• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhao Dong, Wang Yunyan, Zhao Jian, Fei Lihua. Mechanism of NaCl effect on diffusion of water molecules in Cunninghamia lanceolata[J]. Journal of Beijing Forestry University, 2021, 43(7): 140-148. DOI: 10.12171/j.1000-1522.20210165
Citation: Zhao Dong, Wang Yunyan, Zhao Jian, Fei Lihua. Mechanism of NaCl effect on diffusion of water molecules in Cunninghamia lanceolata[J]. Journal of Beijing Forestry University, 2021, 43(7): 140-148. DOI: 10.12171/j.1000-1522.20210165

Mechanism of NaCl effect on diffusion of water molecules in Cunninghamia lanceolata

More Information
  • Received Date: May 03, 2021
  • Revised Date: May 26, 2021
  • Available Online: June 30, 2021
  • Published Date: July 24, 2021
  •   Objective  The existence of NaCl can change the diffusion behavior of water molecules in wood, making water molecules “easy to enter” or “difficult to diffuse”, thus affecting the moisture absorption and equilibrium moisture content of wood. It is of great significance to study the mechanism of its influence on the protection of salty wooden cultural relics.
      Method  Taking Cunninghamia lanceolata as the research object, the samples with different salt content were made, and the moisture absorption and drying experiments were carried out to explore the macro effect of salt on water diffusion in Cunninghamia lanceolata. The molecular model of Cunninghamia lanceolata was established. The molecular dynamics (MD) simulation method was used to study the process of water molecules entering into the two models with and without salt, and the diffusion behavior of water molecules in the two models. The difference between the two models was analyzed by equilibrium configuration and relative concentration distribution. Based on the mean square displacement, adsorption energy, radial distribution function, hydrogen bond and other parameters, the interaction relationship between water molecules and cellulose, hemicellulose, lignin and other main components of Chinese fir in the two models were analyzed, and the microscopic mechanism of water diffusion affected by salt was qualitatively explained.
      Result  The results showed that the moisture absorption rate of Cunninghamia lanceolata increased with the increase of salt content. When the water content was lower than 80%, the drying rate decreased with the increase of salt content. MD simulation results showed that water molecules were easier to enter the molecular model of Cunninghamia lanceolata containing NaCl, but NaCl can inhibit the diffusion of water molecules in the molecular model of Cunninghamia lanceolata. The results of the interaction analysis among the molecules in the model showed that NaCl can reduce the interaction strength between water molecules and cellulose molecules, hemicellulose molecules, but the interaction strength between lignin and water molecules was enhanced, and the overall performance was that the interaction strength between Cunninghamia lanceolata molecules and water molecules was reduced.
      Conclusion  NaCl can reduce the binding effect of Cunninghamia lanceolata on water molecules, but its strong adsorption on water molecules leads to the phenomenon of “easy entry” and “difficult diffusion” of water molecules.
  • [1]
    Magnus S, Farideh J, Ingmar P, et al. Deterioration of the seventeenth century warship Vasa by internal formation of sulphuric acid[J]. Nature, 2002, 415: 893. doi: 10.1038/415893a
    [2]
    Bjurhager I, Halonen H, Lindfors E L, et al. State of degradation in archeological oak from the 17th century vasa ship: substantial strength loss correlates with reduction in (Holo) cellulose molecular weight[J]. Biomacromolecules, 2012, 13(8): 2521. doi: 10.1021/bm3007456
    [3]
    张然, 成小林, 潘路, 等. 铁质文物常用除锈试剂的除锈效率及其腐蚀性的比较研究[J]. 文物保护与考古科学, 2020, 32(3):17−27.

    Zhang R, Cheng X L, Pan L, et al. Comparative study of rust removal efficiency and corrosiveness of commonly-used reagents for iron artifacts[J]. Sciences of Conservation and Archaeology, 2020, 32(3): 17−27.
    [4]
    卢衡, 张绍志, 刘东坡, 等. 出土、出水饱水木质文物冷冻干燥研究进展[J]. 文物保护与考古科学, 2020, 32(6):126−137.

    Lu H, Zhang S Z, Liu D P, et al. Research progress of freeze drying for unearthed/salvaged waterlogged wooden archaeological artifacts[J]. Sciences of Conservation and Archaeology, 2020, 32(6): 126−137.
    [5]
    陈家昌, 黄霞, 陈晓琳, 等. 出土饱水木质文物的腐蚀病害类型与保护研究进展[J]. 材料导报, 2015, 29(11):96−101.

