• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wang Jianguo, Wang Jianjun, Cao Chuanwang, Sun Lili. Cloning of LdOR2 gene in Lymantria dispar and its behavioral response to CO2 stress[J]. Journal of Beijing Forestry University, 2021, 43(9): 101-110. DOI: 10.12171/j.1000-1522.20210184
Citation: Wang Jianguo, Wang Jianjun, Cao Chuanwang, Sun Lili. Cloning of LdOR2 gene in Lymantria dispar and its behavioral response to CO2 stress[J]. Journal of Beijing Forestry University, 2021, 43(9): 101-110. DOI: 10.12171/j.1000-1522.20210184

Cloning of LdOR2 gene in Lymantria dispar and its behavioral response to CO2 stress

More Information
  • Received Date: May 13, 2021
  • Revised Date: June 06, 2021
  • Available Online: August 02, 2021
  • Published Date: October 14, 2021
  •   Objective  In this study, we cloned the odorant receptor gene (LdOR2) and determined the expression levels of this gene in developmental stages and different tissues of the Lymantria dispar and its behavioral response to CO2 stress. The results will provide a theoretical basis for clarifying the olfactory response mechanism of the L. dispar under climate change.
      Method  The LdOR2 gene was cloned through transcriptome library screening, and its characteristics were analyzed by bioinformatics. The expression levels of LdOR2 gene in different developmental stages and tissues as well as in different CO2 concentrations (397, 550 and 750 μL/L) were determined by real-time fluorescence quantitative PCR technology. In addition, RNA interference (RNAi) technology was used to study the behavioral responses of L. dispar adults silenced by LdOR2 at different CO2 concentrations.
      Result  The open reading frame (ORF) of LdOR2 gene in L. dispar was 1 203 bp, encoding 400 amino acids. The molecular mass of the LdOR2 protein was 45.76 kDa and the theoretical isoelectric point was 8.22. The phylogenetic tree showed that the LdOR2 in L. dispar was closely related to MsepOR24 Mythimna separata and AdisOR21 in Athetis dissimilis, and clustered into one group. RT-qPCR results showed that LdOR2 was expressed at all developmental stages of the L. dispar, with the highest expression level in female pupae and the lowest expression levels in male adults. In different tissues of female and male adults, the expression levels in antennae were significantly higher than those in other tissues (P < 0.05), but showed no difference between the antennae of female and male. The expression of LdOR2 gene decreased under high CO2 concentration. Compared with the control group, the expression of female antennae under 550 μL/L and 750 μL/L conditions decreased by 21% and 29% (P < 0.05), respectively, and the expression levels of antennae of male L. dispar adults decreased by 43% and 7% (P < 0.05). After LdOR2 gene silencing, the tendency of female and male L. dispar adults to eugenol and cis-3-hexene-1-ol was weakened, while the response rates of the L. dispar silencers to seven volatiles decreased under high CO2 concentration.
      Conclusion  LdOR2 plays an important role in the odor recognition of L. dispar. The sensitivity of L. dispar to odor was affected by the expression levels of LdOR2 gene regulated by the changes of CO2 concentration.
  • [1]
    Raupach M R, Marland G, Ciais P, et al. Global and regional drivers of accelerating CO2 emissions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 1704(24): 10288−10293.
    [2]
    戈峰, 陈法军. 大气CO2浓度增加对昆虫的影响[J]. 生态学报, 2006, 26(3):935−944. doi: 10.3321/j.issn:1000-0933.2006.03.040

