• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Niu Yunming, Jia Guodong, Liu Zihe, Wang Xin, Liu Ziqiang. Soil moisture absorption and utilization of Quercus variabilis in Beijing mountain area[J]. Journal of Beijing Forestry University, 2022, 44(7): 16-24. DOI: 10.12171/j.1000-1522.20210208
Citation: Niu Yunming, Jia Guodong, Liu Zihe, Wang Xin, Liu Ziqiang. Soil moisture absorption and utilization of Quercus variabilis in Beijing mountain area[J]. Journal of Beijing Forestry University, 2022, 44(7): 16-24. DOI: 10.12171/j.1000-1522.20210208

Soil moisture absorption and utilization of Quercus variabilis in Beijing mountain area

More Information
  • Received Date: June 01, 2021
  • Revised Date: August 08, 2021
  • Available Online: June 16, 2022
  • Published Date: July 24, 2022
  •   Objective  Quercus variabilis is one of the dominant tree species in Beijing mountainous area. To explore the water use strategies, sap flow characteristics and their relationships of Q. variabilis could provide a theoretical reference for the study of water sorption process of trees, and enhance the knowledge of forest plantation management.
      Method  Based on the stable hydrogen and oxygen isotopes and the principle of thermal diffusion (pin type) stalk flow meter, water use sources and sap flow rates of Q. variabilis were measured in different seasons from 2015 to 2017, and the correlation between the two indicators was analyzed combined with meteorological data.
      Result  (1) There were significant differences in sap flow activities in different stages of the non-growing season (November to December and January to March). The average daily sap flow rate gradually increased by the end of the dormant period, and the sap flow rate was 2 × 10−4−3 × 10−4 cm/s, which was affected by environmental factors in the growing season with a large daily fluctuation of 1.5 × 10−3 to 1.7 × 10−3 cm/s. During the observation period, the sap flow rate differed significantly from June to October, but the difference from April to May was insignificant in different years; (2) the ratios of water use by Q. variabilis in different soil depths were relatively stable among different seasons, and the water in each soil layer was evenly supplied to the tree. In the non-growing season, the absorption and utilization ratios of water from the 0− 40 cm, 40−80 cm, and 80−100 cm soil layers by Q. variabilis were (36.0 ± 3.5)%, (41.0 ± 1.6)%, and (23.0 ± 2.3)%, respectively. During the growing season, the utilization of soil water of 0−40 cm depth increased to (39.3 ± 2.6)%. The ratio of soil water utilization from 40−80 cm remained unchanged (40.0 ± 1.5)%, and soil water utilization of 80−100 cm decreased to (20.7 ± 1.8)%; (3) the average daily transpiration was negatively correlated with the use of 40−80 cm soil water by Q. variabilis during the growing season and was positively correlated with the use of 80−100 cm soil water.
      Conclusion  Under the existing seasonal water use pattern of Q. variabilis, the increase in transpiration during the growing season will expand the absorption ratio of deep soil water, which is of great significance for the maintenance of transpiration of Q. variabilis.
  • [1]
    刘自强. 华北地区典型林木水分运移过程与利用机制研究[D]. 北京: 北京林业大学, 2019.

    Liu Z Q. Water migration process and utilization mechanism of typical trees in North China[D]. Beijing: Beijing Forestry University, 2019.
    [2]
    贾国栋, 余新晓, 邓文平, 等. 北京山区典型树种土壤水分利用特征[J]. 应用基础与工程科学学报, 2013, 21(3): 403−411. doi: 10.3969/j.issn.1005-0930.2013.03.002

    Jia G D, Yu X X, Deng W P, et al. Soil water use of typical tree species in Beijing mountain area[J]. Journal of Basic Science and Engineering, 2013, 21(3): 403−411. doi: 10.3969/j.issn.1005-0930.2013.03.002
    [3]
    刘自强, 余新晓, 贾国栋, 等. 北京山区侧柏利用水分来源对降水的响应[J]. 林业科学, 2018, 54(7): 16−23. doi: 10.11707/j.1001-7488.20180702

    Liu Z Q, Yu X X, Jia G D, et al. Response to precipitation in water sources for Platycladus orientalis in Beijing mountain area[J]. Scientia Silvae Sinicae, 2018, 54(7): 16−23. doi: 10.11707/j.1001-7488.20180702
    [4]
    温林生, 邓文平, 邓力维, 等. 庐山不同海拔植物季节水分利用策略[J]. 水土保持学报, 2021, 35(4): 341−348.

