• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhou Zeyu, Fu Liyong, Zhang Xiaohong, Zhang Huiru, Lei Xiangdong. Comparison of crown width models and estimation methods of natural spruce fir forest in Jingouling Forest Farm of northeastern China[J]. Journal of Beijing Forestry University, 2021, 43(8): 29-40. DOI: 10.12171/j.1000-1522.20210134
Citation: Zhou Zeyu, Fu Liyong, Zhang Xiaohong, Zhang Huiru, Lei Xiangdong. Comparison of crown width models and estimation methods of natural spruce fir forest in Jingouling Forest Farm of northeastern China[J]. Journal of Beijing Forestry University, 2021, 43(8): 29-40. DOI: 10.12171/j.1000-1522.20210134

Comparison of crown width models and estimation methods of natural spruce fir forest in Jingouling Forest Farm of northeastern China

More Information
  • Received Date: April 11, 2021
  • Revised Date: May 25, 2021
  • Available Online: June 09, 2021
  • Published Date: August 30, 2021
  •   Objective  Different crown prediction methods were used to predict varied crown components (east, west, south, north crown width and east-west crown width, south-north crown width, average crown width) of young spruce fir, and the prediction accuracy was compared in order to provide a theoretical basis for the tending of spruce fir management.
      Method  The measured data of different crown components in permanent spruce fir sample plots was got from three 1 ha sample plots on Jingouling Forest Farm of northeastern China in 2013, the logistic model was chosen as base model and the ordinary least square method was used to fit crown radii of east, west, south, north and crown width of east-west, south-north, and mean direction. 1/D, 1/D0.5, and 1/D2 were used as weight function to eliminate the heteroscedasticity of model residuals. The unweighted nonlinear seemingly unrelated regression method, weighted nonlinear seemingly unrelated regression method, quantile regression method, and ordinary least square method were applied to develop different crown component prediction model.
      Result  The fitting results indicated that, quantile regression model had the lowest fitting accuracy, compared with quantile regression, weighted nonlinear seemingly unrelated regression and weighted ordinary least square regression had nearly same fitting effectiveness. The accuracy order arrangement was weighted NSUR ≈ weighted OLS > OLS > QR, 1/D2 was the best choice to eliminate heteroscedasticity by residuals plot.
      Conclusion  In this paper, the fitting effect of nonlinear quantile regression model was not necessarily better than that of nonlinear least square method, the weighted nonlinear seemingly unrelated regression model (1/D2 as weight function) developed in this essay can provide some theory basis for different crown components of young spruce fir.
  • [1]
    Assmann E, Davis P W. The principles of forest yield study[M]. Oxford: Pergamon Press Ltd., 1970.
    [2]
    Hasenauer H, Monserud R A. Biased predictions for tree height increment models developed from smoothed ‘data’[J]. Ecological Modelling, 1997, 98(1): 13−22. doi: 10.1016/S0304-3800(96)01933-3
    [3]
    Monserud R A, Sterba H. A basal area increment model for individual trees growing in even- and uneven-aged forest stands in Austria[J]. Forest Ecology & Management, 1996, 80(1−3): 57−80.
    [4]
    Carvalho J P, Parresol B R. Additivity in tree biomass components of Pyrenean oak (Quercus pyrenaica Willd.)[J]. Forest Ecology & Management, 2003, 179(1−3): 269−276.
    [5]
    Fu L Y, Lei Y C, Wang G X, et al. Comparison of seemingly unrelated regressions with error-in-variable models for developing a system of nonlinear additive biomass equations[J]. Trees, 2016, 30(3): 839−857. doi: 10.1007/s00468-015-1325-x
    [6]
    Pukkala T, Becker P, Kuuluvainen T, e al. Predicting spatial distribution of direct radiation below forest canopies[J]. Agricultural and Forest Meteorology, 1991, 55: 295−307. doi: 10.1016/0168-1923(91)90067-Z
    [7]
    贾炜玮, 解希涛, 姜生伟, 等. 大兴安岭新林林业局3种林分类型天然更新幼苗幼树的空间分布格局[J]. 应用生态学报, 2017, 28(9):2813−2822.