    Ge F, Chen F J. Impacts of elevated CO2 on insects[J]. Acta Ecologica Sinica, 2006, 26(3): 935−944. doi: 10.3321/j.issn:1000-0933.2006.03.040
    [3]
    Leal W S. Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes[J]. Annual Review of Entomology, 2013, 58(1): 373−391. doi: 10.1146/annurev-ento-120811-153635
    [4]
    Leal W S, Chen A M, Ishida Y, et al. Kinetics and molecular properties of pheromone binding and release[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(15): 5386−5391. doi: 10.1073/pnas.0501447102
    [5]
    Benton R. On the origin of smell: odorant receptors in insects[J]. Cellular and Molecular Life Sciences, 2006, 63(14): 1579−1585. doi: 10.1007/s00018-006-6130-7
    [6]
    Larsson M C, Domingos A I, Jones W D, et al. Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction[J]. Neuron, 2004, 43(5): 703−714. doi: 10.1016/j.neuron.2004.08.019
    [7]
    Clyne P J, Warr C G, Freeman M R, et al. A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila[J]. Neuron, 1999, 22(2): 327−338. doi: 10.1016/S0896-6273(00)81093-4
    [8]
    Hill C A, Fox A N, Pitts R J, et al. G protein-coupled receptors in Anopheles gambiae[J]. Science, 2002, 298: 176−178. doi: 10.1126/science.1076196
    [9]
    Xia Q, Zhou Z, Lu C, et al. A draft sequence for the genome of the domesticated silkworm (Bombyx mori)[J]. Science, 2004, 306: 1937−1940. doi: 10.1126/science.1102210
    [10]
    周正朝, 上官周平. 红豆草与土壤氮含量对大气二氧化碳浓度升高的响应[J]. 应用生态学报, 2006, 17(11):2175−2178. doi: 10.3321/j.issn:1001-9332.2006.11.035

    Zhou Z C, Shangguan Z P. Responses of Onobrychis viciaefolia scop and soil nitrogen contents to elevated atmospheric CO2 concentration[J]. Chinese Journal of Applied Ecology, 2006, 17(11): 2175−2178. doi: 10.3321/j.issn:1001-9332.2006.11.035
    [11]
    李欣悦. CO2浓度变化对“舞毒蛾-LdNPV”系统影响[D]. 哈尔滨: 东北林业大学, 2019.

    Li X Y. Effects of CO2 concentration change on “Lymantria dispar-LdNPV” system[D]. Harbin: Northeast Forestry University, 2019.
    [12]
    Pfaffl M W, Horgan G W, Dempfle L. Relative expression software tool (Rest) for group-wise comparison and statistical analysis of relative expression results in real-time PCR[J]. Nucleic Acids Research, 2002, 30(9): e36. doi: 10.1093/nar/30.9.e36
    [13]
    李黄开媚. 三种植物挥发物组分鉴定及对粘虫的引诱作用研究[D]. 武汉: 华中农业大学, 2017.

    Li-Huang K M. Identification and study on three plant volatile compounds of attracting Mythimna separata (Walker)[D]. Wuhan: Huazhong Agricultural University, 2017.
    [14]
    凌娜, 唐进根, 殷玉生, 等. 分月扇舟蛾成虫对黑杨挥发物的触角电位反应[J]. 江苏农业学报, 2014, 30(3):514−519. doi: 10.3969/j.issn.1000-4440.2014.03.010

    Ling N, Tang J G, Yin Y S, et al. Electroantennogram respoon of Clostera anastomosis adult volatile of Populus nigra[J]. Jiangsu Journal of Agricultural Sciences, 2014, 30(3): 514−519. doi: 10.3969/j.issn.1000-4440.2014.03.010
    [15]
    邢亚, 迟德富, 宇佳, 等. 杨干象对12种植物挥发物的电生理及行为反应[J]. 林业科学, 2017, 53(6):159−167. doi: 10.11707/j.1001-7488.20170619

    Xing Y, Chi D F, Yu J, et al. EAG and behavioral responses of Cryptorrhynchus lapathi (Coleoptera: Curculionidae) to twelve plant volatiles[J]. Scientia Silvae Sinicae, 2017, 53(6): 159−167. doi: 10.11707/j.1001-7488.20170619
    [16]
    王紫薇, 徐华潮, 张娓娓, 等. 光肩星天牛对寄主的选择及主要寄主挥发物的化学成分分析[J]. 浙江农林大学学报, 2016, 33(4):558−563. doi: 10.11833/j.issn.2095-0756.2016.04.002

    Wang Z W, Xu H C, Zhang W W, et al. Anoplophora glabripennis host-plant selection with main host-plant volatile chemical component analysis[J]. Journal of Zhejiang A&F University, 2016, 33(4): 558−563. doi: 10.11833/j.issn.2095-0756.2016.04.002
    [17]
    程立超, 迟德富. 10种杨属植物树皮挥发油的化学成分分析[J]. 林业科学研究, 2007, 20(2):267−271. doi: 10.3321/j.issn:1001-1498.2007.02.022

    Cheng L C, Chi D F. Chemical constituents of essential oil from bark of ten species of Populus[J]. Forest Research, 2007, 20(2): 267−271. doi: 10.3321/j.issn:1001-1498.2007.02.022
    [18]
    唐进根, 凌娜, 杨哓军. 固相微萃取—气相色谱/质谱测定杨树叶片的挥发性物质[J]. 福建农林大学学报(自然科学版), 2010, 39(2):150−153.