    Wen L S, Deng W P, Deng L W, et al. Seasonal water utilization strategies of plants at different altitudes in the Lushan Mountain[J]. Journal of Soil and Water Conservation, 2021, 35(4): 341−348.
    [5]
    Ewe S M, Sternberg D L. Seasonal water-use by the invasive exotic, Schinus terebinthifolius, in native and disturbed communities[J]. Oecologia, 2002, 133: 441−448. doi: 10.1007/s00442-002-1047-9
    [6]
    Nippert J B, Knapp A K. Soil water partitioning contributes to species coexistence in tallgrass prairiee[J]. Oikos, 2007, 116: 1017−1029. doi: 10.1111/j.0030-1299.2007.15630.x
    [7]
    Amy A M, Libby A S. Seasonal water use patterns of Juniperus ashei on the Edwards Plateau, Texas, based on stable isotopes in water[J]. Journal of Hydrology, 2007, 342(3): 238−248.
    [8]
    Su P Y, Zhang M J, Qu D Y, et al. Contrasting water use strategies of Tamarix ramosissima in different habitats in the Northwest of Loess Plateau, China[J/OL]. Water, 2020, 12(10): 2791[2022−02−01]. https://doi.org/10.3390/w12102791.
    [9]
    张菊, 江朝晖, 李博, 等. 基于热扩散探针的便携式植物液流监测仪研究[J]. 农业机械学报, 2020, 51(7): 237−243. doi: 10.6041/j.issn.1000-1298.2020.07.027

    Zhang J, Jiang C H, Li B, et al. Design and experiment of portable plant sap flow meter based on TDP[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(7): 237−243. doi: 10.6041/j.issn.1000-1298.2020.07.027
    [10]
    赵春彦, 司建华, 冯起, 等. 树干液流研究进展与展望[J]. 西北林学院学报, 2015, 30(5): 98−105. doi: 10.3969/j.issn.1001-7461.2015.05.16

    Zhao C Y, Si J H, Feng Q, et al. Stem sap flow research: progress and prospect[J]. Journal of Northwest Forestry University, 2015, 30(5): 98−105. doi: 10.3969/j.issn.1001-7461.2015.05.16
    [11]
    李新宇, 李延明, 孙林, 等. 银杏蒸腾耗水与环境因子的关系研究[J]. 北京林业大学学报, 2014, 36(4): 23−29.

    Li X Y, Li Y M, Sun L, et al. Characteristics of transpiration water consumption and its relationship with environmental factors in Ginkgo biloba[J]. Journal of Beijing Forestry University, 2014, 36(4): 23−29.
    [12]
    刘自强, 余新晓, 贾国栋, 等. 北京山区侧柏和栓皮栎的水分利用特征[J]. 林业科学, 2016, 52(9): 22−30.

    Liu Z Q, Yu X X, Jia G D, et al. Water use characteristic of Platycladus orientails and Quercus variabilis in Beijing mountain area[J]. Scientia Silvae Sinicae, 2016, 52(9): 22−30.
    [13]
    贾国栋, 余新晓, 朱建刚, 等. 北京山区刺槐、栓皮栎生长旺季液流特性及影响因子[J]. 水土保持通报, 2010, 30(5): 50−56.

    Jia G D, Yu X X, Zhu J G, et al. Sap flow characteristic and influencing factors of Robinia pseudoacacia and Quercus variabilis in rapid growth season in mountain area of Beijing City[J]. Bulletin of Soil and Water Conservation, 2010, 30(5): 50−56.
    [14]
    王小菲, 孙永玉, 李昆, 等. 山合欢树干液流的季节变化[J]. 生态学杂志, 2013, 32(3): 597−603.

