Citation: | Yan Hong, Sun Yingjie, Liu Binhui. Effects of competition on drought adaptability and growth decline of Pinus koraiensis trees[J]. Journal of Beijing Forestry University, 2022, 44(6): 1-9. DOI: 10.12171/j.1000-1522.20210198 |
[1] |
IPCC. Climate change 2013: the physical science basis[R]//Contribution to the intergovernmental panel on climate change fifth assessment report. Cambridge: Cambridge University Press, 2013.
|
[2] |
Dai A G. Increasing drought under global warming in observations and models[J]. Nature Climate Change, 2013, 3(1): 52−58. doi: 10.1038/nclimate1633
|
[3] |
Gazol A, Camarero J J. Functional diversity enhances silver fir growth resilience to an extreme drought[J]. Journal of Ecology, 2016, 104: 1063−1075. doi: 10.1111/1365-2745.12575
|
[4] |
Allen C D, Macalady A K, Chenchouni H, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests[J]. Forest Ecology and Management, 2010, 259(4): 660−684. doi: 10.1016/j.foreco.2009.09.001
|
[5] |
Williams A P, Allen C D, Macalady A K, et al. Temperature as a potent driver of regional forest drought stress and tree mortality[J]. Nature Climate Change, 2013, 3: 292−297. doi: 10.1038/nclimate1693
|
[6] |
Guada G, Camarero J J, Sánchez-Salguero R, et al. Limited growth recovery after drought-induced forest dieback in very defoliated trees of two pine species[J]. Frontiers in Plant Science, 2016, 7: 418.
|
[7] |
Sun S J, Lei S. Tree-ring analysis reveals density-dependent vulnerability to drought in planted Mongolian pines January[J]. Forests, 2020, 11(1): 98. doi: 10.3390/f11010098
|
[8] |
Li X, Piao S, Wang K, et al. Temporal trade-off between gymnosperm resistance and resilience increases forest sensitivity to extreme drought[J]. Nature Ecology & Evolution, 2020, 4: 1075−1083.
|
[9] |
Sanchez-Salguero R, Camarero J J, Rozas V, et al. Resist, recover or both? Growth plasticity in response to drought is geographically structured and linked to intraspecific variability in Pinus pinaster[J]. Journal of Biogeography, 2018, 45: 1126−1139. doi: 10.1111/jbi.13202
|
[10] |
La M L, Rajchenberg M. The decline of Austrocedrus chilensis forests in Patagonia, Argentina: soil features as predisposing factors.[J]. Forest Ecology and Management, 2003, 190: 345−357.
|
[11] |
Amoroso M M, Larson B C. Stand development patterns as a consequence of the mortality in Austrocedrus chilensis forests[J]. Forest Ecology and Management, 2010, 259: 1981−1992. doi: 10.1016/j.foreco.2010.02.009
|
[12] |
Minorsky P V. The decline of sugar maples (Acer saccharum)[J]. Plant Physiology, 2003, 133: 441−442. doi: 10.1104/pp.900091
|
[13] |
Carnicer J, Domingo-Marimon C, Ninyerola M. Regime shifts of Mediterranean forest carbon uptake and reduced resilience driven by multidecadal ocean surface temperatures[J]. Global Change Biology, 2019, 25: 2825−2840. doi: 10.1111/gcb.14664
|
[14] |
Lu K L, Chen N, Zhang C K, et al. Drought enhances the role of competition in mediating the relationship between tree growth and climate in semi-arid areas of northwest China[J]. Forests, 2019, 10(9): 804. doi: 10.3390/f10090804
|
[15] |
Kwon S, 潘磊磊, 时忠杰, 等. 不同竞争强度下的沙地樟子松天然林树木径向生长及其气候响应[J]. 生态学杂志, 2019, 38(7): 1962−1972.
Kwon S, Pan L L, Shi Z J, et al. Radial growth of Mongolian pine and its response to climate at different competition inten-sities[J]. Journal of Chemical Ecology, 2019, 38(7): 1962−1972.
|
[16] |
Linares J C, Camarero J J, Carreira J A. Competition modulates the adaptation capacity of forests to climatic stress: insights from recent growth decline and death in relict stands of the Mediterranean fir Abies pinsapo[J]. Journal of Ecology, 2010, 98: 592−603. doi: 10.1111/j.1365-2745.2010.01645.x
|
[17] |
孙凤华, 袁健, 路爽. 东北地区近百年气候变化及突变检测[J]. 气候与环境研究, 2006, 11(1): 101−108. doi: 10.3878/j.issn.1006-9585.2006.01.10
Sun F H, Yuan J, Lu S. The changes and test of climate in northeast China over the last 100 years[J]. Climatic and Environmental Research, 2006, 11(1): 101−108. doi: 10.3878/j.issn.1006-9585.2006.01.10
|
[18] |
Yang J W, Zhao H Y, Zhang Y D, et al. Climate-growth relationship for different directions of Pinus pumilaradial growth at the treeline of northern Daxing’an Mountains, China[J]. Trees, 2018, 32: 311−322. doi: 10.1007/s00468-017-1633-4
|
[19] |
Carnwath G C, Nelson C R. The effect of competition on responses to drought and interannual climate variability of a dominant conifer tree of western North America[J]. Journal of Ecology, 2016, 104: 1421−1431. doi: 10.1111/1365-2745.12604
|
[20] |
Hegyi F. A simulation model for managing jack-pine stands [M]//Fries J. Growth models for tree and stand simulation. Stockholm: Royal College of Forestry, 1974: 74–90.
