• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Hu Hao, Wang Lianjuan, Wei Gonglei, Chen Jiawei, Jia Guixia. Evaluation of resistance to Botrytis elliptica and the physiological response of some Asian lily varieties[J]. Journal of Beijing Forestry University, 2023, 45(3): 104-112. DOI: 10.12171/j.1000-1522.20210254
Citation: Hu Hao, Wang Lianjuan, Wei Gonglei, Chen Jiawei, Jia Guixia. Evaluation of resistance to Botrytis elliptica and the physiological response of some Asian lily varieties[J]. Journal of Beijing Forestry University, 2023, 45(3): 104-112. DOI: 10.12171/j.1000-1522.20210254

Evaluation of resistance to Botrytis elliptica and the physiological response of some Asian lily varieties

More Information
  • Received Date: July 07, 2021
  • Revised Date: September 16, 2021
  • Accepted Date: December 17, 2022
  • Available Online: December 20, 2022
  • Published Date: March 24, 2023
  •   Objective  This paper aims to select Asiatic lilies with strong resistance to Botrytis elliptica, the resistance of some Tiger and Pearl series Asian lilies and Lilium davidii var. unicolor to B. elliptica was evaluated, and the physiological mechanism of resistance was preliminarily explored.
      Method  The disease resistance of different cultivars or species was evaluated by ex vivo leaf inoculation. On this basis, the physiological changes of selected disease-resistant and susceptible cultivars after inoculation were determined.
      Result  The comprehensive evaluation results showed that: (1) the resistance of Tiger, Pearl lilies and L. davidii var. unicolor to B. elliptica was different. Relatively strong resistance to B. elliptica was ‘Pearl Melanie’, which belonged to the medium resistance level. The weakest resistance materials were ‘Pearl Justin’, L. davidii var. unicolor, ‘Pearl White’ and ‘White Twinkle’. (2) There was no significant correlation between resistance level and stomatal density, stomatal size. (3) The physiological responses of the resistant cultivar ‘Pearl Melanie’ and susceptible cultivar ‘Pearl Justin’ were obviously different after inoculation. The content of MDA showed an increasing trend with the extension of inoculation time, while the activities of oxalate oxidase and chitinase gradually increased, and the activities of β-1,3-glucanase decreased with time. The MDA content of the resistant cultivars was relatively lower than susceptible cultivar, and the activities of oxalate oxidase and chitinase were higher than susceptible cultivar.
      Conclusion  There is no significant correlation between stomatal characteristics and disease resistance, the physiological mechanism of lillies with distinct disease resistance is different. During the physiological response, MDA content, oxalate oxidase activity and chitinase activity can be used as evaluation indexes for evaluating Asiatic lilies for resistance to B. elliptica.
  • [1]
    龙雅宜, 张金政, 张兰年. 百合—球根花卉之王[M]. 北京: 金盾出版社, 1999.

    Long Y Y, Zhang J Z, Zhang L N. Lily-king of corm flowers[M]. Beijing: Jindun Publishing House, 1999.
    [2]
    曾小英. 观赏百合种质资源多样性研究[D]. 兰州: 西北师范大学, 2004.

    Zeng X Y. The diversity research on germplasm resources of decorative lily[D]. Lanzhou: Northwest Normal University, 2004.
    [3]
    陈俊愉. 中国花经[M]. 北京: 中国林业出版社, 1990.

    Chen J Y. Chinese flower classic[M]. Beijing: China Forestry Publishing House, 1990.
    [4]
    杜方. 百合不同器官转录组分析及SSR标记开发应用[D]. 杭州: 浙江大学, 2014.

    Du F. Transcriptome analysis of different lily organs and development and applications of SSR markers[D]. Hangzhou: Zhejiang University, 2014.
    [5]
    Tuyl J M, Arens P. Lilium: breeding history of the modern cultivar assortment[J]. Acta Horticulturae, 2011, 900: 223−230.
    [6]
    Matthews V. The international lily register and checklist, 2007[M]. London: Royal Horticultural Society (RHS), 2007.
    [7]
    董航, 张杰, 孙红梅. 亚洲百合新品种引进与筛选[J]. 沈阳农业大学学报, 2013, 44(6): 816−819. doi: 10.3969/j.issn.1000-1700.2013.06.018

