• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Yang Can, Wei Tianxing, Li Yiran, Zheng Liang, Chen Yuxuan. Spatiotemporal variations of NDVI before and after implementation of Grain for Green Project in wind-water erosion crisscross region of the Loess Plateau[J]. Journal of Beijing Forestry University, 2021, 43(6): 83-91. DOI: 10.12171/j.1000-1522.20210128
Citation: Yang Can, Wei Tianxing, Li Yiran, Zheng Liang, Chen Yuxuan. Spatiotemporal variations of NDVI before and after implementation of Grain for Green Project in wind-water erosion crisscross region of the Loess Plateau[J]. Journal of Beijing Forestry University, 2021, 43(6): 83-91. DOI: 10.12171/j.1000-1522.20210128

Spatiotemporal variations of NDVI before and after implementation of Grain for Green Project in wind-water erosion crisscross region of the Loess Plateau

More Information
  • Received Date: April 06, 2021
  • Revised Date: April 21, 2021
  • Available Online: May 25, 2021
  • Published Date: June 29, 2021
  • To propose more effective strategies and policies for ecological restoration, it is imperative to explore the variations in vegetation coverage before and after the implementation of “Grain for Green Project” and evaluate the effect of ecological restoration in the Loess Plateau. In present research, the wind-water erosion crisscross region of the Loess Plateau was selected as study area. Based on the EOT algorithm, GIMMS NDVI data and MODIS NDVI data during overlapping period were applied to establish GIMMS NDVI data (EOT NDVI) from 1982 to 2000 with the resolution of 1 km. Then, a monthly NDVI data set (EM NDVI) from 1982 to 2019 with the resolution of 1 km was integrated with the EOT NDVI data and the MODIS NDVI data from 2001 to 2019. Consequently, the spatiotemporal variations in NDVI of the study area were analyzed. The results showed that: (1) EOT algorithm was suitable for the GIMMS NDVI resampling application in the study area. Mean error (ME), mean absolute error (MAE) and root mean square error (RMSE) of EOT NDVI and MODIS NDVI in the same period were relatively low but the coefficient of determination (R2) was relatively high. (2) In 1982−2019, the average annual NDVI of the study area showed a decline trend first but then increased with the average annual NDVI growth rate of 0.007 8. (3) In 1982−2019, heterogeneity was discovered in the spatial growth rate of vegetation. The area where the average annual NDVI had used to show a downward trend before the implementation of the project (1982−2000) turned to show a significant upward trend in the average annual NDVI after the implementation (2001−2019). The results of the study can provide theoretical basis and data support for assessing the implementation effect of ecological restoration measures and future ecological environment construction.
  • [1]
    孙艳萍, 张晓萍, 刘建祥, 等. 黄土高原水蚀风蚀交错带植被覆盖度动态变化[J]. 干旱区研究, 2013, 30(6):1036−1043.

    Sun Y P, Zhang X P, Liu J X, et al. Dynamic change of vegetation coverage in water-wind erosion ecotone in the Loess Plateau[J]. Arid Zone Research, 2013, 30(6): 1036−1043.
    [2]
    孙锐, 陈少辉, 苏红波. 2000—2016年黄土高原不同土地覆盖类型植被NDVI时空变化[J]. 地理科学进展, 2019, 38(8):1248−1258. doi: 10.18306/dlkxjz.2019.08.013

    Sun R, Chen S H, Su H B. Spatiotemporal variations of NDVI of different land cover types on the Loess Plateau from 2000 to 2016[J]. Progress in Geography, 2019, 38(8): 1248−1258. doi: 10.18306/dlkxjz.2019.08.013
    [3]
    范倩倩, 赵安周, 王金杰, 等. 1982—2015年黄土高原NDVI时空演变及其对气候变化的季节响应[J]. 生态学杂志, 2020, 39(5):1664−1675.

    Fan Q Q, Zhao A Z, Wang J J, et al. Spatiotemporal evolution of NDVI and its seasonal response to climate change in the Loess Plateau from 1982 to 2015[J]. Chinese Journal of Ecology, 2020, 39(5): 1664−1675.
    [4]
    赵安周, 刘宪锋, 朱秀芳, 等. 2000 ~ 2014年黄土高原植被覆盖时空变化特征及其归因[J]. 中国环境科学, 2016, 36(5):1568−1578. doi: 10.3969/j.issn.1000-6923.2016.05.043

    Zhao A Z, Liu X F, Zhu X F, et al. Spatiotemporal analyses and associated driving forces of vegetation coverage change in the Loess Plateau[J]. China Environmental Science, 2016, 36(5): 1568−1578. doi: 10.3969/j.issn.1000-6923.2016.05.043
    [5]
    Qu B, Zhu W B, Jia S F, et al. Spatio-temporal changes in vegetation activity and its driving factors during the growing season in China from 1982 to 2011[J]. Remote Sensing, 2015, 7(10): 13729−13752. doi: 10.3390/rs71013729
    [6]
    朱娴. 黄土高原植被覆盖时空动态及其对气候因子的响应研究[D]. 杨凌: 西北农林科技大学, 2019.

