• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Yu Wenjing, Yang Shuai, Huang Ying, Diao Guiping. Analysis of insect resistance ability of the serine protease inhibitor PtrSPI from Populus tomentosa[J]. Journal of Beijing Forestry University, 2021, 43(9): 51-58. DOI: 10.12171/j.1000-1522.20210163
Citation: Yu Wenjing, Yang Shuai, Huang Ying, Diao Guiping. Analysis of insect resistance ability of the serine protease inhibitor PtrSPI from Populus tomentosa[J]. Journal of Beijing Forestry University, 2021, 43(9): 51-58. DOI: 10.12171/j.1000-1522.20210163

Analysis of insect resistance ability of the serine protease inhibitor PtrSPI from Populus tomentosa

More Information
  • Received Date: April 29, 2021
  • Revised Date: June 16, 2021
  • Available Online: July 13, 2021
  • Published Date: October 14, 2021
  •   Objective  To lay the foundation of the development of new insect-resistant biological pesticides in trees, the insect-resistant function of the serine protease inhibitor PtrSPI of Populus tomentosa was studied.
      Method  To analyze the function of serine protease inhibitor gene PtrSPI, the promoter and the expression pattern under feeding stress of Lymantria dispar larvaes of the gene PtrSPI in P. tomentosa were studied. To discuss the anti-insect ability of PtrSPI, the food intake, the body mass, the mortality and the serine protease enzyme activities of L. dispar larvae were studied after using the eukaryotic recombinant protein PtrSPI feeding L. dispar larvaes.
      Result  The results showed that 5 elements related to plant resistance to disease and insects were in the promoter region of the serine protease inhibitor gene PtrSPI of P. tomentosa; the expression pattern of the gene PtrSPI in P. tomentosa leaves was firstly decreased and then increased after being fed by L. dispar larvae, and the peak was 2.03 times of the control at 30 h; under the high concentration of recombinant protein (300 and 500 mg/mL), the food intake and the body mass of L. dispar larvaes were significantly inhibited, the mortality of L. dispar larvaes was up to more than 60% after 4 and 6 days, respectively, and the activities of the serine protease in L. dispar larvaes were significantly increased at the beginning of feeding.
      Conclusion  This study verifies the insect resistance of the serine protease inhibitor PtrSPI of P. tomentosa, and it provides theoretical basis and research materials for further research and development of new non-pollution and insect-resistance biological pesticides.
  • [1]
    孙红, 周艳涛, 李晓东, 等. 2020年全国主要林业有害生物发生情况及2021年发生趋势预测[J]. 中国森林病虫, 2021, 40(2):45−48.

    Sun H, Zhou Y T, Li X D, et al. The occurrence of major forest pests in China in 2020 and the occurrence trend forecast in 2021[J]. Forest Pest and Disease, 2021, 40(2): 45−48.
    [2]
    吕云彤, 张琪慧, 苑冉, 等. 中国森林害虫化学防治研究进展[J]. 环境昆虫学报, 2018, 40(3):543−552.

    Lü Y T, Zhang Q H, Yuan R, et al. Advances in chemical control for forest pests of China[J]. Journal of Environmental Entomology, 2018, 40(3): 543−552.
    [3]
    Johana C, Misas V, Renier L, et al. Papein-like cysteine proteases as hubs in plant immunity[J]. New Phytologist, 2016, 4: 902−907.
    [4]
    Remya P P, Kannan V M. Screening of plant seeds for protease inhibitor against larval gut proteases of Spodoptera Mauritia (boisd.) (Lepidoptera: noctuidae)[J]. International Journal of Agriculture Sciences, 2019, 2: 7773−7776.
    [5]
    赵丽芳, 陶美林, 潘国庆. 丝氨酸蛋白酶抑制剂超家族的研究进展[J]. 蝉业科学, 2016, 42(3):532−540.

    Zhao L F, Tao M L, Pan G Q. Advances in serine protease inhibitors (serpin) superfamily[J]. Science of Sericulture, 2016, 42(3): 532−540.
    [6]
    孙新菊. 低温处理下的白玉菇丝氨酸蛋白酶的活性及分子特性[J]. 江苏农业科学, 2015, 43(9):270−272.

    Sun X J. Activity and molecular characteristics of sproteinase of Hypsizygus marmoreus treated by low temperature[J]. Jiangsu Agricultural Sciences, 2015, 43(9): 270−272.
    [7]
    Nicole M, Vladimir G, Bernhard S, et al. Characterization of novel insect associated peptidases for hydrolysis of food proteins[J]. European Food Research and Technology, 2015, 240(2): 431−439. doi: 10.1007/s00217-014-2342-5
    [8]
    李雪. 半胱氨酸蛋白酶抑制剂相关基因SRAC1的功能分析[D]. 泰安: 山东农业大学, 2016.

