• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Tang Shuyuan, Gao Bo, Yu Bo, Wang Xiaodi, Yin Sainan, Shan Yanlong, Han Xiyue, Cao Lili. Temperature changes and main gas release characteristics of Larix gmelinii plantations during smoldering in Daxing’anling Mountain region of Heilongjiang Province, northeastern China[J]. Journal of Beijing Forestry University, 2022, 44(7): 1-7. DOI: 10.12171/j.1000-1522.20210118
Citation: Tang Shuyuan, Gao Bo, Yu Bo, Wang Xiaodi, Yin Sainan, Shan Yanlong, Han Xiyue, Cao Lili. Temperature changes and main gas release characteristics of Larix gmelinii plantations during smoldering in Daxing’anling Mountain region of Heilongjiang Province, northeastern China[J]. Journal of Beijing Forestry University, 2022, 44(7): 1-7. DOI: 10.12171/j.1000-1522.20210118

Temperature changes and main gas release characteristics of Larix gmelinii plantations during smoldering in Daxing’anling Mountain region of Heilongjiang Province, northeastern China

More Information
  • Received Date: March 28, 2021
  • Revised Date: June 05, 2021
  • Accepted Date: July 05, 2022
  • Available Online: July 07, 2022
  • Published Date: July 24, 2022
  •   Objective  This paper simulates the smouldering combustion process, and discusses the characteristics of soil surface temperature and main emissions in order to provide scientific reference for smouldering combustion kinetics, spread mechanism and fire monitoring.
      Method  Taking the forest soil in the Larix gmelinii plantations of the Daxing’an Mountains as the research object, the temperature variation, main emissions and the effect of moisture content (20%, 30%, 40%) on emissions were analyzed by the results of smouldering furnace experiment.
      Result  The soil surface temperature firstly increased rapidly, then remained stable, and finally decreased rapidly until extinguished during the smouldering combustion process; according to the characteristics of soil surface temperature, the smouldering combustion was divided into four stages, i.e. ignition stage, rise stage, steady stage and extinguishing stage, and the modified combustion efficiency (MCE) of each smoldering stage was less than 0.75; the average concentration of CO2 was 316.23 mg/m3, and the average concentration of CO was 101.25 mg/m3; in the smouldering combustion process, CO2 emission was intermittent, but CO emission was continuous; combustion time had a significant effect on CO2 and CO, but there was no correlation between CO2 and CO; there was significant difference between the concentration of CO2 under different moisture contents (P < 0.05), but there was no significant difference between the concentrations of CO (P > 0.05).
      Conclusion  The smouldering combustion shows a trend of conversion to flaming combustion after 14 h, according to the temperature and emission variation during the smouldering furnace experiment, but the combustion burnt out in the end for the decrease of combustible content; the concentration of CO2 decreases with the increase of water content, resulting from the decrease of oxygen content and the increase of heat loss; smoldering combustion could maintain spread with moisture content of 20%−40%, so the concentration of CO has no significant difference.
  • [1]
    El-Sayed S A, Abdel-Latif A M. Smoldering combustion of dust layer on hot surface[J]. Journal of Loss Prevention in the Process Industries, 2000, 13(6): 509−517. doi: 10.1016/S0950-4230(00)00004-8
    [2]
    Drysdale D. An introduction to fire dynamics [M]. Chichester: John Wiley & Sons, 2011.
    [3]
    Hatch L E, Luo W, Pankow J F, et al. Identification and quantification of gaseous organic compounds emitted from biomass burning using two-dimensional gas chromatogra-phy-time-of-flight mass spectrometry[J]. Atmospheric Chemistry and Physics, 2015, 15: 1865−1899. doi: 10.5194/acp-15-1865-2015
    [4]
    Rein G. Smouldering combustion//The SFPE handbook of fire protection engineering [M]. New York: Springer, 2015: 581−603.
    [5]
    Page S E, Siegert F, Rieley J O, et al. The amount of carbon released from peat and forest fires in Indonesia during 1997[J]. Nature, 2002, 420: 61−65.
    [6]
    王明霞,王雅钧,汪凤琴, 等. 基于模拟点烧不同加热时间和腐殖质粒径对森林地下火垂直燃烧的影响[J]. 北京林业大学学报, 2021, 43(3): 66−72. doi: 10.12171/j.1000-1522.20200047

    Wang M X, Wang Y J, Wang F Q, et al. Effects of different heating times and humus particle sizes on vertical combustion of forest underground fire based on simulated spot burning[J]. Journal of Beijing Forestry University, 2021, 43(3): 66−72. doi: 10.12171/j.1000-1522.20200047
    [7]
    舒立福, 王明玉, 田晓瑞, 等. 大兴安岭林区地下火形成火环境研究[J]. 自然灾害学报, 2003, 12(4): 62−67.

