Citation: | Hu Hao, Wang Lianjuan, Wei Gonglei, Chen Jiawei, Jia Guixia. Evaluation of resistance to Botrytis elliptica and the physiological response of some Asian lily varieties[J]. Journal of Beijing Forestry University, 2023, 45(3): 104-112. DOI: 10.12171/j.1000-1522.20210254 |
[1] |
龙雅宜, 张金政, 张兰年. 百合—球根花卉之王[M]. 北京: 金盾出版社, 1999.
Long Y Y, Zhang J Z, Zhang L N. Lily-king of corm flowers[M]. Beijing: Jindun Publishing House, 1999.
|
[2] |
曾小英. 观赏百合种质资源多样性研究[D]. 兰州: 西北师范大学, 2004.
Zeng X Y. The diversity research on germplasm resources of decorative lily[D]. Lanzhou: Northwest Normal University, 2004.
|
[3] |
陈俊愉. 中国花经[M]. 北京: 中国林业出版社, 1990.
Chen J Y. Chinese flower classic[M]. Beijing: China Forestry Publishing House, 1990.
|
[4] |
杜方. 百合不同器官转录组分析及SSR标记开发应用[D]. 杭州: 浙江大学, 2014.
Du F. Transcriptome analysis of different lily organs and development and applications of SSR markers[D]. Hangzhou: Zhejiang University, 2014.
|
[5] |
Tuyl J M, Arens P. Lilium: breeding history of the modern cultivar assortment[J]. Acta Horticulturae, 2011, 900: 223−230.
|
[6] |
Matthews V. The international lily register and checklist, 2007[M]. London: Royal Horticultural Society (RHS), 2007.
|
[7] |
董航, 张杰, 孙红梅. 亚洲百合新品种引进与筛选[J]. 沈阳农业大学学报, 2013, 44(6): 816−819. doi: 10.3969/j.issn.1000-1700.2013.06.018
Dong H, Zhang J, Sun H M. Introduction and screening of new varieties of Asiatic hybrid lily[J]. Journal of Shenyang Agricultural University, 2013, 44(6): 816−819. doi: 10.3969/j.issn.1000-1700.2013.06.018
|
[8] |
王欢, 孔滢, 郎利新, 等. 亚洲百合与大花卷丹杂种F1重要性状的遗传分析[J]. 华北农学报, 2017, 32(4): 114−121. doi: 10.7668/hbnxb.2017.04.019
Wang H, Kong Y, Lang L X, et al. Genetic analysis of important charactersin F1 hybridsof Lilium Asiatic hybrids and L. leichtlini var. maximowiczi[J]. Acta Agriculturae Boreali-Sinica, 2017, 32(4): 114−121. doi: 10.7668/hbnxb.2017.04.019
|
[9] |
徐琼, 徐秉良, 王芳. 观赏百合叶枯病症状类型与病原菌鉴定[J]. 植物保护, 2006, 32(5): 61−64. doi: 10.3969/j.issn.0529-1542.2006.05.019
Xu Q, Xu B L, Wang F. Symptom types and identification of lily blight[J]. Plant Protection, 2006, 32(5): 61−64. doi: 10.3969/j.issn.0529-1542.2006.05.019
|
[10] |
Chiou A L, Wu W S. Isolation, identification and evaluation of bacterial antagonists against Botrytis elliptica on lily[J]. Journal of Phytopathology, 2001, 149(6): 319−324. doi: 10.1046/j.1439-0434.2001.00627.x
|
[11] |
杜艳丽, 曹兴, 王桂清, 等. 百合灰霉病病原菌鉴定及其部分生物学特性测定[J]. 南方农业学报, 2019, 50(2): 307−314. doi: 10.3969/j.issn.2095-1191.2019.02.13
Du Y L, Cao X, Wang G Q, et al. Identification and partial biological characteristics of pathogen causing lily gray mold[J]. Journal of Southern Agriculture, 2019, 50(2): 307−314. doi: 10.3969/j.issn.2095-1191.2019.02.13
|
[12] |
崔祺. 岷江百合响应灰霉病侵染的转录组分析及抗灰霉病相关基因的挖掘[D]. 北京: 北京林业大学, 2018.