    Tang J G, Ling N, Yang X J. Analysis of volatile constituents from poplar leaves by gas chromatography/mass spectrometry with solid-phase microextraction[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2010, 39(2): 150−153.
    [19]
    de Bruyne M, Baker T C. Odor detection in insects: volatile codes[J]. Journal of Chemical Ecology, 2008, 34(7): 882−897. doi: 10.1007/s10886-008-9485-4
    [20]
    刘宁灿, 张进, 王桂荣, 等. 棉铃虫普通气味受体基因HarmOR9和HarmOR29的克隆和组织表达分析[J]. 昆虫学报, 2014, 57(5):522−529.

    Liu N C, Zhang J, Wang G R, et al. Cloning and tissue expression analysis of general odorant receptor genes HarmOR9 and HarmOR29 in the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae)[J]. Acta Ecologica Sinica, 2014, 57(5): 522−529.
    [21]
    孔畅仪, 王桂荣, 刘杨, 等. 小菜蛾三个普通气味受体基因的克隆及表达谱[J]. 中国农业科学, 2014, 47(9):1735−1742. doi: 10.3864/j.issn.0578-1752.2014.09.008

    Kong C Y, Wang G R, Liu Y, et al. Gene cloning and expression analysis of three odorant receptors in the diamondback moth (Plutella xylostella)[J]. Scientia Agricultura Sinica, 2014, 47(9): 1735−1742. doi: 10.3864/j.issn.0578-1752.2014.09.008
    [22]
    杜亚丽, 王树杰, 赵慧婷, 等. 中华蜜蜂气味受体基因AcerOR113的克隆与时空表达分析[J]. 昆虫学报, 2017, 60(5):533−543.

    Du Y L, Wang S J, Zhao H T, et al. Cloning and temporal-spatial expression profiling of the odorant receptor gene AcerOR113 in the Chinese honeybee, Apis cerana cerana[J]. Acta Entomologica Sinica, 2017, 60(5): 533−543.
    [23]
    Bengtsson J M, Trona F, Montagné N, et al. Putative chemosensory receptors of the codling moth, Cydia pomonella, identified by antennal transcriptome analysis[J/OL]. PLoS One, 2012, 7(2): e31620 [2012−02−20]. https://doi.org/10.1371/journal.pone.0031620.
    [24]
    Legeai F, Malpel S, Montagné N, et al. An expressed sequence tag collection from the male antennae of the Noctuid moth Spodoptera littoralis: a resource for olfactory and pheromone detection research[J]. BMC Genomics, 2011, 12(1): 1−18. doi: 10.1186/1471-2164-12-1
    [25]
    巩中军, 周文武, 祝增荣, 等. 昆虫嗅觉受体的研究进展[J]. 昆虫学报, 2008,51(7):761−768. doi: 10.3321/j.issn:0454-6296.2008.07.013

    Gong Z J, Zhou W W, Zhu Z R, et al. Advances in the studies of insect olfactory receptors[J]. Acta Entomologica Sinica, 2008,51(7): 761−768. doi: 10.3321/j.issn:0454-6296.2008.07.013
    [26]
    张帅, 张永军, 苏宏华, 等. 棉铃虫气味受体的克隆与组织特异性表达[J]. 昆虫学报, 2009, 52(7):728−735. doi: 10.3321/j.issn:0454-6296.2009.07.003

    Zhang S, Zhang Y J, Su H H, et al. Cloning and tissue-specific expression of olfactory receptors in Helicoverpa armigera (Hübner)[J]. Acta Entomologica Sinica, 2009, 52(7): 728−735. doi: 10.3321/j.issn:0454-6296.2009.07.003
    [27]
    张逸凡, 修伟明, 杨殿林, 等. 甜菜夜蛾非典型嗅觉受体基因OR2的组织特异性和时空表达[J]. 中国农学通报, 2011, 27(7):231−235.