    Shu L F, Wang M Y, Tian X R, et al. Fire environment mechanism of ground fire formation in Daxing’an Mountains[J]. Journal of Natural Disasters, 2003, 12(4): 62−67.
    [8]
    杨玖玲. 泥炭阴燃及阴燃气体生成规律的实验与机理研究[D]. 合肥: 中国科学技术大学, 2017.

    Yang J L. Experimental and theoretical study on the behavior and gas products of smoldering of peat[D]. Hefei: University of Science and Technology of China, 2017.
    [9]
    Cancellieri D, Leroy-Cancellieri V, Leoni E, et al. Kinetic investigation on the smouldering combustion of boreal peat[J]. Fuel, 2012, 93: 479−485. doi: 10.1016/j.fuel.2011.09.052
    [10]
    Huang X, Rein G. Smouldering combustion of peat in wildfires: inverse modeling of the drying and the thermal and oxidative decomposition kinetics[J]. Combustion and Flame, 2014, 161(6): 1633−1644. doi: 10.1016/j.combustflame.2013.12.013
    [11]
    Huang X, Rein G. Computational study of critical moisture and depth of burn in peat fires[J]. International Journal of Wildland Fire, 2015, 24(6): 798−808. doi: 10.1071/WF14178
    [12]
    He F, Yi W, Li Y, et al. Effects of fuel properties on the natural downward smoldering of piled biomass powder: experimental investigation[J]. Biomass and Bioenergy, 2014, 67: 288−296. doi: 10.1016/j.biombioe.2014.05.003
    [13]
    Benscoter B, Thompson D, Waddington J, et al. Interactive effects of vegetation, soil moisture and bulk density on depth of burning of thick organic soils[J]. International Journal of Wildland Fire, 2011, 20(3): 418−429. doi: 10.1071/WF08183
    [14]
    Prat-Guitart N, Rein G, Hadden R M, et al. Propagation probability and spread rates of self-sustained smouldering fires under controlled moisture content and bulk density conditions[J]. International Journal of Wildland Fire, 2016, 25(4): 456−465. doi: 10.1071/WF15103
    [15]
    Davies G M, Gray A, Rein G, et al. Peat consumption and carbon loss due to smouldering wildfire in a temperate peatland[J]. Forest Ecology and Management, 2013, 308: 169−177. doi: 10.1016/j.foreco.2013.07.051
    [16]
    Huang X, Rein G. Downward spread of smouldering peat fire: the role of moisture, density and oxygen supply[J]. International Journal of Wildland Fire, 2017, 26: 907−918.
    [17]
    尹赛男, 杜帅, 单延龙, 等. 兴安落叶松人工林腐殖质阴燃燃烧温度变化特征研究[J]. 生态学报, 2021, 42(8): 3123−3130.

    Yin S N, Du S, Shan Y L, et al. Characteristics of humus smoldering combustion temperature changes in Larix gmelinii plantation[J]. Acta Ecologica Sinica, 2021, 42(8): 3123−3130.
    [18]
    尹赛男, 单延龙, 宋光辉, 等. 不同粒径腐殖质火垂直燃烧特征研究[J]. 中南林业科技大学学报, 2019, 39(10): 95−101.

    Yin S N, Shan Y L, Song G H, et al. Study on vertical combustion characteristics of humus fire under different particle sizes[J]. Journal of Central South University of Forestry & Technology, 2019, 39(10): 95−101.
    [19]
    Wang C. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests[J]. Ecology and Management, 2006, 222(1−3): 9−16.
    [20]
    Pechony O, Shindell D T. Driving forces of global wildfires over the past millennium and the forthcoming century[J]. Proceedings of the National Academy of Sciences, 2010, 107(45): 19167−19170. doi: 10.1073/pnas.1003669107
    [21]
    Akagis S K, Yokelson R J, Wiedinmyer C, et al. Emission factors for open and domestic biomass burning for use in atmospheric models[J]. Atmospheric Chemistry & Physics, 2011, 11(9): 27523−27602.
    [22]
    Hu Y Q, Christensen E, Restuccia F, et al. Transient gas and particle emissions from smouldering combustion of peat[J]. Proceedings of the Combustion Institute, 2018, 37: 1−8.
    [23]
    Hu Y Q, Fernandez-Anez N, Smith T E L, et al. Review of emissions from smouldering peat fires and their contribution to regional haze episodes[J]. International Journal of Wildland Fire, 2018, 27: 293−313.
    [24]
    Ohlemiller T. Modeling of smoldering combustion propagation[J]. Progress in Energy and Combustion Science, 1985, 11: 277−310. doi: 10.1016/0360-1285(85)90004-8
    [25]
    韩喜越, 李旗, 高博, 等. 兴安落叶松人工林浅层地下火燃烧特征及发生概率研究[J]. 北京林业大学学报, 2022, 44(2): 47−54. doi: 10.12171/j.1000-1522.20200353