    Jia W W, Xie X T, Jiang S W, et al. Spatial distribution pattern of seedlings and saplings of three forest types by natural regeneration in Daxin’an Mountains Xinlin Forestry Bureau, China[J]. Chinese Journal of Applied Ecology, 2017, 28(9): 2813−2822.
    [8]
    EerikäInen K, Valkonen S, Saksa T. Ingrowth, survival and height growth of small trees in uneven-aged Picea abies stands in southern Finland[J]. Forest Ecosystems, 2014, 1(1): 1−10. doi: 10.1186/2197-5620-1-1
    [9]
    Lei Y K, Li Y F, Affleck D L R, et al. Additivity of nonlinear tree crown width models: aggregated and disaggregated model structures using nonlinear simultaneous equations[J]. Forest Ecology and Management, 2018, 427: 372−382. doi: 10.1016/j.foreco.2018.06.013
    [10]
    Fu L Y, Sun H, Sharma R P, et al. Nonlinear mixed-effects crown width models for individual trees of Chinese fir (Cunninghamia lanceolata) in south-central China[J]. Forest Ecology and Management, 2013, 302: 210−220. doi: 10.1016/j.foreco.2013.03.036
    [11]
    Sharma R P, Vacek Z, Vacek S. Individual tree crown width models for Norway spruce and European beech in Czech Republic[J]. Forest Ecology and Management, 2016, 366: 208−220. doi: 10.1016/j.foreco.2016.01.040
    [12]
    贺梦莹, 董利虎, 李凤日. 长白落叶松−水曲柳混交林冠幅预测模型[J]. 北京林业大学学报, 2020, 42(7):23−32. doi: 10.12171/j.1000-1522.20190250

    He M Y, Dong L H, Li F R. Crown width prediction models for Larix olgensis and Fraxinus mandshurica mixed plantations[J]. Journal of Beijing Forestry University, 2020, 42(7): 23−32. doi: 10.12171/j.1000-1522.20190250
    [13]
    李凤日, 王治富, 王保森. 落叶松人工林有效冠动态研究(Ⅰ): 有效冠的确定[J]. 东北林业大学学报, 1996, 24(1):1−8.

    Li F R, Wang Z F, Wang B S. Studies on the effective crown development of Larix olgensis (Ⅰ): determination of the effective crown[J]. Journal of Northeast Forestry university, 1996, 24(1): 1−8.
    [14]
    Kajihara M. Estimation of stem-volume increment by using sunny crown-surface area and stem-surface area[J]. Journal of the Japanese Forestry Society, 2008, 67: 501−505.
    [15]
    Koenker R, Bassett G W. Regression quantiles[J]. Econometrica, 1978, 46(1): 211−244.
    [16]
    马岩岩, 姜立春. 基于非线性分位数回归的落叶松树干削度方程[J]. 林业科学, 2019, 55(10):68−75.

    Ma Y Y, Jiang L C. Stem taper function for Larix gmelinii based on nonlinear quantile regression[J]. Scientia Silvae Sinicae, 2019, 55(10): 68−75.
    [17]
    辛士冬, 姜立春. 利用分位数回归模拟人工樟子松树干干形[J]. 北京林业大学学报, 2020, 42(2):1−8. doi: 10.12171/j.1000-1522.20190014

    Xin S D, Jiang L C. Modeling stem taper profile for Pinus sylvestris plantations using nonlinear quantile regression[J]. Journal of Beijing Forestry University, 2020, 42(2): 1−8. doi: 10.12171/j.1000-1522.20190014
    [18]
    Özçelik R, Cao Q V, Trincado G, et al. Predicting tree height from tree diameter and dominant height using mixed-effects and quantile regression models for two species in Turkey[J]. Forest Ecology and Management, 2018, 419−420: 240−248. doi: 10.1016/j.foreco.2018.03.051
    [19]
    Bohora S B, Cao Q V. Prediction of tree diameter growth using quantile regression and mixed-effects models[J]. Forest Ecology and Management, 2014, 319: 62−66. doi: 10.1016/j.foreco.2014.02.006
    [20]
    陈科屹, 张会儒, 雷相东, 等. 基于目标树经营的抚育采伐对云冷杉针阔混交林空间结构的影响[J]. 林业科学研究, 2017, 30(5):718−726.

    Chen K Y, Zhang H R, Lei X D, et. al. Effect of thinning on spatial structure of spruce-fir mixed broadleaf-conifer forest base on crop tree management[J]. Forest Research, 2017, 30(5): 718−726.
    [21]
    陈科屹, 张会儒, 雷相东, 等. 云冷杉过伐林垂直结构特征分析[J]. 林业科学研究, 2017, 30(3):450−459.

    Chen K Y, Zhang H R, Lei X D, et. al. Analysis of vertical structure characteristics for spruce-fir over-cutting forest[J]. Forest Research, 2017, 30(3): 450−459.
    [22]
    孟宪宇. 测树学[M]. 3版. 北京: 中国林业出版社, 2006.