    Zhang Y F, Xiu W M, Yang D L, et al. Tissue-specific expression and temporal and spatial expression of atypical odorant receptor gene OR2 in Spodoptera exigua (Hübner)[J]. Chinese Agricultural Science Bulletin, 2011, 27(7): 231−235.
    [28]
    王桂荣, 郭予元, 吴孔明. 棉铃虫触角感器的超微结构观察[J]. 中国农业科学, 2002(12):1479−1482, 1584−1586. doi: 10.3321/j.issn:0578-1752.2002.12.008

    Wang G R, Guo Y Y, Wu K M. Observation on the ultrastructures of antennal sensilla in Helicoverpa armigera[J]. Scientia Agricultura Sinica, 2002(12): 1479−1482, 1584−1586. doi: 10.3321/j.issn:0578-1752.2002.12.008
    [29]
    Forstner M, Breer H, Krieger J. A receptor and binding protein interplay in the detection of a distinct pheromone component in the silkmoth Antheraea polyphemus[J]. International Journal of Biological Sciences, 2009, 5(7): 745−757.
    [30]
    Zhang J, Liu C C, Yan S W, et al. An odorant receptor from the common cutworm (Spodoptera litura) exclusively tuned to the important plant volatile cis-3-Hexenyl acetate[J]. Insect Molecular Biology, 2013, 22(4): 424−432. doi: 10.1111/imb.12033
    [31]
    Dai Y, Wang M F, Jiang S L, et al. Host-selection behavior and physiological mechanisms of the cotton aphid, Aphis gossypii, in response to rising atmospheric carbon dioxide levels[J]. Journal of Insect Physiology, 2018, 109: 149−156. doi: 10.1016/j.jinsphys.2018.05.011
    [32]
    Majeed S, Hill S R, Ignell R. Impact of elevated CO2 background levels on the host-seeking behaviour of Aedes aegypti[J]. Journal of Experimental Biology, 2014, 217(4): 598−604.
    [33]
    Liu H, Liu T, Xie L, et al. Functional analysis of orco and odorant receptors in odor recognition in Aedes albopictus[J]. Parasites & Vectors, 2016, 9(1): 1−10.
    [34]
    Zhou Y L, Zhu X Q, Gu S H, et al. Silencing in Apolygus lucorum of the olfactory coreceptor orco gene by RNA interference induces EAG response declining to two putative semiochemicals[J]. Journal of Insect Physiology, 2014, 60: 31−39. doi: 10.1016/j.jinsphys.2013.10.006
  • Related Articles