    Han X Y, Li Q, Gao B, et al. Combustion characteristics and occurrence probability of shallow underground fire in Larix gmelinii plantation[J]. Journal of Beijing Forestry University, 2022, 44(2): 47−54. doi: 10.12171/j.1000-1522.20200353
    [26]
    Surawskin N C, Sullivan A L, Meyer C P, et al. Greenhouse gas emissions from laboratory-scale fires in wildland fuels depend on fire spread mode and phase of combustion[J]. Atmospheric Chemistry and Physics, 2014, 14(16): 23125−23160.
    [27]
    Hadden R M, Rein G, Belcher C M. Study of the competing chemical reactions in the initiation and spread of smouldering combustion in peat[J]. Proceedings of the Combustion Institute, 2013, 34(2): 2547−2553. doi: 10.1016/j.proci.2012.05.060
    [28]
    Rein G, Cohen S, Simeoni A. Carbon emissions from smouldering peat in shallow and strong fronts[J]. Proceedings of the Combustion Institute, 2009, 32: 2489−2496. doi: 10.1016/j.proci.2008.07.008
    [29]
    辛颖, 王新然, 李禹洁. 森林腐殖质阴燃向明火转变实验研究[J]. 消防科学与技术, 2018, 37(9): 1162−1166.

    Xin Y, Wang X R, Li Y J. Experimental study on the transformation of forest humus from smoldering to flaming[J]. Fire Science and Technology, 2018, 37(9): 1162−1166.
    [30]
    王秋华. 森林火灾燃烧过程中的火行为研究[D]. 北京: 中国林业科学研究院, 2010.

    Wang Q H. Study on fire behaviors in forest burning[D]. Beijing: Chinese Academy of Forestry, 2010.
    [31]
    Sikkink P G, Jain T B, Rearrdon J, et al. Effect of particle aging on chemical characteristics, smoldering, and fire behavior in mixed-conifer masticated fuel[J]. Forest Ecology and Management, 2017, 405: 150−165. doi: 10.1016/j.foreco.2017.09.008
    [32]
    Frandsen W H. Heat evolved from smoldering peat[J]. International Journal of Wildland Fire, 1991, 1(3): 197−204. doi: 10.1071/WF9910197
    [33]
    李禹洁. 森林腐殖质由阴燃向明火转变的实验研究[D]. 哈尔滨: 东北林业大学, 2018.

    Li Y J. Experimental study on the transformation of forest humus from smoldering to flaming[D]. Harbin: Northeast Forestry University, 2018.
    [34]
    Frandsen W H. The influence of moisture and mineral soil on the combustion limits of smoldering forest duff[J]. Canadian Journal of Forest Research, 1987, 17(12): 1540−1544. doi: 10.1139/x87-236
    [35]
    者香, 赵伟涛, 陈海翔. 含水率对泥炭阴燃速率的影响[J]. 燃烧科学与技术, 2016, 22(2): 136−140.

    Zhe X, Zhao W T, Chen H X. Influence of moisture content on spreading rate of peat smoldering[J]. Journal of Combustion Science and Technology, 2016, 22(2): 136−140.
    [36]
    Huang X, Restuccia F, Gramola M, et al. Experimental study of the formation and collapse of an overhang in the lateral spread of smouldering peat fires[J]. Combustion and Flame, 2016, 168(26): 393−402.
    [37]
    者香. 泥炭粒径、含水率和无机物含量对阴燃蔓延速率影响的实验研究[D]. 合肥: 中国科学技术大学, 2015.

    Zhe X. Experimental study on the influence of particle size, moisture content and mineral content on the spreading rate of peat smoldering [D]. Hefei: University of Science and Technology of China, 2015.
    [38]
    Turetsky M R, Benscoter B, Page S, et al. Global vulnerability of peatlands to fire and carbon loss[J]. Nature Geoscience, 2014, 8(1): 11−14.
  • Related Articles