    Dong H, Zhang J, Sun H M. Introduction and screening of new varieties of Asiatic hybrid lily[J]. Journal of Shenyang Agricultural University, 2013, 44(6): 816−819. doi: 10.3969/j.issn.1000-1700.2013.06.018
    [8]
    王欢, 孔滢, 郎利新, 等. 亚洲百合与大花卷丹杂种F1重要性状的遗传分析[J]. 华北农学报, 2017, 32(4): 114−121. doi: 10.7668/hbnxb.2017.04.019

    Wang H, Kong Y, Lang L X, et al. Genetic analysis of important charactersin F1 hybridsof Lilium Asiatic hybrids and L. leichtlini var. maximowiczi[J]. Acta Agriculturae Boreali-Sinica, 2017, 32(4): 114−121. doi: 10.7668/hbnxb.2017.04.019
    [9]
    徐琼, 徐秉良, 王芳. 观赏百合叶枯病症状类型与病原菌鉴定[J]. 植物保护, 2006, 32(5): 61−64. doi: 10.3969/j.issn.0529-1542.2006.05.019

    Xu Q, Xu B L, Wang F. Symptom types and identification of lily blight[J]. Plant Protection, 2006, 32(5): 61−64. doi: 10.3969/j.issn.0529-1542.2006.05.019
    [10]
    Chiou A L, Wu W S. Isolation, identification and evaluation of bacterial antagonists against Botrytis elliptica on lily[J]. Journal of Phytopathology, 2001, 149(6): 319−324. doi: 10.1046/j.1439-0434.2001.00627.x
    [11]
    杜艳丽, 曹兴, 王桂清, 等. 百合灰霉病病原菌鉴定及其部分生物学特性测定[J]. 南方农业学报, 2019, 50(2): 307−314. doi: 10.3969/j.issn.2095-1191.2019.02.13

    Du Y L, Cao X, Wang G Q, et al. Identification and partial biological characteristics of pathogen causing lily gray mold[J]. Journal of Southern Agriculture, 2019, 50(2): 307−314. doi: 10.3969/j.issn.2095-1191.2019.02.13
    [12]
    崔祺. 岷江百合响应灰霉病侵染的转录组分析及抗灰霉病相关基因的挖掘[D]. 北京: 北京林业大学, 2018.

    Cui Q. Transcriptome analysis of Lilium regale responsive to Botrytis elliptica inoculation and mining of resistance genes[D]. Beijing: Beijing Forestry University, 2018.
    [13]
    Kan J A L. Infection strategies of Botrytis cinerea[J]. Acta Horticulturae, 2005, 669: 77−90.
    [14]
    Rossi F R, Gárriz A, Marina M, et al. The sesquiterpene botrydial produced by Botrytis cinerea induces the hypersensitive response on plant tissues and its action is modulated by salicylic acid and jasmonic acid signaling[J]. Molecular Plant-Microbe Interactions, 2011, 24(8): 888. doi: 10.1094/MPMI-10-10-0248
    [15]
    Vinocur B, Altman A. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations[J]. Current Opinion in Biotechnology, 2005, 16(2): 123−132. doi: 10.1016/j.copbio.2005.02.001
    [16]
    李芳乐, 管玲玲, 胡凤荣. 百合灰霉病对东方百合不同抗性品种的生理影响[J]. 东北林业大学学报, 2020, 48(7): 107−113, 119. doi: 10.3969/j.issn.1000-5382.2020.07.021

    Li F L, Guan L L, Hu F R. Physiological response of different resistant cultivars of Lilium oriental hybrid after inoculation with Botrytis cinerea[J]. Journal of Northeast Forestry University, 2020, 48(7): 107−113, 119. doi: 10.3969/j.issn.1000-5382.2020.07.021
    [17]
    Yang X, Yang J, Wang Y, et al. Enhanced resistance to sclerotinia stem rot in transgenic soybean that overexpresses a wheat oxalate oxidase[J]. Transgenic Research, 2019, 28(1): 103−114. doi: 10.1007/s11248-018-0106-x
    [18]
    Xian H Q, Li J R, Zhang L Q, et al. Cloning and functional analysis of a novel chitinase gene Trchi1 from Trichothecium roseum[J]. Biotechnology Letters, 2012, 34(10): 1921−1928. doi: 10.1007/s10529-012-0989-1
    [19]
    梁巧兰, 张娜, 魏列新, 等. 深绿木霉蛋白质TraT2A诱导兰州百合抗灰霉病的作用[J]. 中国生物防治学报, 2017, 33(4): 545−551. doi: 10.16409/j.cnki.2095-039x.2017.04.016