    Li X. Function analysis of cystatin-associated gene SRAC1[D]. Antai: Shandong Agricultural University, 2016.
    [9]
    Savic J, Nikolic R, Banjac N, et al. Beneficial implications of sugar beet proteinase inhibitor BvSTI on plant architecture and salt stress tolerance in Lotus corniculatus L.[J/OL]. Journal of Plant Physiology, 2019, 243: 153055 [2021−02−11]. https://doi.org/10.1016/j.jplph.2019.153055.
    [10]
    王长春, 刘真真, 叶涛, 等. 蛋白酶抑制子在植物与病原物互作中的作用[J]. 浙江师范大学学报, 2019, 42(2):190−194.

    Wang C C, Liu Z Z, Ye T, et al. The role of protease inhibitors in the interaction between plants and pathogens[J]. Journal of Zhejiang Normal University, 2019, 42(2): 190−194.
    [11]
    杨帅, 黄颖, 王志英, 等. 毛果杨丝氨酸蛋白酶抑制剂基因的克隆及真核表达[J]. 东北林业大学学报, 2020, 48 (5): 88−98.

    Yang S, Huang Y, Wang Z Y, et al. Cloning and eukaryotic expression of a PtrSPI gene from Populus trichocarpa[J]. Journal of Northeast Forestry University, 2019, 2020, 48 (5): 88−98.
    [12]
    朱琨, 翟莹, 于海伟, 等. 大豆GmNCED5基因非生物胁迫响应及生物信息分析[J/OL]. 大豆科学, 2021 [2021−05−27]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=DDKX20210526001&v=j7LtoqI9wdecn1GRgp7ZM%25mmd2FWuRmF9%25mmd2BxuQnMGKV7WEEj1rMLJg5FMs8L8ht3buP6eI.

    Zhu K, Zhai Y, Yu H W, et al. Response of soybean GmNCED5 gene under abiotic stress and its bioinformatics analysis [J/OL]. Soybean Science, 2021 [2021−05−27]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=DDKX20210526001&v=j7LtoqI9wdecn1GRgp7ZM%25mmd2FWuRmF9%25mmd2BxuQnMGKV7WEEj1rMLJg5FMs8L8ht3buP6eI.
    [13]
    李豆, 苏功博, 胡晓晴, 等. 白桦BpSPL6基因启动子的克隆及表达分析[J/OL]. 北京林业大学学报, 2021: 1−9 [2021−06−13]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=BJLY20210610000&v=VOz5fs4kSA7FoO8WWRdDy1eYWNL4kqN1cvWnimOH9efoz4xTnEZnTkV2rwvlqgzW.

    Li D, Su G B, Hu X Q, et al. Cloning and expression analysis of BpSPL6 promoter from Betula platyphylla [J/OL]. Journal of Beijing Foresty University, 2021: 1−9 [2021−06−13]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=BJLY20210610000&v=VOz5fs4kSA7FoO8WWRdDy1eYWNL4kqN1cvWnimOH9efoz4xTnEZnTkV2rwvlqgzW.
    [14]
    张璐鑫. 低温胁迫对小麦根系生理及茎基腐病致病菌含量影响[D]. 保定: 河北农业大学, 2020.

    Zhang L X. Effects of low temperature stress on root physiology and pathogen content of stem base rot of wheat[D]. Baoding: Hebei Agricultural University, 2020.
    [15]
    Huang Y, Mijiti G, Wang Z Y. Functional analysis of the class II hydrophobin gene HFB2-6 from the biocontrol agent Trichoderma asperellum ACCC30536[J]. Microbiological, 2015, 171: 8−20. doi: 10.1016/j.micres.2014.12.004
    [16]
    Paola Z, Chiara F, Milena F, et al. Determination of anti-p52 IgM and anti-gB IgG by ELISA as a novel diagnostic tool for detection of early and late phase of primary human cytomegalovirus infections during pregnancy[J]. Journal of Clinical Virology, 2019, 120: 38−43. doi: 10.1016/j.jcv.2019.09.006
    [17]
    李欣悦, 王振越, 曹传旺. LdNPV对CO2胁迫下舞毒蛾生长发育及生化酶活性影响[J]. 北京林业大学学报, 2019, 41(9):139−146.

    Li X Y, Wang Z Y, Cao C W. Effects of LdNPV on growth, development and biochemical enzymatic activities of Lymantria dispar under CO2 concentration stress[J]. Journal of Beijing Forestry University, 2019, 41(9): 139−146.
    [18]
    王雯. 丝氨酸蛋白酶ACYPI4531在豌豆免疫防御反应中的作用研究[D]. 杨凌: 西北农业科技大学, 2019.