    Zhu X. Temporal and spatial dynamics of vegetation cover and its responses to climatic factors in the Loess Plateau[D]. Yangling: Northwest A&F University, 2019.
    [7]
    孙锐, 陈少辉, 苏红波. 黄土高原不同生态类型NDVI时空变化及其对气候变化响应[J]. 地理研究, 2020, 39(5):1200−1214. doi: 10.11821/dlyj020190399

    Sun R, Chen S H, Su H B. Spatiotemporal variation of NDVI in different ecotypes on the Loess Plateau and its response to climate change[J]. Geographical Research, 2020, 39(5): 1200−1214. doi: 10.11821/dlyj020190399
    [8]
    Fensholt R, Proud S R. Evaluation of earth observation based global long term vegetation trends: comparing GIMMS and MODIS global NDVI time series[J]. Remote Sensing of Environment, 2012, 119: 131−147. doi: 10.1016/j.rse.2011.12.015
    [9]
    Tucker C J, Pinzon J E, Brown M E, et al. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data[J]. International Journal of Remote Sensing, 2005, 26(20): 4485−4498. doi: 10.1080/01431160500168686
    [10]
    Mao D, Wang Z, Luo L, et al. Integrating AVHRR and MODIS data to monitor NDVI changes and their relationships with climatic parameters in Northeast China[J]. International Journal of Applied Earth Observation and Geoinformation, 2012, 18: 528−536. doi: 10.1016/j.jag.2011.10.007
    [11]
    Brown M E, Lary D J, Vrieling A, et al. Neural networks as a tool for constructing continuous NDVI time series from AVHRR and MODIS[J]. International Journal of Remote Sensing, 2008, 29(24): 7141−7158. doi: 10.1080/01431160802238435
    [12]
    van den Dool H M, Saha S, Johansson A. Empirical orthogonal teleconnections[J]. Journal of Climate, 2000, 13(8): 1421−1435. doi: 10.1175/1520-0442(2000)013<1421:EOT>2.0.CO;2
    [13]
    Detsch F, Otte I, Appelhans T, et al. Seasonal and long-term vegetation dynamics from 1-km GIMMS-based NDVI time series at Mt. Kilimanjaro, Tanzania[J]. Remote Sensing of Environment, 2016, 178: 70−83. doi: 10.1016/j.rse.2016.03.007
    [14]
    Appelhans T, Detsch F, Nauss T. Remote: empirical orthogonal teleconnections in R[J]. Journal of Statistical Software, 2015, 65(10): 1−9.
    [15]
    唐克丽, 陈永宗, 景可, 等. 黄土高原地区土壤侵蚀区域特征及其治理途径[M]. 北京: 中国科学技术出版社, 1990: 213−222.

    Tang K L, Chen Y Z, Jing K, et al. Soil erosion regional characteristics and its harness way in Loess Plateau[M]. Beijing: Science and Technology of China Press, 1990: 213−222.
    [16]
    孙艳萍. 黄土高原水蚀风蚀交错带植被覆盖动态变化及其与气候因子的关系[D]. 杨凌: 西北农林科技大学, 2012.

    Sun Y P. Dynamic changes of vegetation cover and the relationship with climatic factors of the Water-Wind Erosion Crisscross Region in the Loess Plateau[D]. Yangling: Northwest A&F University, 2012.
    [17]
    刘海, 黄跃飞, 郑粮. 气候与人类活动对丹江口水源区植被覆盖变化的影响[J]. 农业工程学报, 2020, 36(6):97−105. doi: 10.11975/j.issn.1002-6819.2020.06.012

    Liu H, Huang Y F, Zheng L. Effects of climate and human activities on vegetation cover changes in Danjiangkou water source area[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(6): 97−105. doi: 10.11975/j.issn.1002-6819.2020.06.012
    [18]
    刘海, 黄跃飞, 郑粮, 等. 长时序丹江口水源区NDVI数据集构建及其时空动态变化分析[J]. 长江流域资源与环境, 2020, 29(8):1780−1789.