    Wang X F, Sun Y Y, Li K, et al. Seasonal dynamics of Albizia kalkora stem sap flow in Yunmou dry-hot valley of Southwest China[J]. Chinese Journal of Ecology, 2013, 32(3): 597−603.
    [15]
    刘朋飞, 郭浩, 辛智鸣. 乌兰布和沙漠沙枣树干液流与环境因子关系[J]. 干旱区资源与环境, 2021, 35(9): 177−184.

    Liu P F, Guo H, Xin Z M. The relationship between the stem sap flow of Elaeagnus angustifolia Linn. and environmental factors in Wulan Buhe Desert[J]. Journal of Arid Land Resources and Environment, 2021, 35(9): 177−184.
    [16]
    夏银华, 章新平, 戴军杰, 等. 亚热带季风区樟树树干液流对降水的响应[J]. 水土保持研究, 2021, 28(6): 144−152.

    Xia Y H, Zhang X P, Dai J J, et al. Response of stem sap flow of Cinnamomum Camphora to precipitation under different environment in subtropical monsoon region[J]. Research of Soil and Water Conservation, 2021, 28(6): 144−152.
    [17]
    徐军亮, 章异平. 春季侧柏树干边材液流的滞后效应分析[J]. 水土保持研究, 2009, 16(4): 109−112.

    Xu J L, Zhang Y P. Analysis on sap flow time lag effect of Platycladus orientails in spring[J]. Research of Soil and Water Conservation, 2009, 16(4): 109−112.
    [18]
    杨芝歌, 史宇, 余新晓, 等. 北京山区典型树种树干液流特征及其对环境因子的响应研究[J]. 水土保持研究, 2012, 19(2): 195−200.

    Yang Z G, Shi Y, Yu X X, et al. Characteristic of stem sap flow velocity of individual trees and its response to environment factors in the Beijing mountain area[J]. Research of Soil and Water Conservation, 2012, 19(2): 195−200.
    [19]
    吴晓莆, 王志恒, 崔海亭, 等. 北京山区栎林的群落结构与物种组成[J]. 生物多样性, 2004, 12(1): 155−163. doi: 10.3321/j.issn:1005-0094.2004.01.019

    Wu X P, Wang Z H, Cui H T, et al. Community structures and species composition of oak forests in mountainous area of Beijing[J]. Biodiversity Science, 2004, 12(1): 155−163. doi: 10.3321/j.issn:1005-0094.2004.01.019
    [20]
    樊登星, 余新晓. 北京山区栓皮栎林优势种群点格局分析[J]. 生态学报, 2016, 36(2): 318−325.

    Fan D X, Yu X X. Spatial point pattern analysis of Quercus variabilis and Pinus tabulaeformis population in a mountainous area of Beijing[J]. Acta Ecologica Sinica, 2016, 36(2): 318−325.
    [21]
    邓文平, 余新晓, 贾国栋, 等. 雨季北京山区3种典型植物的水分来源[J]. 干旱区研究, 2014, 31(4): 649−657.

    Deng W P, Yu X X, Jia G D, et al. Water sources of threes typical plants in the Beijing mountain areas in rainy season[J]. Arid Zone Research, 2014, 31(4): 649−657.
    [22]
    Lin G H, Phillips S L, Ehleringer J R. Monosoonal precipitation responses of shrubs in a cold desert community on the Colorado Plateau[J]. Oecologia, 1996, 106: 8−17. doi: 10.1007/BF00334402
    [23]
    Gill R A, Jackson R B. Global patterns of root turnover for terrestrial ecosystems[J]. New Phytologist, 2000, 147: 13−31. doi: 10.1046/j.1469-8137.2000.00681.x
    [24]
    苏文旭, 贾德彬, 高瑞忠, 等. 浑善达克沙地南缘人工固沙植被水分利用特征[J]. 应用生态学报, 2021, 32(6): 1980−1988.