    Wang W. The role of serine protease ACYP4531 in immune responses of the pea aphid, Acythosiphon pisum[D]. Yangling: Northwest A&F University, 2019.
    [19]
    刘会香, 张星耀. 植物蛋白酶抑制剂及其在林木抗虫基因工程中的应用[J]. 林业科学, 2005, 43(3):148−156. doi: 10.3321/j.issn:1001-7488.2005.03.025

    Liu H X, Zhang X Y. Plant protease inhibitors their application on forest tree resisting pest genetic engineering[J]. Scientia Silvae Sinicae, 2005, 43(3): 148−156. doi: 10.3321/j.issn:1001-7488.2005.03.025
    [20]
    Zhu J, He Y, Yan X M, et al. Duplication and transcriptional divergence of three Kunitz protease inhibitor genes that modulate insect and pathogen defenses in tea plant (Camellia sinensis)[J]. Horticulture Research, 2019, 6(1): 126. doi: 10.1038/s41438-019-0208-5
    [21]
    谢可方, 董爱武, 忻骅, 等. 大豆KUNITZ型胰蛋白酶抑制剂的稳定性及抗虫性研究[J]. 复旦学报(自然科学版), 2002, 41(6):631−634.

    Xie K F, Dong A W, Xin H, et al. A study of the stability and insect resistance of soybean KUNTIZ-type trypsin inhibitor[J]. Journal of Fudan University (Natural Science), 2002, 41(6): 631−634.
    [22]
    Saikhedkar N S, Joshi R S, Yadav A K, et al. Phyto-inspired cyclic peptides derived from plant Pin-II type protease inhibitor reactive center loops for crop protection from insect pests[J]. Biochimica et Biophysica Acta, 2019, 1863(8): 1254−1262. doi: 10.1016/j.bbagen.2019.05.003
    [23]
    Guimaraes L C, Oliveira C F R, Marangoni S, et al. Purification and characterization of a Kunitz inhibitor from Poincianella pyramidalis with insecticide activity against the Mediterranean flour moth[J]. Pesticide Biochemistry and Physiology, 2015, 118: 1−9. doi: 10.1016/j.pestbp.2014.12.001
    [24]
    Raha O, Arwa B, Hanan A A, et al. Production of a biopesticide on host and non-host serine protease inhibitors for red palm weevil in palm trees[J]. Saudi Journal of Biological Sciences, 2020, 27(10): 2803−2808. doi: 10.1016/j.sjbs.2020.06.048
    [25]
    Fabio K T, Walter R T. Molecular insights into mechanisms of lepidopteran serine proteinase resistance to natural plant defenses[J]. Biochemical and Biophysical Research Communications, 2015, 467(4): 885−891. doi: 10.1016/j.bbrc.2015.10.049
    [26]
    Bendre A D, Ramasamu S, Suresh C G. Analysis of Kunitz inhibitors from plants for comprehensive structural and functional insights[J]. International Journal of Biological Macromolecules, 2018, 113: 933−943. doi: 10.1016/j.ijbiomac.2018.02.148
    [27]
    Bhattacharyya A, Rai S, Babu C R. A trypsin and chymotrypsin inhibitor from Caesalpinia bonduc seeds: Isolation, partial characterization and insecticidal properties[J]. Plant Physiology and Biochemistry, 2007, 45: 169−177. doi: 10.1016/j.plaphy.2007.02.003
    [28]
    Leo F R, Bonadé-BOTTINO M A, Ceci L R, et al. Opposite effects on Spodoptera littoralis larvae of high expression level of a trypsin proteinase inhibitor in transgenic plants[J]. Plant Physiology, 1998, 118(3): 997−1004. doi: 10.1104/pp.118.3.997
    [29]
    Patston P A, Gettins P G W. Significance of secondary structure predictions on the reactive center loop region of seprins: a model for the folding of serpins into a metastablestate[J]. FEBS Letters, 1996, 383(1−2): 87−92. doi: 10.1016/0014-5793(96)00231-1
    [30]
    冯玮. 植物蛋白酶抑制剂研究进展概述[J]. 生物学教学, 2020, 45(12):61−63. doi: 10.3969/j.issn.1004-7549.2020.12.026

    Feng W. Review on the research progress of plant protease inhibitor[J]. Biology Teaching, 2020, 45(12): 61−63. doi: 10.3969/j.issn.1004-7549.2020.12.026
  • Related Articles