|
[21] |
Lloret F, Keeling E G, Sala A. Components of tree resilience: effects of successive low-growth episodes in old ponderosa pine forests[J]. Oikos, 2011, 120(12): 1909−1920. doi: 10.1111/j.1600-0706.2011.19372.x
|
[22] |
王童, 孙玉军, 乔晶晶. 将乐林场马尾松树轮宽度对气候变化的响应[J]. 北京林业大学学报, 2019, 41(9): 30−39.
Wang T, Sun Y J, Qiao J J. Response of Pinus massoniana tree-ring width in the Jiangle Area of Fujian Province to climate change[J]. Journal of Beijing Forestry University, 2019, 41(9): 30−39.
|
[23] |
Pretzsch H, Schütze G, Uhl E. Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter-specific facilitation.[J]. Plant Biology, 2013, 15(3): 483−495. doi: 10.1111/j.1438-8677.2012.00670.x
|
[24] |
申佳艳, 李帅锋, 黄小波, 等. 金沙江流域不同海拔处云南松生态弹性及生长衰退过程[J]. 林业科学, 2020, 56(6): 1−11.
Shen J Y, Li S F, Huang X B, et al. Ecological resilience and growth gegradation of Pinus yunnanensis at different altitudes in Jinsha River Basin[J]. Scientia Silvae Sinicae, 2020, 56(6): 1−11.
|
[25] |
中国气象局. 气象干旱等级: GB /T 20481—2006 [S]. 北京: 中国标准出版社, 2006.
China Meteorological Administration. Classification of meteorological drought: GB /T 20481−2006[S]. Beijing: Standards Press of China, 2006.
|
[26] |
Payette S, Filion L, Delwaide A. Disturbance regime of a cold temperate forest as deduced from tree-ring patterns: the Tantare Ecological Reserve, Quebec[J]. Canadian Journal of Forest Research, 1990, 20(8): 1228−1241. doi: 10.1139/x90-162
|
[27] |
Nowacki G J, Abrams M D. Radial-growth averaging criteria for reconstructing disturbance histories from presettlement-origin oaks[J]. Ecological Monographs, 1997, 67(2): 225−249.
|
[28] |
Amoroso M M, Daniels L D, Larson B C. Temporal patterns of radial growth in declining Austrocedrus chilensis forests in Northern Patagonia: the use of tree-rings as an indicator of forest decline[J]. Forest Ecology and Management, 2012, 265(1): 62−70.
|
[29] |
及莹. 黑龙江红松年轮气候响应及与变暖关系探讨[D]. 哈尔滨: 东北林业大学, 2010.
Ji Y. Climate-growth relationships of Korean pine in Heilongjiang and their potential for global warming[D]. Harbin: Northeast Forestry University, 2010.
|
[30] |
Mencuccini M, Martínez-Vilalta J, Vanderklein D, et al. Size-mediated ageing reduces vigour in trees[J]. Ecology Letter, 2005, 8: 1183−1190. doi: 10.1111/j.1461-0248.2005.00819.x
|
[31] |
Ryan M G, Phillips N, Bond B J. The hydraulic limitation hypothesis revisited[J]. Plant, Cell & Environment, 2006, 29: 367−381.
|
[32] |
Florian Z, Pieter D F, Jonathan L, et al. Forest microclimate dynamics drive plant responses to warming [J]. Science, 2020, 368: 772–775.
|
[33] |
Steckel M, Moser W K, del Rio M, et al. Implications of reduced stand density on tree growth and drought susceptibility: a study of three species under varying climate[J]. Forests, 2020, 11(6): 627. doi: 10.3390/f11060627
|
[34] |
Colangelo M, Camarero J, Ripullone F, et al. Drought decreases growth and increases mortality of coexisting native and introduced tree species in a temperate floodplain forest[J]. Forests, 2018, 9(4): 205. doi: 10.3390/f9040205
|
[35] |
Primicia I, Camarero J J, Janda P, et al. Age, competition, disturbance and elevation effects on tree and stand growth response of primary Picea abies forest to climate[J]. Forest Ecology and Management, 2015, 354: 77−86. doi: 10.1016/j.foreco.2015.06.034
|
[36] |
Wu X, Liu H, Li X, et al. Differentiating drought legacy effects on vegetation growth over the temperate northern hemisphere[J]. Global Change Biology, 2017, 24: 504−516.