    Chen J C, Huang X, Chen X L, et al. Corrosion type and conservation of archaeological waterlogged wood[J]. Materials Reports, 2015, 29(11): 96−101.
    [6]
    马尔妮, 赵广杰. 木材的干缩湿胀−从平衡态到非平衡态[J]. 北京林业大学学报, 2006, 28(5):133−138. doi: 10.3321/j.issn:1000-1522.2006.05.024

    Ma E N, Zhao G J. Hygroexpansion of wood: from equilibrious state to non-equilibrious state[J]. Journal of Beijing Forestry University, 2006, 28(5): 133−138. doi: 10.3321/j.issn:1000-1522.2006.05.024
    [7]
    Yang T T, Ma E N. Comparison of dynamic sorption and hygroexpansion of wood by different cyclic hygrothermal changing effects[J]. Journal of the Korean Wood Science and Technology, 2016, 44(2): 191−203. doi: 10.5658/WOOD.2016.44.2.191
    [8]
    费利华, 沈大娲. 泉州湾宋代海船船木的盐分检测与分析[J]. 福建文博, 2015(3):65−68.

    Fei L H, Shen D W. Salt detection and analysis of sea-going ship wood in Quanzhou Bay in Song Dynasty[J]. Fujian Culture Museum, 2015(3): 65−68.
    [9]
    Nelson R M, Jr. Diffusion of bound water in wood part 2: a model for isothermal diffusion[J]. Wood Science and Technology, 1986, 20(3): 235−251. doi: 10.1007/BF00350982
    [10]
    Hunter A J. On movement of water through wood: the diffusion coefficient[J]. 1993, 27(6): 401-408.
    [11]
    伊松林, 张璧光, 常建民. 木材真空–浮压干燥过程中自由水迁移特性[J]. 北京林业大学学报, 2003, 25(4):59−63. doi: 10.3321/j.issn:1000-1522.2003.04.013

    Yi S L, Zhang B G, Chang J M. Characteristics of free water movement in wood drying process under vacuum-floating pressure[J]. Journal of Beijing Forestry University, 2003, 25(4): 59−63. doi: 10.3321/j.issn:1000-1522.2003.04.013
    [12]
    郭月红, 何正斌, 林作新, 等. 汽蒸处理过程中木材内部水分的迁移动力初探[J]. 北京林业大学学报, 2014, 36(5):131−135.

    Guo Y H, He Z B, Lin Z X, et al. Water migration force inner wood during steam treatment process[J]. Journal of Beijing Forestry University, 2014, 36(5): 131−135.
    [13]
    Eitelberger J, Hofstetter R. Multiscale homogenization of wood transport properties: diffusion coefficients for steady-state moisture transport[J]. Wood Material Science & Engineering, 2010, 5(2): 97−103.
    [14]
    Zhan J F, Gu J Y, Cai Y C. Analysis of moisture diffusivity of larch timber during convective drying condition by using Crank’s method and Dincer’s method[J]. Journal of Forestry Research, 2007, 18(3): 199−202. doi: 10.1007/s11676-007-0040-x
    [15]
    何正斌, 郭月红, 伊松林, 等. 木材超声波–真空协同干燥的动力学研究[J]. 北京林业大学学报, 2012, 34(2):133−136.

    He Z B, Guo Y H, Yi S L, et al. Preliminary study of wood ultrasound-vacuum combined drying dynamics[J]. Journal of Beijing Forestry University, 2012, 34(2): 133−136.
    [16]
    da Silva W P, da Silva L D, e Silva C M D P S, et al. Nascimento. Optimization and simulation of drying processes using diffusion models: application to wood drying using forced air at low temperature[J]. Wood Science and Technology, 2011, 45(4): 787−800. doi: 10.1007/s00226-010-0391-x
    [17]
    Gatica Y A, Salinas C H, Ananias R A. Modeling conventional one-dimensional drying of radiata pine based on the effective diffusion coefficient[J]. Latin American Applied Research, 2011, 41(2): 183−189.
    [18]
    杨亮庆. 枫桦圆盘预处理及干燥特性研究[D]. 哈尔滨: 东北林业大学, 2011.

    Yang L Q. The research of preprocessing and dyring characteristics of B. costata disk[D]. Harbin: Northeast Forestry University, 2011.
    [19]
    刘清芝, 杨登峰, 胡仰栋. 水和盐分子在反渗透膜内扩散过程的分子模拟[J]. 高等学校化学学报, 2009, 30(3):568−572. doi: 10.3321/j.issn:0251-0790.2009.03.027

    Liu Q Z, Yang D F, Hu Y D. Water and salts molecular simulation of diffusion process in reverse osmosis membrane[J]. Chemical Research in Chinese Universities, 2009, 30(3): 568−572. doi: 10.3321/j.issn:0251-0790.2009.03.027
    [20]
    Hou D S, Li D K, Yu J, et al. Insights on capillary adsorption of aqueous sodium chloride solution in the nanometer calcium silicate channel: a molecular dynamics study[J]. Journal of Physical Chemistry, 2017(8): 1−39.
    [21]
    纪松灿, 钱晓炜, 曾飞祥, 等. 利用分子动力学模拟水和盐在磺化聚苯乙烯–乙烯/丁烯–苯乙烯膜内的扩散行为[J]. 西安交通大学学报, 2019, 53(2):170−178.