    [1]Chen Ling, Chen Feng, Niu Shukui, Li Lianqiang, Tao Changsen. Correlation analysis between the spatial characteristics of landscape pattern and risk of forest fire in Jiufeng Forest Park of Beijing[J]. Journal of Beijing Forestry University, 2021, 43(6): 41-49. DOI: 10.12171/j.1000-1522.20180431
    [2]Li Lianqiang, Yang Huixia, Ding Guoquan, Li Chun. Precipitation redistribution characteristics and its correlation analysis of Pinus densiflora and Quercus mongolica forests in the Liaodong Peninsula of northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(11): 47-55. DOI: 10.12171/j.1000-1522.20200009
    [3]Luo Guisheng, Ma Lüyi, Jia Zhongkui, Wu Danni, Chi Mingfeng, Zhang Shumin, Zhao Guijuan. Correlation analysis between natural regeneration and environment in canopy gap of Chinese pine (Pinus tabuliformis) plantation[J]. Journal of Beijing Forestry University, 2019, 41(9): 59-68. DOI: 10.13332/j.1000-1522.20180416
    [4]Li Lianqiang, Niu Shukui, Tao Changsen, Chen Ling, Chen Feng. Correlations between stand structure and surface potential fire behavior of Pinus tabuliformis forests in Miaofeng Mountain of Beijing[J]. Journal of Beijing Forestry University, 2019, 41(1): 73-81. DOI: 10.13332/j.1000-1522.20180304
    [5]WANG Xin, LIU Qin, HUANG Qin, ZHANG Hua-yu, LI Zong-feng, ZHANG Shi-qiang, DENG Hong-ping. Niche characteristics and CCA ordination of dominant species of Thuja sutchuenensis community[J]. Journal of Beijing Forestry University, 2017, 39(8): 60-67. DOI: 10.13332/j.1000-1522.20160172
    [6]CHEN Wu, KONG De-cang, CUI Yan-hong, CAO Ming, PANG Xiao-ming, LI Ying-yue. Phenotypic genetic diversity of a core collection of Ziziphus jujuba and correlation analysis of dehiscent characters[J]. Journal of Beijing Forestry University, 2017, 39(6): 78-84. DOI: 10.13332/j.1000-1522.20170024
    [7]MA Feng-feng, PAN Gao, LI Xi-quan, HAN Yun-juan. Interspecific relationship and canonical correspondence analysis within woody plant communities in the karst mountains of Southwest Guangxi, southern China[J]. Journal of Beijing Forestry University, 2017, 39(6): 32-44. DOI: 10.13332/j.1000-1522.20160379
    [8]WANG Dan, WANG Bing, DAI Wei, LI Ping. Sensitivity analysis of variables correlated to soil organic matter in Chinese fir plantations[J]. Journal of Beijing Forestry University, 2011, 33(1): 78-83.
    [9]LIU Chun-yan, , GU Jian-cai, LI Ji-yue, CHEN Ping, LU Gu i-qiao, TIAN Guo-heng. Correlated analysis between the growth of Larix principisrupprechtii and climatic factors in Saihanba Nature Reserve, northern Hebei Province.[J]. Journal of Beijing Forestry University, 2009, 31(4): 102-105.
    [10]ZHANG Qiu-hui, ZHAO Guang-jie, ZHONG Jie.. Liquefaction of waste CCA-treated wood in phenol and the technology of metal removing processing.[J]. Journal of Beijing Forestry University, 2009, 31(3): 111-115.
  • Cited by

    Periodical cited type(13)

    1. 熊海贝,龙有为,陈琳,丁叶蔚. 木结构无损检测技术研究与应用综述. 结构工程师. 2023(01): 191-201 .
    2. 王祺,冯鑫浩,史诗琪,杨兆哲,詹先旭,吴智慧. 机器视觉在木制品制造中的应用. 木材科学与技术. 2022(05): 17-24 .
    3. 王锦亚,李振业,倪超. 基于机器视觉的实木地板在线分色识别算法. 林业工程学报. 2021(05): 135-139 .
    4. 庄子龙,刘英,沈鹭翔,丁奉龙,王争光. 基于多层感知机的木材颜色分类. 林业机械与木工设备. 2020(06): 8-14 .
    5. 陈威,刘艳,雷庆. 基于智能视觉的小差异行为特征分类. 计算机科学. 2019(03): 298-302 .
    6. 孙建平,梁懿,蒋志林,柳婧如. 图像处理技术在竹木复合材料性能评估中的应用展望. 西北林学院学报. 2019(02): 246-249+256 .
    7. 王明谦,王昆,许清风. 木结构无损检测技术研究进展. 施工技术. 2019(21): 85-90 .
    8. 杜丽娟. 舰船导航系统超分辨率图像智能提取技术研究. 舰船科学技术. 2018(16): 82-84 .
    9. 何波. 篮球投射过程中的角度智能视觉图像分解判断方法. 现代电子技术. 2018(10): 175-178 .
    10. 马玉芳. 基于智能视觉的微型高精度图像采集系统设计. 现代电子技术. 2018(19): 67-70 .
    11. 魏晓慧,马晓珍,刘亚秋. 基于蜂群单阈值分割的SRC板材缺陷分类方法. 沈阳工业大学学报. 2017(03): 292-298 .
    12. 陈熔,刘杰. 基于智能视觉的特定人员检索平台设计与实现. 现代电子技术. 2017(14): 102-105 .
    13. 李晓东. 视觉传达设计认识探讨. 鸭绿江(下半月版). 2016(12): 175 .

    Other cited types(9)

Catalog

    Article views (545) PDF downloads (58) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return