    [1]Zhang Minghui, Yin Yunzhou, Wang Ke, Wang Shuli. Effects of spatial structure characteristics of Fraxinus mandshurica plantation on soil nutrient content[J]. Journal of Beijing Forestry University, 2023, 45(9): 73-82. DOI: 10.12171/j.1000-1522.20220476
    [2]Hui Gangying, Zhao Zhonghua, Hu Yanbo, Zhang Ganggang, Zhang Gongqiao, Cheng Shiping, Lu Yanlei. Research on the measurement method of forest spatial structure diversity based on 4 neighborhood tree relationship[J]. Journal of Beijing Forestry University, 2023, 45(7): 18-26. DOI: 10.12171/j.1000-1522.20220282
    [3]Wang Lina, Wu Junwen, Dong Qiong, Shi Zhuogong, Hu Haocheng, Wu Danzi, Li Luping. Effects of tending and thinning on non-structural carbon and stoichiometric characteristics of Pinus yunnanensis[J]. Journal of Beijing Forestry University, 2021, 43(8): 70-82. DOI: 10.12171/j.1000-1522.20210115
    [4]Hu Xuefan, Zhang Huiru, Zhou Chaofan, Zhang Xiaohong. Effects of different thinning patterns on the spatial structure of Quercus mongolica secondary forests[J]. Journal of Beijing Forestry University, 2019, 41(5): 137-147. DOI: 10.13332/j.1000-1522.20190037
    [5]LI Jian, PENG Peng, HE Huai-jiang, TAN Ling-zhao, ZHANG Xin-na, WU Xiang-ju, LIU Zhao-gang. Effects of thinning intensity on spatial structure of multi-species temperate forest at Jiaohe in Jilin Province, northeastern China[J]. Journal of Beijing Forestry University, 2017, 39(9): 48-57. DOI: 10.13332/j.1000-1522.20170220
    [6]LI Ji-ping, FENG Yao, ZHAO Chun-yan, ZHANG Cai-cai. Quantitative analysis of stand spatial structure of Cunninghamia lanceolata non-commercial forest based on Voronoi diagram.[J]. Journal of Beijing Forestry University, 2014, 36(4): 1-7. DOI: 10.13332/j.cnki.jbfu.2014.04.005
    [7]WANG Ping, JIA Li-ming, WEI Song-po, WANG Qi-feng. Analysis of stand spatial structure of Platycladus orientalis recreational forest based on Voronoi diagram method[J]. Journal of Beijing Forestry University, 2013, 35(2): 39-44.
    [8]DONG Ling-bo, LIU Zhao-gang, MA Yan, NI Bao-long, LI Yuan. A new composite index of stand spatial structure for natural forest.[J]. Journal of Beijing Forestry University, 2013, 35(1): 16-22.
    [9]DUAN Chang-sheng, WANG Jun-hui, MA Jian-wei, YUAN Shi-yun, DU Yan-chang. Evaluation of Quercus aliena var. acuteserrata forest at the western segment of Qinling Mountain,northwestern China[J]. Journal of Beijing Forestry University, 2009, 31(5): 61-66.
    [10]LIU Yan, YU Xin-xiao, YUE Yong-jie, GAN Jing, WANG Xiao-ping, LI Jin-hai. Spatial structure of Robinia pseudoacacia plantation in Miyun Reservoir Watershed of Beijing.[J]. Journal of Beijing Forestry University, 2009, 31(5): 25-28.
  • Cited by

    Periodical cited type(8)

    1. 张慧,燕怡帆,朱雅,陈玉婷,王菁华,崔志鹏,杨迪,任学敏. 林分密度对伏牛山南麓山茱萸人工林林下草本植物多样性和土壤性质的影响. 西南林业大学学报(自然科学). 2025(01): 96-105 .
    2. 赵金同,马俊. 刺槐扦插育苗技术与精细抚育要点. 现代园艺. 2024(08): 49-51 .
    3. 何欢,康必均,尹婧,李菲,彭栋,李桂静,查同刚. 不同营林措施对川东华蓥山杉木林土壤团聚体稳定性及细根分布的影响. 土壤通报. 2024(02): 351-359 .
    4. 史小鹏,苟贺然,何淑勤,刘柏廷,冉兰芳,杨琪琳,扎西拉姆,陈雨馨,骆紫藤. 成都市温江区两种绿地土壤抗蚀抗冲性及其影响因素. 水土保持通报. 2024(04): 117-125 .
    5. 刘忆南,申振宏,都都,张知然,林勇明. 蒋家沟泥石流堆积扇不同植被类型区土壤抗蚀性评价. 应用与环境生物学报. 2024(05): 886-893 .
    6. 王依瑞,王彦辉,段文标,李平平,于澎涛,甄理,李志鑫,尚会军. 黄土高原刺槐人工林郁闭度对林下植物多样性特征的影响. 应用生态学报. 2023(02): 305-314 .
    7. 赵云鹤,钟鹏,高晗,付玉. 土地利用类型对典型黑土团聚体稳定性和抗蚀性的影响. 东北林业大学学报. 2023(09): 112-119 .
    8. 胡亚伟,施政乐,刘畅,徐勤涛,张建军. 晋西黄土区刺槐林密度对林下植物多样性及土壤理化性质的影响. 生态学杂志. 2023(09): 2072-2080 .

    Other cited types(9)

Catalog

    Article views (1063) PDF downloads (42) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return