    Liang Q L, Zhang N, Wei L X, et al. Effect of Trichoderma atroviride proteinaceous TraT2A induced Lanzhou lily resistant to gray mold caused by Botrytis cinerea[J]. Chinese Journal of Biological Control, 2017, 33(4): 545−551. doi: 10.16409/j.cnki.2095-039x.2017.04.016
    [20]
    朱丽梅, 胡凤荣, 罗凤霞. 不同百合品种对百合灰霉病的抗病性鉴定[J]. 植物保护, 2010, 36(3): 148−151. doi: 10.3969/j.issn.0529-1542.2010.03.036

    Zhu L M, Hu R F, Luo F X. Identification of disease resistance of Lilium species to lily gray mould[J]. Plant Protection, 2010, 36(3): 148−151. doi: 10.3969/j.issn.0529-1542.2010.03.036
    [21]
    熊慧, 马承恩, 李乐, 等. 不同生境条件下蕨类和被子植物的气孔形态特征及其对光强变化的响应[J]. 植物生态学报, 2014, 38(8): 868−877. doi: 10.3724/SP.J.1258.2014.00081

    Xiong H, Ma C E, Li L, et al. Stomatal characteristics of ferns and angiosperms and their responses to changing light inten sity at different habitats[J]. Chinese Journal of Plant Ecology, 2014, 38(8): 868−877. doi: 10.3724/SP.J.1258.2014.00081
    [22]
    王学奎, 黄见良. 植物生理生化实验原理与技术[M]. 3版. 北京: 高等教育出版社, 2015.

    Wang X K, Huang J L. Principles and techniques of plant physiological biochemical experiment[M]. 3rd ed. Beijing: Higher Education Press, 2015.
    [23]
    左豫虎, 康振生, 杨传平, 等. β-1,3-葡聚糖酶和几丁质酶活性与大豆对疫霉根腐病抗性的关系[J]. 植物病理学报, 2009, 39(6): 600−607. doi: 10.3321/j.issn:0412-0914.2009.06.006

    Zuo Y H, Kang Z S, Yang C P, et al. Relationship between activities of β-1,3-glacanase and chitinase and resistance to Phytophthora root rot in soybean[J]. Acta Phytopathologica Sinica, 2009, 39(6): 600−607. doi: 10.3321/j.issn:0412-0914.2009.06.006
    [24]
    Hu N, Tu X R, Li K T, et al. Changes in protein content and chitinase and β-1, 3-glucanase activities of rice with blast resistance induced by ag-antibiotic 702[J]. Plant Diseases and Pests, 2017, 8(4): 33−36.
    [25]
    Zhang Z G, Yang J, Collinge D B, et al. Ethanol increases sensitivity of oxalate oxidase assays and facilitates direct activity staining in SDS gels[J]. Plant Molecular Biology Reporter, 1996, 14: 266−272. doi: 10.1007/BF02671662
    [26]
    关晔晴. 苹果果面结构与轮纹病抗病性关系的研究[D]. 北京: 中国农业大学, 2015.

    Guan Y Q. Role of surface sturcture on susceptibility of apple fruit to Botryosphaeria dothidea[D]. Beijing: China Agricultural University, 2015.
    [27]
    万然. 中国野生葡萄种质叶片抗灰霉病的机制研究[D]. 杨凌: 西北农林科技大学, 2016.

    Wan R. Researches on the mechanism for Chinese wild vitis germplasm leaves against Botrytis cinerea[D]. Yangling: Northwest A&F University, 2016.
    [28]
    吕静波. 玉米抗灰斑病组织细胞学及生理机制研究[D]. 沈阳: 沈阳农业大学, 2019.

