• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Liao Qi, Liu Minghuan, Tian Siqi, Mao Xiangzhong, Zhao Ning. Regulation of flowering and protective enzyme gene expression in Mikania micrantha by exogenous hormone CPPU[J]. Journal of Beijing Forestry University, 2022, 44(7): 90-96. DOI: 10.12171/j.1000-1522.20210221
Citation: Liao Qi, Liu Minghuan, Tian Siqi, Mao Xiangzhong, Zhao Ning. Regulation of flowering and protective enzyme gene expression in Mikania micrantha by exogenous hormone CPPU[J]. Journal of Beijing Forestry University, 2022, 44(7): 90-96. DOI: 10.12171/j.1000-1522.20210221

Regulation of flowering and protective enzyme gene expression in Mikania micrantha by exogenous hormone CPPU

More Information
  • Received Date: June 08, 2021
  • Revised Date: June 30, 2021
  • Available Online: July 01, 2022
  • Published Date: July 24, 2022
  •   Objective  Mikania micrantha is a class I alien invasive harmful plant, which relies on seeds to spread rapidly, causing significant ecological and economic losses. By exploring the mechanism of N-(2-chloro-4-pyridyl)-N-phenylurea (CPPU) on the reproductive regulation of M. micrantha, a new strategy was provided to curb the trend of M. micrantha’s rapid spread.
      Method  The number of inflorescences and florets of M. micrantha treated with CPPU was counted anatomically. The mechanism of inhibition of flowering by CPPU was analyzed by RNA-seq, and determined the enzyme activities of protective enzymes in flowering stage of M. micrantha.
      Result  (1) CPPU could effectively inhibit the flower formation of M. micrantha, with the increase of CPPU concentration, the number of inflorescences and florets decreased. After being treated with 5 mg/L CPPU, the number of inflorescences and florets decreased by 34.50% and 36.70%, respectively. There was no flower after 75 mg/L of CPPU treatment. (2) Transcriptome analysis revealed differential regulation of protective enzyme genes, it was found that, after being treated with 75 mg/l CPPU, a large number of DEGs related to pod and PAL were up-regulated; (3) the results of the protective enzyme activity indicated that CPPU treatment decreased the enzyme activity of PAL (phenylalanine ammonia-lyase), POD (peroxidase) and CAT (catalase), but increased the protective enzyme activity of PPO (polyphen oloxidase tyrosinase phenlase).
      Conclusion  75 mg/L of CPPU can control the expression of protective enzyme gene of M. micrantha, which cause membrane lipid peroxidation damage and inhibit the flowering process, thus it can effectively control the reproduction and spread of M. micrantha.
  • [1]
    方晓婷. 入侵植物薇甘菊的转录组分析及其群体遗传特征初探[D]. 广州: 中山大学, 2011.

    Fang X T. Primary studies on transcriptome and population genetics of an invasive weed Mikania micrantha[D]. Guangzhou: Sun Yat-Sen University, 2011.
    [2]
    Khadka A. Assessment of the perceived effects and management challenges of Mikania micrantha invasion in Chitwan National Park buffer zone community forest, Nepal[J]. Heliyon, 2017, 3(4): e00289. doi: 10.1016/j.heliyon.2017.e00289
    [3]
    王伯荪, 廖文波, 昝启杰, 等. 薇甘菊Mikania micrantha在中国的传播[J]. 中山大学学报, 2003, 42(4): 47−48.

    Wang B S, Liao W B, Zan Q J, et al. The spread of Mikania micrantha in China[J]. Journal of Sun Yat-Sen University, 2003, 42(4): 47−48.
    [4]
    梁艳荣, 胡晓红, 张颍, 等. 植物过氧化物酶生理功能研究进展[J]. 内蒙古农业大学学报, 2003, 24(2): 110−113.