    Su W X, Jia D B, Gao R Z, et al. Water use characteristics of artificial sand-fixing vegetation on the southern edge of Hunshan Dake Sandy Land, Inner Mongolia, China[J]. Chinese Journal of Applied Ecology, 2021, 32(6): 1980−1988.
    [25]
    Wu Z, Behzad H M, He Q F, et al. Seasonal transpiration dynamics of evergreen Ligustrum lucidum linked with water source and water-use strategy in a limestone karst area, southwest China[J/OL]. Journal of Hydrology, 2021, 597: 126199[2022−02−01]. https://doi.org/10.1016/j.jhydrol.2021.126199.
    [26]
    Zhao Y, Wang L, Knighton J, et al. Contrasting adaptive strategies by Caragana korshinskii and Salix psammophila in a semiarid revegetated ecosystem[J/OL]. Agricultural and Forest Meteorology, 2021, 300: 108323[2022−02−01]. https://doi.org/10.1016/j.agrformet.2021.108323.
    [27]
    蔡鲁, 朱婉芮, 王华田, 等. 鲁中南山地6个造林树种根系形态的比较[J]. 中国水土保持科学, 2015, 13(2): 83−91. doi: 10.3969/j.issn.1672-3007.2015.02.013

    Cai L, Zhu W R, Wang H T, et al. Root morphology of six tree species in mountain area of middle south Shandong[J]. Science of Soil and Water Conservation, 2015, 13(2): 83−91. doi: 10.3969/j.issn.1672-3007.2015.02.013
    [28]
    颜成正, 郑文革, 贾剑波, 等. 控水条件下侧柏冠层气孔导度对土壤水的响应[J]. 应用生态学报, 2020, 31(12): 4017−4026.

    Yan C Z, Zheng W G, Jia J B, et al. Responses of canopy stomatal conductance of Platycladus orientalis to soil water under control[J]. Chinese Journal of Applied Ecology, 2020, 31(12): 4017−4026.
    [29]
    高娅, 贾志清, 李清雪, 等. 降雨对高寒沙地不同林龄中间锦鸡儿的水分利用特征的影响[J]. 应用生态学报, 2021, 32(6): 1935−1942.

    Gao Y, Jia Z Q, Li Q X, et al. Effect of precipitation on water use characteristics of Caragana intermedia plantations with different ages in alpine sandy land[J]. Chinese Journal of Applied Ecology, 2021, 32(6): 1935−1942.
    [30]
    Jackson P C, Meinzer F C, Bustamante M, et al. Partitioning of soil water among tree species in a Brazilian Cerrado ecosystem[J]. Tree Physiology, 1999, 19(11): 717−724. doi: 10.1093/treephys/19.11.717
    [31]
    Oliveira R S, Bezerra L, Davidson E A, et al. Deep root function in soil water dynamics in cerrado savannas of central Brazil[J]. Functional Ecology, 2005, 19(4): 574−581. doi: 10.1111/j.1365-2435.2005.01003.x
    [32]
    Nepstad D C, Decarvalho C R, Davidson E A, et al. The role of deep roots in the hydrological and carbon cycles of amazonian forests and pastures[J]. Nature, 1994, 372: 666−669. doi: 10.1038/372666a0
    [33]
    Bruno R D, da Rocha H R, de Freitas H C, et al. Soil moisture dynamics in an eastern Amazonian tropical forest[J]. Hydrological Processes, 2006, 20: 2477−2489. doi: 10.1002/hyp.6211
    [34]
    Alton P B. Reconciling simulations of seasonal carbon flux and soil water with observations using tap roots and hydraulic redistribution: a multi-biome FLUXNET study[J]. Agricultural and Forest Meteorology, 2014, 198: 309−319.
  • Related Articles

