Citation: | Yu Wenjing, Yang Shuai, Huang Ying, Diao Guiping. Analysis of insect resistance ability of the serine protease inhibitor PtrSPI from Populus tomentosa[J]. Journal of Beijing Forestry University, 2021, 43(9): 51-58. DOI: 10.12171/j.1000-1522.20210163 |
[1] |
孙红, 周艳涛, 李晓东, 等. 2020年全国主要林业有害生物发生情况及2021年发生趋势预测[J]. 中国森林病虫, 2021, 40(2):45−48.
Sun H, Zhou Y T, Li X D, et al. The occurrence of major forest pests in China in 2020 and the occurrence trend forecast in 2021[J]. Forest Pest and Disease, 2021, 40(2): 45−48.
|
[2] |
吕云彤, 张琪慧, 苑冉, 等. 中国森林害虫化学防治研究进展[J]. 环境昆虫学报, 2018, 40(3):543−552.
Lü Y T, Zhang Q H, Yuan R, et al. Advances in chemical control for forest pests of China[J]. Journal of Environmental Entomology, 2018, 40(3): 543−552.
|
[3] |
Johana C, Misas V, Renier L, et al. Papein-like cysteine proteases as hubs in plant immunity[J]. New Phytologist, 2016, 4: 902−907.
|
[4] |
Remya P P, Kannan V M. Screening of plant seeds for protease inhibitor against larval gut proteases of Spodoptera Mauritia (boisd.) (Lepidoptera: noctuidae)[J]. International Journal of Agriculture Sciences, 2019, 2: 7773−7776.
|
[5] |
赵丽芳, 陶美林, 潘国庆. 丝氨酸蛋白酶抑制剂超家族的研究进展[J]. 蝉业科学, 2016, 42(3):532−540.
Zhao L F, Tao M L, Pan G Q. Advances in serine protease inhibitors (serpin) superfamily[J]. Science of Sericulture, 2016, 42(3): 532−540.
|
[6] |
孙新菊. 低温处理下的白玉菇丝氨酸蛋白酶的活性及分子特性[J]. 江苏农业科学, 2015, 43(9):270−272.
Sun X J. Activity and molecular characteristics of sproteinase of Hypsizygus marmoreus treated by low temperature[J]. Jiangsu Agricultural Sciences, 2015, 43(9): 270−272.
|
[7] |
Nicole M, Vladimir G, Bernhard S, et al. Characterization of novel insect associated peptidases for hydrolysis of food proteins[J]. European Food Research and Technology, 2015, 240(2): 431−439. doi: 10.1007/s00217-014-2342-5
|
[8] |
李雪. 半胱氨酸蛋白酶抑制剂相关基因SRAC1的功能分析[D]. 泰安: 山东农业大学, 2016.
Li X. Function analysis of cystatin-associated gene SRAC1[D]. Antai: Shandong Agricultural University, 2016.
|
[9] |
Savic J, Nikolic R, Banjac N, et al. Beneficial implications of sugar beet proteinase inhibitor BvSTI on plant architecture and salt stress tolerance in Lotus corniculatus L.[J/OL]. Journal of Plant Physiology, 2019, 243: 153055 [2021−02−11]. https://doi.org/10.1016/j.jplph.2019.153055.
|
[10] |
王长春, 刘真真, 叶涛, 等. 蛋白酶抑制子在植物与病原物互作中的作用[J]. 浙江师范大学学报, 2019, 42(2):190−194.
Wang C C, Liu Z Z, Ye T, et al. The role of protease inhibitors in the interaction between plants and pathogens[J]. Journal of Zhejiang Normal University, 2019, 42(2): 190−194.
|
[11] |
杨帅, 黄颖, 王志英, 等. 毛果杨丝氨酸蛋白酶抑制剂基因的克隆及真核表达[J]. 东北林业大学学报, 2020, 48 (5): 88−98.
Yang S, Huang Y, Wang Z Y, et al. Cloning and eukaryotic expression of a PtrSPI gene from Populus trichocarpa[J]. Journal of Northeast Forestry University, 2019, 2020, 48 (5): 88−98.
|
[12] |
朱琨, 翟莹, 于海伟, 等. 大豆GmNCED5基因非生物胁迫响应及生物信息分析[J/OL]. 大豆科学, 2021 [2021−05−27]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=DDKX20210526001&v=j7LtoqI9wdecn1GRgp7ZM%25mmd2FWuRmF9%25mmd2BxuQnMGKV7WEEj1rMLJg5FMs8L8ht3buP6eI.
Zhu K, Zhai Y, Yu H W, et al. Response of soybean GmNCED5 gene under abiotic stress and its bioinformatics analysis [J/OL]. Soybean Science, 2021 [2021−05−27]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=DDKX20210526001&v=j7LtoqI9wdecn1GRgp7ZM%25mmd2FWuRmF9%25mmd2BxuQnMGKV7WEEj1rMLJg5FMs8L8ht3buP6eI.
|
[13] |
李豆, 苏功博, 胡晓晴, 等. 白桦BpSPL6基因启动子的克隆及表达分析[J/OL]. 北京林业大学学报, 2021: 1−9 [2021−06−13]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=BJLY20210610000&v=VOz5fs4kSA7FoO8WWRdDy1eYWNL4kqN1cvWnimOH9efoz4xTnEZnTkV2rwvlqgzW.