    Liang Y R, Hu X H, Zhang Y, et al. Progress on physiological function research of plant peroxidase[J]. Inner Mongolia Agriculture University, 2003, 24(2): 110−113.
    [5]
    Shen S, Shen Z, Zhao M. Big data monitoring system design and implementation of invasive alien plants based on wens and webgis[J]. Wireless Personal Communications, 2017, 97(3): 1−13.
    [6]
    Chen B M, Peng S L, Ni G Y. Effects of the invasive plant Mikania micrantha H. B. K. on soil nitrogen availability through allelopathy in South China[J]. Biology Invasions, 2009, 11(6): 1291−1299. doi: 10.1007/s10530-008-9336-9
    [7]
    Shen S, Xu G, Zhang F, et al. Harmful effects and chemical control study of Mikania micrantha H. B. K in Yunnan, Southwest China[J]. African Journal of Agricultural Research, 2013, 8(44): 5554−5561.
    [8]
    Yu H, He W M, Liu J, et al. Native Cuscuta campestris restrains exotic Mikania micrantha and enhances soil resources beneficial to natives in the invaded communities[J]. Biological Invasions, 2009, 11(4): 835. doi: 10.1007/s10530-008-9297-z
    [9]
    Liu B, Yan J, Li W, et al. Mikania micrantha genome provides insights into the molecular mechanism of rapid growth[J]. Nature Communications, 2020, 11(1): 340−352. doi: 10.1038/s41467-019-13926-4
    [10]
    Day M D, Clements D R, Gile C, et al. Biology and impacts of pacific islands invasive species (13): Mikania micrantha Kunth (Asteraceae)[J]. Pacific Science, 2016, 70: 257−285. doi: 10.2984/70.3.1
    [11]
    Yang Q H, Ye W H, Deng X, et al. Seed germination eco-physiology of Mikania micrantha H. B. K[J]. Botanical Studies, 2005, 46(1): 293−299.
    [12]
    宋旭东. 激素型除草剂对裸燕麦的安全性及其除草效果研究[D]. 兰州: 甘肃农业大学, 2015.

    Song X D. The study of safetyand weed control effect of hormone herbicide on the naked oats[D]. Lanzhou: Gansu Agriculture University, 2015.
    [13]
    Spormann S, Soares C, Fidalgo F. Salicylic acid alleviates glyphosate-induced oxidative stress in Hordeum vulgare L.[J]. Journal of Environmental Management, 2019, 241(7): 226−234.
    [14]
    Guo M, Shen J, Song X E, et al. Comprehensive evaluation of fluroxypyr herbicide on physiological parameters of spring hybrid millet[J]. Peer J, 2019, 7(1): e7794.
    [15]
    Jacob C P, De F, Pereira P, et al. Auxinic herbicides, mechanisms of action, and weed resistance: a look into recent plant science advances[J]. Scientia Agricola, 2015, 72(4): 356−362. doi: 10.1590/0103-9016-2014-0360
    [16]
    Ionescu I A, Mller B L, Sánchez-Pérez R. Chemical control of flowering time[J]. Journal of Experimental Botany, 2017, 68(3): 369−374.
    [17]
    尹均, 任江萍, 潘登奎, 等. 小麦春化发育相关蛋白质同工酶的研究[J]. 麦类作物学报, 2002, 22(1): 33−38. doi: 10.3969/j.issn.1009-1041.2002.01.008

    Yin J, Ren J P, Pan D K, et al. The proteins and isoenzymes related to vernalization of wheat[J]. Journal of Triticeae Crops, 2002, 22(1): 33−38. doi: 10.3969/j.issn.1009-1041.2002.01.008
    [18]
    袁军, 熊丙全, 余东, 等. CPPU在果树上的应用研究进展[J]. 北方果树, 2004(2): 1−3. doi: 10.3969/j.issn.1001-5698.2004.02.001

    Yuan J, Xiong B Q, Yu D, et al. Advances of the application of CPPU to fruit tress[J]. Northern Fruits, 2004(2): 1−3. doi: 10.3969/j.issn.1001-5698.2004.02.001
    [19]
    Gong G, Kam H, Tse Y, et al. Cardiotoxicity of forchlorfenuron (CPPU) in zebrafish (Danio rerio) and H9c2 cardiomyocytes[J]. Chemosphere, 2019, 235(11): 153−162.
    [20]
    申海林, 郭俊强, 于坤淼, 等. CPPU对山葡萄雄株花器官形态发育的影响[J]. 中外葡萄与葡萄酒, 2017(6): 31−34. doi: 10.13414/j.cnki.zwpp.2017.06.006

    Shen H L, Guo J Q, Yu K M, et al. Effects of CPPU on floral organ development in male Vitis amurensis Rupr[J]. Sino-Overseas Grapevine & Wine, 2017(6): 31−34. doi: 10.13414/j.cnki.zwpp.2017.06.006
    [21]
    沈孝善, 陈凯. CPPU对软毛猕猴桃(Actinidia chinensis)果实生长和膨大的影响[J]. 西南农业学报, 1996, 9(2): 86−90.

    Shen X S, Chen K. Changes of fruit growth pattern and inrease of fruit size and fruit weight in kiwifruit (Actinidia chinensis) by application of N-(2-Chloro-4-pyridyl)-N′-Phenylorea (CPPU)[J]. Southwest China Journal of Agricultural Sciences, 1996, 9(2): 86−90.
    [22]
    Xu P L, Jiao Z Q, Fan S T, et al. Proteomic analysis of sex conversion induced by CPPU in male grapevine of Vitis amurensis[J]. Vitis Journal of Grapevine Research, 2013, 52(4): 177−184.
    [23]
    王学奎. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2006.