Cui Q. Transcriptome analysis of Lilium regale responsive to Botrytis elliptica inoculation and mining of resistance genes[D]. Beijing: Beijing Forestry University, 2018.
|
[13] |
Kan J A L. Infection strategies of Botrytis cinerea[J]. Acta Horticulturae, 2005, 669: 77−90.
|
[14] |
Rossi F R, Gárriz A, Marina M, et al. The sesquiterpene botrydial produced by Botrytis cinerea induces the hypersensitive response on plant tissues and its action is modulated by salicylic acid and jasmonic acid signaling[J]. Molecular Plant-Microbe Interactions, 2011, 24(8): 888. doi: 10.1094/MPMI-10-10-0248
|
[15] |
Vinocur B, Altman A. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations[J]. Current Opinion in Biotechnology, 2005, 16(2): 123−132. doi: 10.1016/j.copbio.2005.02.001
|
[16] |
李芳乐, 管玲玲, 胡凤荣. 百合灰霉病对东方百合不同抗性品种的生理影响[J]. 东北林业大学学报, 2020, 48(7): 107−113, 119. doi: 10.3969/j.issn.1000-5382.2020.07.021
Li F L, Guan L L, Hu F R. Physiological response of different resistant cultivars of Lilium oriental hybrid after inoculation with Botrytis cinerea[J]. Journal of Northeast Forestry University, 2020, 48(7): 107−113, 119. doi: 10.3969/j.issn.1000-5382.2020.07.021
|
[17] |
Yang X, Yang J, Wang Y, et al. Enhanced resistance to sclerotinia stem rot in transgenic soybean that overexpresses a wheat oxalate oxidase[J]. Transgenic Research, 2019, 28(1): 103−114. doi: 10.1007/s11248-018-0106-x
|
[18] |
Xian H Q, Li J R, Zhang L Q, et al. Cloning and functional analysis of a novel chitinase gene Trchi1 from Trichothecium roseum[J]. Biotechnology Letters, 2012, 34(10): 1921−1928. doi: 10.1007/s10529-012-0989-1
|
[19] |
梁巧兰, 张娜, 魏列新, 等. 深绿木霉蛋白质TraT2A诱导兰州百合抗灰霉病的作用[J]. 中国生物防治学报, 2017, 33(4): 545−551. doi: 10.16409/j.cnki.2095-039x.2017.04.016
Liang Q L, Zhang N, Wei L X, et al. Effect of Trichoderma atroviride proteinaceous TraT2A induced Lanzhou lily resistant to gray mold caused by Botrytis cinerea[J]. Chinese Journal of Biological Control, 2017, 33(4): 545−551. doi: 10.16409/j.cnki.2095-039x.2017.04.016
|
[20] |
朱丽梅, 胡凤荣, 罗凤霞. 不同百合品种对百合灰霉病的抗病性鉴定[J]. 植物保护, 2010, 36(3): 148−151. doi: 10.3969/j.issn.0529-1542.2010.03.036
Zhu L M, Hu R F, Luo F X. Identification of disease resistance of Lilium species to lily gray mould[J]. Plant Protection, 2010, 36(3): 148−151. doi: 10.3969/j.issn.0529-1542.2010.03.036
|
[21] |
熊慧, 马承恩, 李乐, 等. 不同生境条件下蕨类和被子植物的气孔形态特征及其对光强变化的响应[J]. 植物生态学报, 2014, 38(8): 868−877. doi: 10.3724/SP.J.1258.2014.00081
Xiong H, Ma C E, Li L, et al. Stomatal characteristics of ferns and angiosperms and their responses to changing light inten sity at different habitats[J]. Chinese Journal of Plant Ecology, 2014, 38(8): 868−877. doi: 10.3724/SP.J.1258.2014.00081
|
[22] |
王学奎, 黄见良. 植物生理生化实验原理与技术[M]. 3版. 北京: 高等教育出版社, 2015.