Li D, Su G B, Hu X Q, et al. Cloning and expression analysis of BpSPL6 promoter from Betula platyphylla [J/OL]. Journal of Beijing Foresty University, 2021: 1−9 [2021−06−13]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=BJLY20210610000&v=VOz5fs4kSA7FoO8WWRdDy1eYWNL4kqN1cvWnimOH9efoz4xTnEZnTkV2rwvlqgzW.
|
[14] |
张璐鑫. 低温胁迫对小麦根系生理及茎基腐病致病菌含量影响[D]. 保定: 河北农业大学, 2020.
Zhang L X. Effects of low temperature stress on root physiology and pathogen content of stem base rot of wheat[D]. Baoding: Hebei Agricultural University, 2020.
|
[15] |
Huang Y, Mijiti G, Wang Z Y. Functional analysis of the class II hydrophobin gene HFB2-6 from the biocontrol agent Trichoderma asperellum ACCC30536[J]. Microbiological, 2015, 171: 8−20. doi: 10.1016/j.micres.2014.12.004
|
[16] |
Paola Z, Chiara F, Milena F, et al. Determination of anti-p52 IgM and anti-gB IgG by ELISA as a novel diagnostic tool for detection of early and late phase of primary human cytomegalovirus infections during pregnancy[J]. Journal of Clinical Virology, 2019, 120: 38−43. doi: 10.1016/j.jcv.2019.09.006
|
[17] |
李欣悦, 王振越, 曹传旺. LdNPV对CO2胁迫下舞毒蛾生长发育及生化酶活性影响[J]. 北京林业大学学报, 2019, 41(9):139−146.
Li X Y, Wang Z Y, Cao C W. Effects of LdNPV on growth, development and biochemical enzymatic activities of Lymantria dispar under CO2 concentration stress[J]. Journal of Beijing Forestry University, 2019, 41(9): 139−146.
|
[18] |
王雯. 丝氨酸蛋白酶ACYPI4531在豌豆免疫防御反应中的作用研究[D]. 杨凌: 西北农业科技大学, 2019.
Wang W. The role of serine protease ACYP4531 in immune responses of the pea aphid, Acythosiphon pisum[D]. Yangling: Northwest A&F University, 2019.
|
[19] |
刘会香, 张星耀. 植物蛋白酶抑制剂及其在林木抗虫基因工程中的应用[J]. 林业科学, 2005, 43(3):148−156. doi: 10.3321/j.issn:1001-7488.2005.03.025
Liu H X, Zhang X Y. Plant protease inhibitors their application on forest tree resisting pest genetic engineering[J]. Scientia Silvae Sinicae, 2005, 43(3): 148−156. doi: 10.3321/j.issn:1001-7488.2005.03.025
|
[20] |
Zhu J, He Y, Yan X M, et al. Duplication and transcriptional divergence of three Kunitz protease inhibitor genes that modulate insect and pathogen defenses in tea plant (Camellia sinensis)[J]. Horticulture Research, 2019, 6(1): 126. doi: 10.1038/s41438-019-0208-5
|
[21] |
谢可方, 董爱武, 忻骅, 等. 大豆KUNITZ型胰蛋白酶抑制剂的稳定性及抗虫性研究[J]. 复旦学报(自然科学版), 2002, 41(6):631−634.
Xie K F, Dong A W, Xin H, et al. A study of the stability and insect resistance of soybean KUNTIZ-type trypsin inhibitor[J]. Journal of Fudan University (Natural Science), 2002, 41(6): 631−634.