    Liu H, Huang Y F, Zheng L, et al. Construction of long time series NDVI dataset in Danjiangkou water source area and its temporal and spatial dynamic changes[J]. Resources and Environment in the Yangtze Basin, 2020, 29(8): 1780−1789.
    [19]
    刘良明, 梁益同, 马慧云, 等. MODIS和AVHRR植被指数关系的研究[J]. 武汉大学学报(信息科学版), 2004(4):307−310.

    Liu L M, Liang Y T, Ma H Y, et al. Relationship research between MODIS-NDVI and AVHRR-NDVI[J]. Geomatics and Information Science of Wuhan University, 2004(4): 307−310.
    [20]
    Rouse J W, Haas R H, Deering D W, et al. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation[R]. Austin: Remote Sensing Center, Texas A&M University, 1973: 75−76.
    [21]
    朱艺旋, 张扬建, 俎佳星, 等. 基于MODIS NDVI、SPOT NDVI数据的GIMMS NDVI性能评价[J]. 应用生态学报, 2019, 30(2):536−544.

    Zhu Y X, Zhang Y J, Zu J X, et al. Performance evaluation of GIMMS NDVI based on MODIS NDVI and SPOT NDVI data[J]. Chinese Journal of Applied Ecology, 2019, 30(2): 536−544.
    [22]
    王小鲁, 樊纲. 中国地区差距的变动趋势和影响因素[J]. 经济研究, 2004(1):33−44.

    Wang X L, Fan G. Analysis on the regional disparity in China and the influential factors[J]. Economic Research Journal, 2004(1): 33−44.
    [23]
    韩增林, 刘天宝. 中国地级以上城市城市化质量特征及空间差异[J]. 地理研究, 2009, 28(6):1508−1515.

    Han Z L, Liu T B. Analysis of the characteristics and spatial differences of urbanization quality of cities at prefecture level and above in China[J]. Geographical Research, 2009, 28(6): 1508−1515.
    [24]
    杜耘, 王学雷, 蔡述明. 南水北调中线工程对汉江中下游生态环境的影响与对策[J]. 中国科学院院刊, 2005(6):43−48.

    Du Y, Wang X L, Cai S M. Effect and ountermeasure of the middle route project of south to north water transfer on ecology and environment in the middle and lower reaches of Hanjiang River[J]. Bulletin of the Chinese Academy of Sciences, 2005(6): 43−48.
    [25]
    李婷, 吕一河, 任艳姣, 等. 黄土高原植被恢复成效及影响因素[J]. 生态学报, 2020, 40(23):8593−8605.

    Li T, Lü Y H, Ren Y J, et al. Gauging the effectiveness of vegetation and the influence factors in the Loess Plateau[J]. Acta Ecologica Sinica, 2020, 40(23): 8593−8605.
    [26]
    赵安周, 张安兵, 刘海新, 等. 退耕还林(草)工程实施前后黄土高原植被覆盖时空变化分析[J]. 自然资源学报, 2017, 32(3):449−460. doi: 10.11849/zrzyxb.20160411

    Zhao A Z, Zhang A B, Liu H X, et al. Spatiotemporal variation of vegetation coverage before and after implementation of Grain for Green Project in the Loess Plateau[J]. Journal of Natural Resources, 2017, 32(3): 449−460. doi: 10.11849/zrzyxb.20160411
    [27]
    信忠保, 许炯心, 郑伟. 气候变化和人类活动对黄土高原植被覆盖变化的影响[J]. 中国科学(D辑: 地球科学), 2007(11):1504−1514.

    Xin Z B, Xu J X, Zheng W. Response of vegetation cover change to climate change and human activities in Loess Plateau[J]. Science in China Series D: Earth Science, 2007(11): 1504−1514.
  • Related Articles