    [1]Hou Jiayin, Feng Shuxiang, Dai Songhua, Yan Shufang. Identification of TP-M13-SSR molecular markers and genetic relationship analysis of seven new ornamental peach germplasms[J]. Journal of Beijing Forestry University, 2023, 45(8): 132-141. DOI: 10.12171/j.1000-1522.20220158
    [2]Mao Xiuhong, Zhu Shili, Li Shanwen, Hua Hui, Tian Shuyong, Zhong Weiguo, Dong Yufeng, An Xinmin. Core germplasm construction of Populus tomentosa based on the fluorescent SSR markers[J]. Journal of Beijing Forestry University, 2020, 42(7): 40-47. DOI: 10.12171/j.1000-1522.20190413
    [3]Hong Wenjuan, Hao Zhaoxiang, Liu Kangjia, Luo Hua, Bi Runxia, Yuan Zhaohe, Zong Shixiang, Wang Jun. Development and identification of SSR molecular markers based on whole genomic sequences of Punica granatum[J]. Journal of Beijing Forestry University, 2019, 41(8): 38-47. DOI: 10.13332/j.1000-1522.20190167
    [4]Pan Liqin, Li Jiyuan, Li Shaocui, Fan Zhengqi, Yin Hengfu, He Libo. Development of SSR markers based on transcriptome of Camellia japonica and analysis of genetic relationship[J]. Journal of Beijing Forestry University, 2019, 41(7): 111-120. DOI: 10.13332/j.1000-1522.20190101
    [5]Wu Yuying, Zhou Xuan, Xu Tingliang, Chang Zheng, Yi Xingwan, Gao Huabei, Zhao Hongxia, Wang Jia, Cheng Tangren, Zhang Qixiang, Pan Huitang. Identification and evaluation of F1 hybrids between Rosa ‘Sanka’×R. multiflora var. cathayensis[J]. Journal of Beijing Forestry University, 2019, 41(3): 124-133. DOI: 10.13332/j.1000-1522.20180255
    [6]CHEN Ling-na, MA Qing-guo, ZHANG Jun-pei, ZHOU Bei-bei, PEI Dong. Development of BAC-SSR markers in walnut and its application in genetic diversity analysis[J]. Journal of Beijing Forestry University, 2014, 36(6): 24-29. DOI: 10.13332/j.cnki.jbfu.2014.06.008
    [7]DING Xiao-liu, LIU Jia, ZHAO Hong-xia, WANG Jing, LUO Le, PAN Hui-tang, ZHANG Qi-xiang. Hybrid identification and morphological evaluation of modern roses ( Rosa hybrida ) x Rosa rugosa[J]. Journal of Beijing Forestry University, 2014, 36(5): 123-130. DOI: 10.13332/j.cnki.jbfu.2014.05.005
    [8]HE Dan, TANG Wan, LIU Yang,  CAI Ming, PAN Hui-tang, ZHANG Qi-xiang. Linkage analysis of phonotypic traits of Lagerstroemia caudata and L. indica F1 population using SSR markers.[J]. Journal of Beijing Forestry University, 2012, 34(6): 121-125.
    [9]QIN Ying-ying, HAN Hai-rong, KANG Feng-feng, ZHAO Qi. Genetic diversity in natural populations of Quercus liaotungensis in Shanxi Province based on nuclear SSR markers[J]. Journal of Beijing Forestry University, 2012, 34(2): 61-65.
    [10]CHEN Hong-wei, , KANG Xiang-yang, ZHANG Zheng-hai, WANG Jun1, CAI Xiao. Production and molecular identification of hybrids between Populus pseudosimonii Kitag. and P. euphratica Oliv.[J]. Journal of Beijing Forestry University, 2009, 31(2): 86-91.
  • Cited by

    Periodical cited type(10)

    1. 王艺,刘思思,张彤赫,黄儒强. 高良姜多糖提取工艺的优化及抗氧化活性研究. 农产品加工. 2023(03): 34-38 .
    2. 周佳悦,夏晓雨,候艳丽,王凡予,李芳菲,郭庆启. 不同发酵方式蓝莓果酒发酵过程中理化指标和抗氧化能力的动态变化. 中国酿造. 2023(05): 132-138 .
    3. 杨丽婷,赵珊,李明玉,杨薇潼,郑志强,符群. 黑果腺肋花楸分级提取物成分分析及抗氧化活性比较. 食品工业. 2022(07): 129-134 .
    4. 国田,张娜,符群,柴洋洋,郭庆启. 几种辅助提取方式对蓝莓原花青素浸提效果及抗氧化活性的影响. 北京林业大学学报. 2020(09): 139-148 . 本站查看
    5. 李珊,梁俭,冯群,刘真珍. 桂七青芒果皮多糖提取工艺的响应面优化及其体外抗氧化活性. 食品工业科技. 2019(04): 220-225+231 .
    6. 高嘉敏,邓剑平,王一飞,王治平. 黄连与人参协同抗氧化活性的研究. 现代食品科技. 2019(06): 110-118+199 .
    7. 曹叶霞,王泽慧,贺金凤,左鑫. 静乐黑枸杞多糖的提取及抗氧化性分析. 食品工业科技. 2019(14): 196-202 .
    8. 夏晓雨,王凤娟,符群,张娜,郭庆启. 几种单元操作对蓝莓果汁饮料酚类物质含量及抗氧化活性的影响. 中南林业科技大学学报. 2019(11): 125-131 .
    9. 姚佳,李世正,杜煜,侯鹏鹏. 大孔树脂分离纯化罗勒叶总黄酮及抗氧化活性研究. 食品研究与开发. 2018(20): 63-68 .
    10. 黄娟,黄燕燕,刘冬梅,陈素芹,潘伟才. 响应面法优化多汁乳菇多糖提取工艺及抗氧化活性研究. 食品工业科技. 2017(11): 55-60 .

    Other cited types(10)

Catalog

    Article views (735) PDF downloads (35) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return