.1016/j.biombioe.2014.05.003
|
[13] |
Benscoter B, Thompson D, Waddington J, et al. Interactive effects of vegetation, soil moisture and bulk density on depth of burning of thick organic soils[J]. International Journal of Wildland Fire, 2011, 20(3): 418−429. doi: 10.1071/WF08183
|
[14] |
Prat-Guitart N, Rein G, Hadden R M, et al. Propagation probability and spread rates of self-sustained smouldering fires under controlled moisture content and bulk density conditions[J]. International Journal of Wildland Fire, 2016, 25(4): 456−465. doi: 10.1071/WF15103
|
[15] |
Davies G M, Gray A, Rein G, et al. Peat consumption and carbon loss due to smouldering wildfire in a temperate peatland[J]. Forest Ecology and Management, 2013, 308: 169−177. doi: 10.1016/j.foreco.2013.07.051
|
[16] |
Huang X, Rein G. Downward spread of smouldering peat fire: the role of moisture, density and oxygen supply[J]. International Journal of Wildland Fire, 2017, 26: 907−918.
|
[17] |
尹赛男, 杜帅, 单延龙, 等. 兴安落叶松人工林腐殖质阴燃燃烧温度变化特征研究[J]. 生态学报, 2021, 42(8): 3123−3130.
Yin S N, Du S, Shan Y L, et al. Characteristics of humus smoldering combustion temperature changes in Larix gmelinii plantation[J]. Acta Ecologica Sinica, 2021, 42(8): 3123−3130.
|
[18] |
尹赛男, 单延龙, 宋光辉, 等. 不同粒径腐殖质火垂直燃烧特征研究[J]. 中南林业科技大学学报, 2019, 39(10): 95−101.
Yin S N, Shan Y L, Song G H, et al. Study on vertical combustion characteristics of humus fire under different particle sizes[J]. Journal of Central South University of Forestry & Technology, 2019, 39(10): 95−101.
|
[19] |
Wang C. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests[J]. Ecology and Management, 2006, 222(1−3): 9−16.
|
[20] |
Pechony O, Shindell D T. Driving forces of global wildfires over the past millennium and the forthcoming century[J]. Proceedings of the National Academy of Sciences, 2010, 107(45): 19167−19170. doi: 10.1073/pnas.1003669107
|
[21] |
Akagis S K, Yokelson R J, Wiedinmyer C, et al. Emission factors for open and domestic biomass burning for use in atmospheric models[J]. Atmospheric Chemistry & Physics, 2011, 11(9): 27523−27602.
|
[22] |
Hu Y Q, Christensen E, Restuccia F, et al. Transient gas and particle emissions from smouldering combustion of peat[J]. Proceedings of the Combustion Institute, 2018, 37: 1−8.
|
[23] |
Hu Y Q, Fernandez-Anez N, Smith T E L, et al. Review of emissions from smouldering peat fires and their contribution to regional haze episodes[J]. International Journal of Wildland Fire, 2018, 27: 293−313.
|
[24] |
Ohlemiller T. Modeling of smoldering combustion propagation[J]. Progress in Energy and Combustion Science, 1985, 11: 277−310. doi: 10.1016/0360-1285(85)90004-8
|
[25] |
韩喜越, 李旗, 高博, 等. 兴安落叶松人工林浅层地下火燃烧特征及发生概率研究[J]. 北京林业大学学报, 2022, 44(2): 47−54. doi: 10.12171/j.1000-1522.20200353
Han X Y, Li Q, Gao B, et al. Combustion characteristics and occurrence probability of shallow underground fire in Larix gmelinii plantation[J]. Journal of Beijing Forestry University, 2022, 44(2): 47−54. doi: 10.12171/j.1000-1522.20200353
|
[26] |
Surawskin N C, Sullivan A L, Meyer C P, et al. Greenhouse gas emissions from laboratory-scale fires in wildland fuels depend on fire spread mode and phase of combustion[J]. Atmospheric Chemistry and Physics, 2014, 14(16): 23125−23160.
|
[27] |
Hadden R M, Rein G, Belcher C M. Study of the competing chemical reactions in the initiation and spread of smouldering combustion in peat[J]. Proceedings of the Combustion Institute, 2013, 34(2): 2547−2553. doi: 10.1016/j.proci.2012.05.060
|
[28] |
Rein G, Cohen S, Simeoni A. Carbon emissions from smouldering peat in shallow and strong fronts[J]. Proceedings of the Combustion Institute, 2009, 32: 2489−2496. doi: 10.1016/j.proci.2008.07.008
|
[29] |
辛颖, 王新然, 李禹洁. 森林腐殖质阴燃向明火转变实验研究[J]. 消防科学与技术, 2018, 37(9): 1162−1166.
Xin Y, Wang X R, Li Y J. Experimental study on the transformation of forest humus from smoldering to flaming[J]. Fire Science and Technology, 2018, 37(9): 1162−1166.
|
[30] |
王秋华. 森林火灾燃烧过程中的火行为研究[D]. 北京: 中国林业科学研究院, 2010.
Wang Q H. Study on fire behaviors in forest burning[D]. Beijing: Chinese Academy of Forestry, 2010.
|
[31] |
Sikkink P G, Jain T B, Rearrdon J, et al. Effect of particle aging on chemical characteristics, smoldering, and fire behavior in mixed-conifer masticated fuel[J]. Forest Ecology and Management, 2017, 405: 150−165. doi: 10.1016/j.foreco.2017.09.008
|
[32] |
Frandsen W H. Heat evolved from smoldering peat[J]. International Journal of Wildland Fire, 1991, 1(3): 197−204. doi: 10.1071/WF9910197
|
[33] |
李禹洁. 森林腐殖质由阴燃向明火转变的实验研究[D]. 哈尔滨: 东北林业大学, 2018.
Li Y J. Experimental study on the transformation of forest humus from smoldering to flaming[D]. Harbin: Northeast Forestry University, 2018.
|
[34] |
Frandsen W H. The influence of moisture and mineral soil on the combustion limits of smoldering forest duff[J]. Canadian Journal of Forest Research, 1987, 17(12): 1540−1544. doi: 10.1139/x87-236
|
[35] |
者香, 赵伟涛, 陈海翔. 含水率对泥炭阴燃速率的影响[J]. 燃烧科学与技术, 2016, 22(2): 136−140.
Zhe X, Zhao W T, Chen H X. Influence of moisture content on spreading rate of peat smoldering[J]. Journal of Combustion Science and Technology, 2016, 22(2): 136−140.
|
[36] |
Huang X, Restuccia F, Gramola M, et al. Experimental study of the formation and collapse of an overhang in the lateral spread of smouldering peat fires[J]. Combustion and Flame, 2016, 168(26): 393−402.
|
[37] |
者香. 泥炭粒径、含水率和无机物含量对阴燃蔓延速率影响的实验研究[D]. 合肥: 中国科学技术大学, 2015.
Zhe X. Experimental study on the influence of particle size, moisture content and mineral content on the spreading rate of peat smoldering [D]. Hefei: University of Science and Technology of China, 2015.
|
[38] |
Turetsky M R, Benscoter B, Page S, et al. Global vulnerability of peatlands to fire and carbon loss[J]. Nature Geoscience, 2014, 8(1): 11−14.
|