|
[37] |
Xu C Y, Liu H Y, Anenkhonov O A, et al. Long-term forest resilience to climate change indicated by mortality, regeneration, and growth in semiarid southern Siberia[J]. Global Change Biology, 2017, 23(6): 2370−2382. doi: 10.1111/gcb.13582
|
[38] |
Gleason K E, Bradford J B, Bottero A D, et al. Competition amplifies drought stress in forests across broad climatic and compositional gradients[J/OL]. Ecosphere, 2017, 8(7): e01849[2021–03–10]. https://doi.org/10.1002/ecs2.1849.
|
[39] |
Steppe K, Vandegehuchte M W, Tognetti R, et al. Sap flow as a key trait in the understanding of plant hydraulic functioning[J]. Tree Physiology, 2015, 35: 341−345. doi: 10.1093/treephys/tpv033
|
[40] |
Gao S, Liu R S, Zhou T, et al. Dynamic responses of tree-ring growth to multiple dimensions of drought[J]. Global Change Biology, 2018, 24(11): 5380−5390. doi: 10.1111/gcb.14367
|
[41] |
Serra-Maluquer X, Mencuccini M, Martínez-Vilalta J. Changes in tree resistance, recovery and resilience across three successive extreme droughts in the northeast Iberian Peninsula[J]. Oecologia, 2018, 187(1): 343−354. doi: 10.1007/s00442-018-4118-2
|
[42] |
Brodribb T J, Powers J, Cochard H, et al. Hanging by a thread? Forests and drought[J]. Science, 2020, 368: 261−266. doi: 10.1126/science.aat7631
|
[43] |
Gazol A, Camarero J J, Anderegg W R L, et al. Impacts of droughts on the growth resilience of Northern Hemisphere forests[J]. Global Ecology and Biogeography, 2017, 26: 166−176.
|
1. |
赵钰婷,陈冬瑶,杨柳,李晶楠,宁广亮,姜静. 白桦四倍体×紫雨桦二倍体杂交种子活力及杂种子代生长特性分析. 温带林业研究. 2025(01): 1-8 .
![]() | |
2. |
任亚超,张军,王进茂,杨敏生. 科研反哺教学在林木育种学教学中的探索与实践. 安徽农业科学. 2024(10): 278-282 .
![]() | |
3. |
杨琦,王湘莹,王晓明,乔中全,唐丽. 大花紫薇ב丹红紫叶’紫薇杂交F_1代不育株转录组测序. 东北林业大学学报. 2024(09): 25-29 .
![]() | |
4. |
赵一帆,孔博,程雪桐,李亮,凌傲宇,李智群,康向阳,张平冬. 赤霉素喷洒处理诱导新疆杨2n花粉产生及其对微管骨架的影响. 北京林业大学学报. 2023(01): 40-50 .
![]() | |
5. |
李智群,孔博,程雪桐,李亮,张平冬. 高温诱导银灰杨花粉败育的细胞学机理研究. 北京林业大学学报. 2023(05): 25-34 .
![]() | |
6. |
刘春洋,彭朝凤,程世平,姚鹏强,耿喜宁,谢丽华. 高温诱导‘凤丹’牡丹2n雌配子创制三倍体. 园艺学报. 2023(07): 1455-1466 .
![]() | |
7. |
刘宣晨,刘彩霞,张世凯,李开隆,曲冠证. 大青杨×小黑杨异源三倍体新种质创制. 东北林业大学学报. 2023(10): 19-27 .
![]() | |
8. |
周炳秀,刘勇,彭玉信,张劲,赵建松,朱轶超,赵巧玲,王硕,陶靖,孟路. 雄性毛白杨无性系苗期表型和生理变异的早期综合评价. 东北林业大学学报. 2023(11): 1-9 .
![]() | |
9. |
吴婷,贾瑞冬,杨树华,赵鑫,于晓南,国圆,葛红. 蝴蝶兰多倍体育种研究进展与展望. 园艺学报. 2022(02): 448-462 .
![]() | |
10. |
张新宇,董阳,王梦蕾,孙照斌. 银腺杨解剖及理化性能研究. 林业科技. 2022(05): 33-36 .
![]() | |
11. |
陈赢男,韦素云,曲冠正,胡建军,王军辉,尹佟明,潘惠新,卢孟柱,康向阳,李来庚,黄敏仁,王明庥. 现代林木育种关键核心技术研究现状与展望. 南京林业大学学报(自然科学版). 2022(06): 1-9 .
![]() |