    Wang X K. Principles and techniques of plant physiology and biochemistry experiment[M]. Beijing: Higher Education Press, 2006.
    [24]
    李玲. 植物生理学模块实验指导[M]. 北京: 科学出版社, 2009.

    Li L. Experimental guidance of plant physiology module[M]. Beijing: Science Press, 2009.
    [25]
    Qi H D, Lin Y, Ren Q P, et al. RNA splicing of FLC modulates the transition to flowering[J]. Frontiers in Plant Science, 2019, 10: 1625−1630. doi: 10.3389/fpls.2019.01625
    [26]
    南芝润, 范月仙. 植物过氧化氢酶的研究进展[J]. 安徽农学通报, 2008, 14(5): 27−29. doi: 10.3969/j.issn.1007-7731.2008.05.012

    Nan Z R, Fan Y X. Advance of researches on catelase in plants[J]. Anhui Agricultural Sciences Bulletin, 2008, 14(5): 27−29. doi: 10.3969/j.issn.1007-7731.2008.05.012
    [27]
    洪奔, 陶建敏, 农慧兰, 等. ‘阳光玫瑰’雄性不育株花蕾发育期抗氧化酶活性和内源激素含量的变化[J]. 西北植物学报, 2022, 42(3): 444−452.

    Hong B, Tao J M, Nong H L, et al. Analysis of antioxidant enzymes activities and endogenous hormone contents in male sterile plant of ‘Shine Muscat’ seeding during bud development[J]. Acta Botanica Boreali-Occidentalia Sinica, 2022, 42(3): 444−452.
    [28]
    刘磊, 刘世琦, 许莉, 等. 洋葱抽薹与未抽薹植株生理生化特性对比研究[J]. 中国农学通报, 2006, 22(1): 149−152. doi: 10.3969/j.issn.1000-6850.2006.01.040

    Liu L, Liu S Q, Xu L, et al. Studies on the difference of bolting and unbolting onions on the physiological and biochemical characteristics[J]. Chinese Agricultural Science Bulletin, 2006, 22(1): 149−152. doi: 10.3969/j.issn.1000-6850.2006.01.040
    [29]
    吴洁秋, 朱根发, 王凤兰, 等. 竹叶兰花器官发育过程及生理特性研究[J]. 热带作物学报, 2021, 42(1): 140−148.

    Wu J Q, Zhu G F, Wang F L, et al. Organ development and physiological characteristics of Arundina graminifolia (D. Don) Hochr[J]. Chinese Journal of Tropical Crops, 2021, 42(1): 140−148.
    [30]
    Dixon R A, Paiva N L. Stress-induced phenylpropanoid metabolism[J]. Plant Cell, 1995, 7(7): 1085−1097. doi: 10.2307/3870059
  • Related Articles

    [1]Zhan Ting, Ren Jinyuan, Peng Yao, Cao Jinzhen. Influence of bamboo fiber particle size and addition ratio on the properties of bamboo fiber/polypropylene/CaCO3 composite[J]. Journal of Beijing Forestry University, 2024, 46(1): 131-140. DOI: 10.12171/j.1000-1522.20230262
    [2]Hao Qian, Wang Yida, Ge Ying, Zhou Jing, Liu Zhenbo. Acoustic vibration performance of birch veneer-metal copper mesh composites[J]. Journal of Beijing Forestry University, 2023, 45(1): 148-158. DOI: 10.12171/j.1000-1522.20220378
    [3]Lin Bin, Zhai Xueyong, Li Rui, Sun Lipeng, Zhang Yuanting, Yin Yuxue, Liu Zhenbo. Optimization of preparation process of birch veneer/glass fiber composite[J]. Journal of Beijing Forestry University, 2019, 41(4): 127-135. DOI: 10.13332/j.1000-1522.20190049
    [4]WANG Dan-dan, CAO Yang, WANG Cui-cui, WEI Wen-bang, ZHANG Shuang-bao. Effect of silane coupling agent on mechanical properties of eucalyptus veneer/polyvinyl chloride (PVC) composites[J]. Journal of Beijing Forestry University, 2016, 38(2): 120-123. DOI: 10.13332/j.1000-1522.20150258
    [5]ZHAO Jun-shi, XU Zheng-dong, WANG Jin-lin, ZHANG Shuang-bao. Influence of fiber-glass on mechanical properties of composite laminates.[J]. Journal of Beijing Forestry University, 2014, 36(2): 129-132.
    [6]SUN Feng, ZHOU Yong-dong, LI Xiao-ling, LvJian-xiong, HAN Chen-jing, ZHAN Man-jun. Effects of species, diameter and processing equipment on veneer recovery of Eucalyptus spp.[J]. Journal of Beijing Forestry University, 2013, 35(4): 128-133.
    [7]ZHANG Ying, YU Zhi-ming, WANG Nan.. Quantitative evaluation of veneer gelatinize process and its effect[J]. Journal of Beijing Forestry University, 2010, 32(4): 251-255.
    [8]GUO Hong-wu, WANG Jin-lin, LI Chun-sheng, YAN Hao-Peng. Light-induced discoloration and influencing factors of dyed veneer after painted.[J]. Journal of Beijing Forestry University, 2008, 30(4): 22-27.
    [9]ZHANG De-rong, YU Zhi-ming, LI Jian-zhang, JIN Xiao-juan. Technical parameters of Laminated Veneer Lumber manufactured with dyeing and fire-retardant treated veneers[J]. Journal of Beijing Forestry University, 2005, 27(3): 83-86.
    [10]WANG Zheng, ZHAO Xing-zhi, GUO Wen-jing. Process factors and performances of recycled plastic-wood fiber composites.[J]. Journal of Beijing Forestry University, 2005, 27(1): 1-5.
  • Cited by