    Lü J B. Study on cytology and physiological mechanism of resistant tissues to gray leaf spot of maize[D]. Shenyang: Shenyang Agricultural University, 2019.
    [29]
    Ziv C, Zhao Z Z, Gao Y G, et al. Multifunctional roles of plant cuticle during plant-pathogen interactions[J]. Frontiers in Plant Science, 2018, 9: 1088. doi: 10.3389/fpls.2018.01088
    [30]
    Gao X, Cui Q, Cao Q Z, et al. Evaluation of resistance to Botrytis elliptica in Lilium hybrid cultivars[J]. Plant Physiology and Biochemistry, 2018, 123: 392−399. doi: 10.1016/j.plaphy.2017.12.025
    [31]
    Baarlen P V, Staats M, Kan J A L V. Induction of programmed cell death in lily by the fungal pathogen Botrytis elliptica[J]. Molecular Plant Pathology, 2004, 5(6): 559−574. doi: 10.1111/j.1364-3703.2004.00253.x
    [32]
    Zhang F, Ruan X, Wang X, et al. Overex-pression of a chitinase gene from Trichoderma asperellum increases disease resistance in transgenic soybean[J]. Applied Biochemistry and Biotechnology, 2016, 180: 1542−1558. doi: 10.1007/s12010-016-2186-5
    [33]
    Núñez F F, Davey M R, Sanchez E C, et al. Conferred resistance to Botrytis cinerea in Lilium by overexpression of the RCH10 chitinase gene[J]. Plant Cell Reports, 2015, 34(7): 1201−1209. doi: 10.1007/s00299-015-1778-9
    [34]
    Hu X R, Dai D J, Wang H D, et al. Rapid on-site evaluation of the development of resistance to quinone outside inhibitors in Botrytis cinerea[J]. Scientific Reports, 2017, 7(1): 1019−1024. doi: 10.1038/s41598-017-01023-9
    [35]
    Li Y G, Cai Y N, Liang Y B, et al. Assessment of antifungal activities of a biocontrol bacterium BA17 for managing postharvest gray mold of green bean caused by Botrytis cinerea[J]. Postharvest Biology and Technology, 2020, 161: 111086. doi: 10.1016/j.postharvbio.2019.111086
  • Related Articles

    [1]Li Yang, Zhang Jianjun, Yu Yang, Hu Yawei, Zhao Yuhui, Ma Xinyi. Experimental study on the variation characteristics of runoff sediment concentration with slope length in the loess region of western Shanxi Province of northern China[J]. Journal of Beijing Forestry University, 2023, 45(8): 148-155. DOI: 10.12171/j.1000-1522.20220454
    [2]Wang Hengxing, Zhang Jianjun, Sun Ruoxiu, Zhang Jianan. Effects of different vegetation slope patterns on infiltration and characteristics of runoff and sediment production in the loess area of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2021, 43(3): 85-95. DOI: 10.12171/j.1000-1522.20190231
    [3]Wen Wenjie, Zhang Jianjun, Li Yixuan, Huang Xiaoqing, He Pei. A simple method for estimating runoff sediment concentration[J]. Journal of Beijing Forestry University, 2019, 41(11): 155-162. DOI: 10.13332/j.1000-1522.20180246
    [4]Zhang Shuai, Ding Guo-dong, Gao Guang-lei, Zhao Yuan-yuan, Yu Ming-han, Bao Yan-feng, Wang Chun-yuan. Study on new highway guardrail for anti-sediment in sand area[J]. Journal of Beijing Forestry University, 2018, 40(2): 90-97. DOI: 10.13332/j.1000-1522.20170353
    [5]AI Ning, WEI Tian-xing, ZHU Qing-ke, GEGENBATU, QIN Wei, ZHAO Xing-kai, ZHAO Wei-jun, MA Huan, YANG Yuan-jun. Factors affecting slope runoff and sediment yield in northern Shaanxi Province based on path analysis[J]. Journal of Beijing Forestry University, 2015, 37(6): 77-84. DOI: 10.13332/j.1000-1522.20140428
    [6]ZHU Yao-jun, GUO Ju-lan, WU Gao-jie, LIN Guang-xuan, WU Xiao-dong. Spatial distribution of physicochemical properties and metal concentration in mangrove sediments from Gaoqiao in Zhanjiang, Guangdong of Southern China.[J]. Journal of Beijing Forestry University, 2014, 36(2): 1-9.
    [7]WANG Jian-xun, , ZHENG Fen-li, JIANG Zhong-shan, ZHANG Xun-chang. Hillslope soil erosion prediction based on WEPP model under different slope lengths in hillygully region of the loess area[J]. Journal of Beijing Forestry University, 2008, 30(2): 151-156.
    [8]ZHANG Xiao-ming, YU Xin-xiao, WU Si-hong, WANG Yun-qi, ZHANG Man-liang. Effects of landuse-landcover change on sediment production of runoff in typical watershed in the loess gully-hilly region of China[J]. Journal of Beijing Forestry University, 2007, 29(6): 115-122. DOI: 10.13332/j.1000-1522.2007.06.033
    [9]WU Shu-fang, WU Pu-te, FENG Hao, LI Min. Effects of forage grass on the reduction of runoff and sediment and the hydrodynamic characteristic mechanism of slope runoff in the standard slope plot[J]. Journal of Beijing Forestry University, 2007, 29(3): 99-104. DOI: 10.13332/j.1000-1522.2007.03.016
    [10]ZHANG Jian-jun, NA Lei, FANG Jia-qiang. Manning roughness of sloping ground in the loess area of west Shanxi Province[J]. Journal of Beijing Forestry University, 2007, 29(1): 108-113. DOI: 10.13332/j.1000-1522.2007.01.019
  • Cited by