    Meng X Y. Forest mensuration[M]. 3rd ed. Beijing: China Forestry Publishing House, 2006.
    [23]
    曾伟生, 骆期邦, 贺东北. 论加权回归与建模[J]. 林业科学, 1999, 35(5):5−11. doi: 10.3321/j.issn:1001-7488.1999.05.002

    Zeng W S, Luo Q B, He D B. Research on weighting regression and modeling[J]. Scientia Silvae Sinicae, 1999, 35(5): 5−11. doi: 10.3321/j.issn:1001-7488.1999.05.002
    [24]
    Khurra S M, 韩斐斐, 姜立春. 不同抽样方法对兴安落叶松立木材积方程预测精度的影响[J]. 林业科学, 2018, 54(8):99−105. doi: 10.11707/j.1001-7488.20180811

    Khurra S M, Han F F, Jiang L C. Effects of different sampling methods on predict precision of individual tree volume equation for Dahurian larch[J]. Scientia Silvae Sinicae, 2018, 54(8): 99−105. doi: 10.11707/j.1001-7488.20180811
    [25]
    关静. 分位数回归理论及其应用[D]. 天津: 天津大学, 2009.

    Guan J. Quantile regression theory and its application[D]. Tianjin: Tianjin University, 2009.
    [26]
    段光爽, 王秋燕, 宋新宇, 等. 竞争环境下红松单木树高与胸径的相对生长关系[J]. 林业科学, 2020, 56(10):108−115.

    Duan G S, Wang Q Y, Song X Y, et. al. Relative growth relations between height and diameter of individual Korean pine under competitive environment[J]. Scientia Silvae Sinicae, 2020, 56(10): 108−115.
    [27]
    张冬燕, 王冬至, 李晓, 等. 基于分位数回归的针阔混交林树高与胸径的关系[J]. 浙江农林大学学报, 2020, 37(3):424−431.

    Zhang D Y, Wang D Z, Li X, et al. Relationship between height and diameter at breast height (DBH) in mixed coniferous and broadleaved forest based on quantile regression[J]. Journal of Zhejiang A&F University, 2020, 37(3): 424−431.
    [28]
    董灵波, 刘兆刚, 李凤日, 等. 基于线性混合模型的红松人工林一级枝条大小预测模拟[J]. 应用生态学报, 2013, 24(9):2447−2456.

    Dong L B, Liu Z G, Li F R, et. al. Primary branch size of Pinus koraiensis plantation: a prediction based on linear mixed effect model[J]. Chinese Journal of Applied Ecology, 2013, 24(9): 2447−2456.
    [29]
    沈钱勇, 汤孟平. 浙江省毛竹竹秆生物量模型[J]. 林业科学, 2019, 55(11):181−188. doi: 10.11707/j.1001-7488.20191120

    Shen Q Y, Tang M P. Stem biomass models of Phyllostachys edulis in Zhejiang Province[J]. Scientia Silvae Sinicae, 2019, 55(11): 181−188. doi: 10.11707/j.1001-7488.20191120
    [30]
    沈钱勇, 汤孟平. 浙江省毛竹竹秆材积模型[J]. 林业科学, 2020, 56(5):89−96.

    Shen Q Y, Tang M P. Stem volume models of Phyllostachys edulis in Zhejiang Province[J]. Scientia Silvae Sinicae, 2020, 56(5): 89−96.
  • Cited by

    Periodical cited type(9)

    1. 马耀辉,徐国祺,黄鑫. 新型IPBC/β-环糊精复合防霉剂的研制. 北京林业大学学报. 2025(01): 126-134 . 本站查看
    2. 黄鑫,徐国祺,马耀辉. 制备具有荧光示踪功能的硼掺杂银杏叶碳量子点木材防腐剂. 北京林业大学学报. 2025(01): 116-125 . 本站查看
    3. 张景朋,蒋明亮,张斌. 嘧菌酯高效液相色谱分析方法及防腐材抗流失性能研究. 浙江农林大学学报. 2025(01): 185-192 .
    4. 邢宏楠. 丙烯酸酯阻尼乳液聚合水性车用涂料制备及粘附性能研究. 粘接. 2024(08): 13-16 .
    5. 马星霞,乔云飞,黎冬青,王艳华. 古建筑木构件生物危害预防性保护体系框架构建. 木材科学与技术. 2023(01): 83-90 .
    6. 孙振炳,李晓宝,姚曜,李晓平,孙雷,Jeffrey J.Morrell. 果胶预处理对杉木耐久性的影响. 西部林业科学. 2022(01): 84-88 .
    7. 张景朋,张卿硕,吴玉章,蒋明亮. 防腐木材中戊唑醇和丙环唑的高效液相色谱分析方法. 林业工程学报. 2022(05): 99-105 .
    8. 王磊,赵晓琪,王雅梅. 环境响应型纳米载体材料的缓控释特性及其木材保护领域应用前景. 林产工业. 2022(09): 19-24 .
    9. 张景朋,张卿硕,韩利平,蒋明亮. 高效液相色谱测定防腐木中IPBC含量的方法研究. 木材科学与技术. 2022(05): 71-77 .

    Other cited types(6)

Catalog

    Article views (1788) PDF downloads (158) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return