    Periodical cited type(15)

    1. 李潇潇. 古建筑木构件损伤及耐久性研究综述. 低温建筑技术. 2025(01): 16-19 .
    2. 麻胜兰,陈志宁,邵顺安,姜绍飞,许跃飞. 基于声发射多参数耦合的木材裂缝检测方法. 建筑结构. 2024(02): 136-144 .
    3. 赵东,马荣宇,于立川,赵健,刘嘉辉. 基于经验模态分解和小波包能量熵的杉木加载过程中细观损伤监测与识别. 北京林业大学学报. 2024(03): 123-131 . 本站查看
    4. 刘佳,于孟言,高珊,陈昱龙,冯蔓萱,杜鑫宇. 基于AE-BP模型的杨木胶合板应力损伤识别. 中南林业科技大学学报. 2024(04): 169-179 .
    5. 张萌,王灵芝,李守宇,张庆文,杨宇彤. 不同变量圆竹建筑填充组合节点轴压损伤声发射特性研究. 林产工业. 2024(07): 17-22 .
    6. 刘陈陈,黄奥,李昇昊,陈昕煜,顾华志. 基于机器视/听觉的耐火材料蚀损行为表征评价研究进展. 钢铁研究学报. 2024(10): 1247-1266 .
    7. 何佳明,李猛,蔡高洁,胡彬,佘艳华. 不同含水率雪松木的裂纹演化规律试验研究. 科学技术与工程. 2023(05): 1888-1894 .
    8. 李猛,佘艳华,何学杰,王俊辉,何佳明. 基于PZT和DIC对木构件榫卯松动监测试验研究. 林产工业. 2023(06): 20-26 .
    9. 李猛,佘艳华,贺才豪,何佳明,陈迪. 不同温度下的柏木构件顺纹压缩损伤规律研究. 西南林业大学学报(自然科学). 2023(05): 153-163 .
    10. 赖菲,王明华,肖洒,丁锐,罗蕊寒,邓婷婷,李明. 应用声发射技术和图像分形理论对樟子松木材裂纹演化特征的检测. 东北林业大学学报. 2022(07): 89-93 .
    11. 邢雪峰,李善明,金菊婉,林兰英,周永东,傅峰. 高能微波处理辐射松木材的抗弯力学性能与损伤演化特征. 北京林业大学学报. 2022(08): 107-116 . 本站查看
    12. 邢雪峰,李善明,周永东,林兰英,傅峰. 声发射技术在木质材料损伤监测中的应用研究进展. 世界林业研究. 2022(06): 63-68 .
    13. 杨丽华. 基于数字林业技术加强林业管理的研究. 造纸装备及材料. 2022(11): 96-98 .
    14. 陈泽华,杨小军,张璐,董浩然,赵琦. 防腐处理胶合木的层间界面断裂韧性研究. 森林与环境学报. 2021(02): 219-224 .
    15. 杜永刚,周伟,刘朔,刘亚萍,刘佳,马连华. 含夹渣缺陷Q245R钢的声发射特性和DIC研究. 电子测量技术. 2021(18): 1-6 .

    Other cited types(9)

Catalog

    Article views (603) PDF downloads (70) Cited by(24)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return