    Ji S C, Qian X W, Zeng F X, et al. Water and salt diffusion behavior of sulfonated poly (styrene-ethylene/butylene-styrene) block copol ymer membrane with molecular dynamic simulation[J]. Journal of Xi’an Jiaotong University, 2019, 53(2): 170−178.
    [22]
    Du D Y, Tang C, Yang L, et al. Molecular dynamics simulation on the distribution and diffusion of different sulfides in oil-paper insulation systems[J]. Journal of Molecular Liquids, 2020(314): 1−7.
    [23]
    Kang W, Chung W Y. Liquid water diffusivity of wood from the capillary pressure-moisture relation[J]. Journal of Wood Science, 2009, 55(2): 91−99. doi: 10.1007/s10086-008-1009-x
    [24]
    Mazeau K. Molecular dynamics simulation of bulk native crystalline and amorphous structures of cellulose[J]. Journal of Physical Chemistry B, 2003, 107(10): 2394−2403. doi: 10.1021/jp0219395
    [25]
    李新宇, 张明辉. 利用X射线衍射法探究木材含水率与结晶度的关系[J]. 东北林业大学学报, 2014, 42(2):96−99. doi: 10.3969/j.issn.1000-5382.2014.02.023

    Li X Y, Zhang M H. Relationship of wood moisture content and the degree of crystallinity by X-ray diffraction[J]. Journal of Northeast Forestry University, 2014, 42(2): 96−99. doi: 10.3969/j.issn.1000-5382.2014.02.023
    [26]
    Berglund J, Azhar S, Lawoko M, et al. The structure of galactoglucomannan impacts the degradation under alkaline conditions[J]. Cellulose, 2019, 26(3): 2155−2175. doi: 10.1007/s10570-018-1737-z
    [27]
    Adler E. Lignin chemistry: past, present and future[J]. Wood Science & Technology, 1977, 11(3): 169−218.
    [28]
    孙珂, 漆楚生, 汪莉君, 等. 杉木纤维素的热稳定性及热分解动力学参数[J]. 林产工业, 2018, 45(4):40−44.

    Sun K, Qi C S, Wang L J, et al. Thermal stability and decomposition kinetics of parameters of Chinese fir cellulose[J]. China Forest Products Industry, 2018, 45(4): 40−44.
    [29]
    王佩卿, 余俊, 李民栋. 水杉木材半乳糖基–葡萄甘露聚糖的结构研究[J]. 南京林学院学报, 1986(2):66−73.

    Wang P Q, Yu J, Li M D. Study on the structure of galactosyl glucomannan from Metasequoia glyptostroboides wood[J]. Journal of Nanjing Institute of Forestry, 1986(2): 66−73.
    [30]
    Zhang J W, Tang C, Wang Q, et al. Analysis of nano-SiO2 affecting the acids diffusion in the interface between oil and cellulose paper[J]. Chemical Physics, 2020(529): 1−6.
    [31]
    Jorgensen L. Perspective on “equation of state calculations by fast computing machines”[J]. Theoretical Chemistry Accounts, 2000(103): 225−227.
    [32]
    Nishiyama Y, Sugiyama J J, Chanzy H, et al. Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction[J]. Journal of the American Chemical Society, 2003, 125(47): 14300−14306. doi: 10.1021/ja037055w
    [33]
    孙会刚. 水分对油纸绝缘热老化及寿命的影响与热老化程度表征研究[D]. 重庆: 重庆大学, 2011.

    Sun H G. Study on influence of moisture on thermal aging & life and thermal aging condition evaluation of oil-paper insulation[D]. Chongqing: Chongqing University, 2011.
    [34]
    Yin F, Tang C, Li X, et al. Effect of moisture on mechanical properties and thermal stability of meta-aramid fiber used in insulating paper[J]. Polymers, 2017, 9(10): 1−14.
  • Cited by

    Periodical cited type(3)

    1. 范舟,田波,张庆辉,侯涛,唐鹏. 基于分子动力学的元素硫吸附扩散行为研究. 石油化工. 2024(06): 839-847 .
    2. 柯玉彪,孙天礼,黄仕林,刘建仪,田波,范舟. 元素硫在溶硫剂中扩散溶解行为的分子动力学模拟. 当代化工. 2024(09): 2201-2207 .
    3. 徐佳佳,李京予,张润华,马尔妮. 基于分子动力学模拟的木材细胞壁与水分相互作用研究进展. 高分子材料科学与工程. 2024(08): 165-173 .

    Other cited types(2)

Catalog

    Article views (844) PDF downloads (81) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return