|
[22] |
Saikhedkar N S, Joshi R S, Yadav A K, et al. Phyto-inspired cyclic peptides derived from plant Pin-II type protease inhibitor reactive center loops for crop protection from insect pests[J]. Biochimica et Biophysica Acta, 2019, 1863(8): 1254−1262. doi: 10.1016/j.bbagen.2019.05.003
|
[23] |
Guimaraes L C, Oliveira C F R, Marangoni S, et al. Purification and characterization of a Kunitz inhibitor from Poincianella pyramidalis with insecticide activity against the Mediterranean flour moth[J]. Pesticide Biochemistry and Physiology, 2015, 118: 1−9. doi: 10.1016/j.pestbp.2014.12.001
|
[24] |
Raha O, Arwa B, Hanan A A, et al. Production of a biopesticide on host and non-host serine protease inhibitors for red palm weevil in palm trees[J]. Saudi Journal of Biological Sciences, 2020, 27(10): 2803−2808. doi: 10.1016/j.sjbs.2020.06.048
|
[25] |
Fabio K T, Walter R T. Molecular insights into mechanisms of lepidopteran serine proteinase resistance to natural plant defenses[J]. Biochemical and Biophysical Research Communications, 2015, 467(4): 885−891. doi: 10.1016/j.bbrc.2015.10.049
|
[26] |
Bendre A D, Ramasamu S, Suresh C G. Analysis of Kunitz inhibitors from plants for comprehensive structural and functional insights[J]. International Journal of Biological Macromolecules, 2018, 113: 933−943. doi: 10.1016/j.ijbiomac.2018.02.148
|
[27] |
Bhattacharyya A, Rai S, Babu C R. A trypsin and chymotrypsin inhibitor from Caesalpinia bonduc seeds: Isolation, partial characterization and insecticidal properties[J]. Plant Physiology and Biochemistry, 2007, 45: 169−177. doi: 10.1016/j.plaphy.2007.02.003
|
[28] |
Leo F R, Bonadé-BOTTINO M A, Ceci L R, et al. Opposite effects on Spodoptera littoralis larvae of high expression level of a trypsin proteinase inhibitor in transgenic plants[J]. Plant Physiology, 1998, 118(3): 997−1004. doi: 10.1104/pp.118.3.997
|
[29] |
Patston P A, Gettins P G W. Significance of secondary structure predictions on the reactive center loop region of seprins: a model for the folding of serpins into a metastablestate[J]. FEBS Letters, 1996, 383(1−2): 87−92. doi: 10.1016/0014-5793(96)00231-1
|
[30] |
冯玮. 植物蛋白酶抑制剂研究进展概述[J]. 生物学教学, 2020, 45(12):61−63. doi: 10.3969/j.issn.1004-7549.2020.12.026
Feng W. Review on the research progress of plant protease inhibitor[J]. Biology Teaching, 2020, 45(12): 61−63. doi: 10.3969/j.issn.1004-7549.2020.12.026
|
[1] | Zhang Minghui, Yin Yunzhou, Wang Ke, Wang Shuli. Effects of spatial structure characteristics of Fraxinus mandshurica plantation on soil nutrient content[J]. Journal of Beijing Forestry University, 2023, 45(9): 73-82. DOI: 10.12171/j.1000-1522.20220476 |
[2] | Hui Gangying, Zhao Zhonghua, Hu Yanbo, Zhang Ganggang, Zhang Gongqiao, Cheng Shiping, Lu Yanlei. Research on the measurement method of forest spatial structure diversity based on 4 neighborhood tree relationship[J]. Journal of Beijing Forestry University, 2023, 45(7): 18-26. DOI: 10.12171/j.1000-1522.20220282 |
[3] | Wang Lina, Wu Junwen, Dong Qiong, Shi Zhuogong, Hu Haocheng, Wu Danzi, Li Luping. Effects of tending and thinning on non-structural carbon and stoichiometric characteristics of Pinus yunnanensis[J]. Journal of Beijing Forestry University, 2021, 43(8): 70-82. DOI: 10.12171/j.1000-1522.20210115 |
[4] | Hu Xuefan, Zhang Huiru, Zhou Chaofan, Zhang Xiaohong. Effects of different thinning patterns on the spatial structure of Quercus mongolica secondary forests[J]. Journal of Beijing Forestry University, 2019, 41(5): 137-147. DOI: 10.13332/j.1000-1522.20190037 |
[5] | LI Jian, PENG Peng, HE Huai-jiang, TAN Ling-zhao, ZHANG Xin-na, WU Xiang-ju, LIU Zhao-gang. Effects of thinning intensity on spatial structure of multi-species temperate forest at Jiaohe in Jilin Province, northeastern China[J]. Journal of Beijing Forestry University, 2017, 39(9): 48-57. DOI: 10.13332/j.1000-1522.20170220 |
[6] | LI Ji-ping, FENG Yao, ZHAO Chun-yan, ZHANG Cai-cai. Quantitative analysis of stand spatial structure of Cunninghamia lanceolata non-commercial forest based on Voronoi diagram.[J]. Journal of Beijing Forestry University, 2014, 36(4): 1-7. DOI: 10.13332/j.cnki.jbfu.2014.04.005 |
[7] | WANG Ping, JIA Li-ming, WEI Song-po, WANG Qi-feng. Analysis of stand spatial structure of Platycladus orientalis recreational forest based on Voronoi diagram method[J]. Journal of Beijing Forestry University, 2013, 35(2): 39-44. |
[8] | DONG Ling-bo, LIU Zhao-gang, MA Yan, NI Bao-long, LI Yuan. A new composite index of stand spatial structure for natural forest.[J]. Journal of Beijing Forestry University, 2013, 35(1): 16-22. |
[9] | DUAN Chang-sheng, WANG Jun-hui, MA Jian-wei, YUAN Shi-yun, DU Yan-chang. Evaluation of Quercus aliena var. acuteserrata forest at the western segment of Qinling Mountain,northwestern China[J]. Journal of Beijing Forestry University, 2009, 31(5): 61-66. |
[10] | LIU Yan, YU Xin-xiao, YUE Yong-jie, GAN Jing, WANG Xiao-ping, LI Jin-hai. Spatial structure of Robinia pseudoacacia plantation in Miyun Reservoir Watershed of Beijing.[J]. Journal of Beijing Forestry University, 2009, 31(5): 25-28. |