    [1]Bai Haifeng, Liu Xiaodong, Niu Shukui, He Yadong. Construction of forest fire prediction model based on Bayesian model averaging method: taking Dali Prefecture, Yunnan Province of southwestern China as an example[J]. Journal of Beijing Forestry University, 2021, 43(5): 44-52. DOI: 10.12171/j.1000-1522.20200173
    [2]Zeng Aicong, Guo Xinbin, Zheng Wenxia, Wei Mao, Jin Quanfeng, Guo Futao. Temporal and spatial dynamic characteristics of forest fire in Zhejiang Province of eastern China based on MODIS satellite hot spot data[J]. Journal of Beijing Forestry University, 2020, 42(11): 39-46. DOI: 10.12171/j.1000-1522.20190483
    [3]Zhu Yakun, Qin Shugao, Zhang Yuqing, Zhang Jutao, Shao Yanying, Gao Yan. Vegetation phenology dynamic and its responses to meteorological factor changes in the Mu Us Desert of northern China[J]. Journal of Beijing Forestry University, 2018, 40(9): 98-106. DOI: 10.13332/j.1000-1522.20180020
    [4]DUAN Wen-jun, WANG Cheng, ZHANG Chang, SONG Yang, HAO Ze-zhou, XU Xin-hui, JIN Yi-bo, WANG Zi-yan. Variation of particle matters in three forests under different habitats in summer[J]. Journal of Beijing Forestry University, 2017, 39(5): 73-81. DOI: 10.13332/j.1000-1522.20160358
    [5]JIA Xu, GAO Yong, WEI Bao-cheng, YANG Guang, DANG Xiao-hong, REN Yu, LIANG Chao. Impact of topographic features on the distribution of fire based on MODIS data in Inner Mongolia, northern China[J]. Journal of Beijing Forestry University, 2017, 39(5): 34-40. DOI: 10.13332/j.1000-1522.20170006
    [6]ZHANG Xuan, ZHANG Hui-lan, WANG Yu-jie, WANG Yun-qi, LIU Chun-xia, YANG Ping-ping, PAN Sheng-lei. Characteristics of daily sap flow for typical species in Jinyun Mountain of Chongqing in relation to meteorological factors[J]. Journal of Beijing Forestry University, 2016, 38(3): 11-20. DOI: 10.13332/j.1000-1522.20150389
    [7]YANG Lu-ming, QIN Shu-gao, LIU Zhen, ZHU Lin-feng, LIU Feng. Forming process of soil condensation water on different types of underlying surface in Mu Us Desert, northern China[J]. Journal of Beijing Forestry University, 2016, 38(2): 90-95. DOI: 10.13332/j.1000-1522.20150375
    [8]ZHANG Xiao-wu, QI Jian-dong, HUANG Xin-yuan. Application of wireless sensor network in forest micro-meteorology monitoring.[J]. Journal of Beijing Forestry University, 2014, 36(1): 83-87.
    [9]PAN Qiang, FAN Wen-yi, YU Hai-qun, ZHANG Feng, ZHANG Yang-jian. Temporal and spatial variation of normalized difference vegetation index and its influencing factors in Beijing[J]. Journal of Beijing Forestry University, 2012, 34(2): 26-33.
    [10]GAO Jun, WU Bin, MENG Ping. Transpiration of apricot trees and their relationship with rainfall and canopy micrometeorological factors.[J]. Journal of Beijing Forestry University, 2010, 32(3): 14-20.
  • Cited by

    Periodical cited type(3)

    1. 种雨丝,何培,张兹鹏,姜立春. 应用地基激光雷达三维点云数据构建长白落叶松树干削度方程. 东北林业大学学报. 2024(03): 69-75 .
    2. 陈奕辰,黄翔,张晓萍,严洪,孙梦莲,陈翔宇,刘健,余坤勇. 基于地基激光雷达的杉木哑变量削度方程研究. 西南林业大学学报(自然科学). 2024(04): 157-165 .
    3. 潘昕,李骏,孙帅超,陈明华,华伟平,江希钿. 杉木主伐林分材种结构及其出材率模型研建. 北京林业大学学报. 2023(08): 84-93 . 本站查看

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return