    Periodical cited type(15)

    1. 冯旭环,周璐,熊伟,宗桦. 大渡河干热河谷区本土优势灌草植物根系的抗拉力学特性及其影响因素研究. 干旱区资源与环境. 2023(07): 159-169 .
    2. 李宏斌,张旭,姚晨,杜峰. 陕北黄土区不同植物根系抗拉力学特性研究. 水土保持研究. 2023(04): 122-129 .
    3. 李金波,伍红燕,赵斌,陈济丁,宋桂龙. 模拟边坡条件下常见护坡植物苗期根系构型特征. 生态学报. 2023(24): 10131-10141 .
    4. 赵佳愉,伍红燕,史蔚林,宋桂龙. 聚丙烯酰胺添加浓度对种基盘特性的影响. 草原与草坪. 2021(05): 16-21 .
    5. 黄炎和,李思诗,岳辉,彭绍云,谢炎敏,林根根,周曼,吴俣,蔡学智. 崩岗区四种草本植物根系抗拉特性及其与化学成分的关系. 亚热带水土保持. 2021(04): 9-15 .
    6. 李义强,伍红燕,宋桂龙,赵斌,李一为,夏宇,孙盛年,梁燕宁. 岩石边坡坡度对胡枝子和紫穗槐根系形态特征影响. 草原与草坪. 2020(02): 23-29 .
    7. 曹磊,马海天才. 不同草本植物根系力动力学及抗压力特征研究. 干旱区资源与环境. 2019(01): 164-170 .
    8. 李淑霞,刘亚斌,余冬梅,胡夏嵩,祁兆鑫. 寒旱环境盐胁迫条件下两种草本植物的根系力学特性研究. 盐湖研究. 2019(01): 116-131 .
    9. 李瑞燊,刘静,王博,张欣,胡晶华,苏慧敏,白潞翼,王多民. 反复施加拉剪组合力对小叶锦鸡儿直根材料力学特性的影响. 水土保持学报. 2019(05): 121-125 .
    10. 马海天才. 不同草本植物根系的抗压动力学特征. 北方园艺. 2018(19): 71-77 .
    11. 王博,刘静,王晨嘉,张欣,刘嘉伟,李强,张强. 半干旱矿区3种灌木侧根分支处折力损伤后的自修复特性. 应用生态学报. 2018(11): 3541-3549 .
    12. 韦杰,李进林,史炳林. 紫色土耕地埂坎2种典型根——土复合体抗剪强度特征. 应用基础与工程科学学报. 2018(03): 483-492 .
    13. 刘昌义,胡夏嵩,赵玉娇,窦增宁. 寒旱环境草本与灌木植物单根拉伸试验强度特征研究. 工程地质学报. 2017(01): 1-10 .
    14. 谷利茶,王国梁. 氮添加对油松幼苗不同径级细根碳水化合物含量的影响. 生态学杂志. 2017(08): 2184-2190 .
    15. 杨闻达,王桂尧,常婧美,张永杰. 主直根系拉拔力的室内试验研究. 中国水土保持科学. 2017(04): 111-116 .

    Other cited types(25)

Catalog

    Article views (613) PDF downloads (67) Cited by(40)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return