Wang X K, Huang J L. Principles and techniques of plant physiological biochemical experiment[M]. 3rd ed. Beijing: Higher Education Press, 2015.
|
[23] |
左豫虎, 康振生, 杨传平, 等. β-1,3-葡聚糖酶和几丁质酶活性与大豆对疫霉根腐病抗性的关系[J]. 植物病理学报, 2009, 39(6): 600−607. doi: 10.3321/j.issn:0412-0914.2009.06.006
Zuo Y H, Kang Z S, Yang C P, et al. Relationship between activities of β-1,3-glacanase and chitinase and resistance to Phytophthora root rot in soybean[J]. Acta Phytopathologica Sinica, 2009, 39(6): 600−607. doi: 10.3321/j.issn:0412-0914.2009.06.006
|
[24] |
Hu N, Tu X R, Li K T, et al. Changes in protein content and chitinase and β-1, 3-glucanase activities of rice with blast resistance induced by ag-antibiotic 702[J]. Plant Diseases and Pests, 2017, 8(4): 33−36.
|
[25] |
Zhang Z G, Yang J, Collinge D B, et al. Ethanol increases sensitivity of oxalate oxidase assays and facilitates direct activity staining in SDS gels[J]. Plant Molecular Biology Reporter, 1996, 14: 266−272. doi: 10.1007/BF02671662
|
[26] |
关晔晴. 苹果果面结构与轮纹病抗病性关系的研究[D]. 北京: 中国农业大学, 2015.
Guan Y Q. Role of surface sturcture on susceptibility of apple fruit to Botryosphaeria dothidea[D]. Beijing: China Agricultural University, 2015.
|
[27] |
万然. 中国野生葡萄种质叶片抗灰霉病的机制研究[D]. 杨凌: 西北农林科技大学, 2016.
Wan R. Researches on the mechanism for Chinese wild vitis germplasm leaves against Botrytis cinerea[D]. Yangling: Northwest A&F University, 2016.
|
[28] |
吕静波. 玉米抗灰斑病组织细胞学及生理机制研究[D]. 沈阳: 沈阳农业大学, 2019.
Lü J B. Study on cytology and physiological mechanism of resistant tissues to gray leaf spot of maize[D]. Shenyang: Shenyang Agricultural University, 2019.
|
[29] |
Ziv C, Zhao Z Z, Gao Y G, et al. Multifunctional roles of plant cuticle during plant-pathogen interactions[J]. Frontiers in Plant Science, 2018, 9: 1088. doi: 10.3389/fpls.2018.01088
|
[30] |
Gao X, Cui Q, Cao Q Z, et al. Evaluation of resistance to Botrytis elliptica in Lilium hybrid cultivars[J]. Plant Physiology and Biochemistry, 2018, 123: 392−399. doi: 10.1016/j.plaphy.2017.12.025
|
[31] |
Baarlen P V, Staats M, Kan J A L V. Induction of programmed cell death in lily by the fungal pathogen Botrytis elliptica[J]. Molecular Plant Pathology, 2004, 5(6): 559−574. doi: 10.1111/j.1364-3703.2004.00253.x
|
[32] |
Zhang F, Ruan X, Wang X, et al. Overex-pression of a chitinase gene from Trichoderma asperellum increases disease resistance in transgenic soybean[J]. Applied Biochemistry and Biotechnology, 2016, 180: 1542−1558. doi: 10.1007/s12010-016-2186-5
|
[33] |
Núñez F F, Davey M R, Sanchez E C, et al. Conferred resistance to Botrytis cinerea in Lilium by overexpression of the RCH10 chitinase gene[J]. Plant Cell Reports, 2015, 34(7): 1201−1209. doi: 10.1007/s00299-015-1778-9
|
[34] |
Hu X R, Dai D J, Wang H D, et al. Rapid on-site evaluation of the development of resistance to quinone outside inhibitors in Botrytis cinerea[J]. Scientific Reports, 2017, 7(1): 1019−1024. doi: 10.1038/s41598-017-01023-9
|
[35] |
Li Y G, Cai Y N, Liang Y B, et al. Assessment of antifungal activities of a biocontrol bacterium BA17 for managing postharvest gray mold of green bean caused by Botrytis cinerea[J]. Postharvest Biology and Technology, 2020, 161: 111086. doi: 10.1016/j.postharvbio.2019.111086
|