    [1]Song Shuo, Zhao Wanning, Li Shaoran, Wang Yafei, Yue Tianze, Jia Liming, Liu Hu. Spatio-temporal characteristics and influencing factors of evapotranspiration in Yinchuan City of northwestern China Based on MOD16[J]. Journal of Beijing Forestry University, 2024, 46(7): 18-26. DOI: 10.12171/j.1000-1522.20220100
    [2]Li Jing, Han Hairong, Kang Fengfeng, Hu Baoan, Jing Hongyuan. Spatiotemporal dynamics and climate impact of vegetation NPP in the northern Shanxi Province region based on the improved CASA model[J]. Journal of Beijing Forestry University, 2023, 45(7): 47-60. DOI: 10.12171/j.1000-1522.20220236
    [3]Zhang Fengyuan, Su Yuanhang, Liu Binhui. Response characteristics of NDVI to asymmetric diurnal temperature increase and precipitation changes during the forest growing season in Northeast China[J]. Journal of Beijing Forestry University, 2023, 45(2): 34-48. DOI: 10.12171/j.1000-1522.20210396
    [4]Zhang Yun, Yu Yue, Cui Xiaoyang, Wang Haiqi. Spatiotemporal variations of soil moisture content in the Larix gmelinii forest under interference of experimental forest fire in northern Great Xing’an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(8): 94-101. DOI: 10.12171/j.1000-1522.20190182
    [5]Jia Jingwei, Niu Jianzhi, Lin Xingna, Zhu Zhijun, Wu Shanshan. Temporal and spatial variations of NDVI and its driving factors in the Yanghe Watershed of northern China[J]. Journal of Beijing Forestry University, 2019, 41(2): 106-115. DOI: 10.13332/j.1000-1522.20180046
    [6]Liu Zhengcai, Qu Yaoyao. Vegetation change and its response to climate change based on SPOT-VGT in Hunan Province of southern China[J]. Journal of Beijing Forestry University, 2019, 41(2): 80-87. DOI: 10.13332/j.1000-1522.20180278
    [7]Zhang Xu, Song Wenqi, Zhao Huiying, Zhu Liangjun, Wang Xiaochun. Variation of July NDVI recorded by tree-ring index of Pinus koraiensis and Abies nephrolepis forests in the southern Xiaoxing'an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(12): 9-17. DOI: 10.13332/j.1000-1522.20180295
    [8]Zhu Yakun, Qin Shugao, Zhang Yuqing, Zhang Jutao, Shao Yanying, Gao Yan. Vegetation phenology dynamic and its responses to meteorological factor changes in the Mu Us Desert of northern China[J]. Journal of Beijing Forestry University, 2018, 40(9): 98-106. DOI: 10.13332/j.1000-1522.20180020
    [9]WANG Ge, HAN Lin, ZHANG Yu, . Temporal variation and spatial distribution of NDVI in northeastern China.[J]. Journal of Beijing Forestry University, 2012, 34(6): 86-91.
    [10]SONG Fu-qiang, KANG Mu-yi, YANG Peng, CHEN Ya-ru, LIU Yang, XING Kai-xiong.. Comparison and validation of GIMMS, SPOT-VGT and MODIS global NDVI products in the Loess Plateau of northern Shaanxi Province, northwestern China[J]. Journal of Beijing Forestry University, 2010, 32(4): 72-80.
  • Cited by

    Periodical cited type(9)

    1. 刘仟仟,贺康宁,左亚凡,程唱,邹星晨,刘婧雯,石正阳,李睿,彭小静. 黄土高原-青藏高原过渡带植被NPP时空变化及其驱动力——以青海省大通县为例. 北京林业大学学报. 2025(01): 39-50 . 本站查看
    2. 黎珩,朱冰冰,边熇,王蓉,唐馨怡. 1970—2020年黄土高原水蚀风蚀交错区极端降水时空变化研究及驱动因素分析. 干旱区地理. 2024(04): 539-548 .
    3. 陈方磊,王计平,程复,谢海燕. 1980—2020年延河甘谷驿流域土壤侵蚀评价与驱动因子分析. 湖北农业科学. 2024(06): 27-34+59 .
    4. 姚楠,刘广全,姚顺波,贾磊,林颖,邓元杰,侯孟阳. 基于坡度视角的黄土高原退耕还林(草)工程碳汇效应分析. 南京林业大学学报(自然科学版). 2023(01): 180-188 .
    5. 张慧雯,赵燕,陈怡平. 近40年来黄土高原植被变化趋势及其生态效应. 地球科学与环境学报. 2023(04): 881-894 .
    6. 高迪,李倩,杜永兴,李宝山. 基于BiLSTM-attention模型的NDVI预测研究. 计算机仿真. 2023(07): 278-283+439 .
    7. 吴巧丽 ,张鑫阳 ,蒋捷 . 基于MODIS和CLCD数据的黄土高原土地利用变化检测及其对植被碳吸收模拟的影响. 地理与地理信息科学. 2023(05): 30-38 .
    8. 谢佩君,宋小燕,孙文义,穆兴民,高鹏. 基于GEE的黄土高原植被绿度线推移变化研究. 中国环境科学. 2023(12): 6518-6529 .
    9. 解晗,同小娟,李俊,张静茹,刘沛荣,于裴洋. 2000—2018年黄河流域生长季植被指数变化及其对气候因子的响应. 生态学报. 2022(11): 4536-4549 .

    Other cited types(8)

Catalog

    Article views (1330) PDF downloads (105) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return