Citation: | Zhong Xiang, Zhang Shaojun, Ma Erni. Variation in pore size distribution of wood cell wall under different moisture states[J]. Journal of Beijing Forestry University, 2021, 43(11): 128-136. DOI: 10.12171/j.1000-1522.20210260 |
[1] |
Everett D H. Manual of symbols and terminology for physicochemical quantities and units, appendix II: definitions, terminology and symbols in colloid and surface[J]. Chemistry Pure and Applied Chemistry, 1972, 31(4): 577−638. doi: 10.1351/pac197231040577
|
[2] |
Pfriem A, Zauer M, André W. Alteration of the pore structure of spruce (Picea abies (L.) Karst.) and maple (Acer pseudoplatanus L.) due to thermal treatment as determined by helium pycnometry and mercury intrusion porosimetry[J]. Holzforschung, 2009, 63(1): 94−98.
|
[3] |
Chang S S, Bruno C, Julien R, et al. Mesoporosity as a new parameter for understanding tension stress generation in trees[J]. Journal of Experimental Botany, 2009, 60(11): 3023−3030. doi: 10.1093/jxb/erp133
|
[4] |
苌姗姗, 胡进波, Clair Bruno, 等. 氮气吸附法表征杨木应拉木的孔隙结构[J]. 林业科学, 2011, 47(10):137−143.
Chang S S, Hu J B, Bruno C, et al. Pore structure characterization of poplar tension wood by nitrogen adsorption-desorption method[J]. Scientia Silvae Sinicae, 2011, 47(10): 137−143.
|
[5] |
Yin J, Song K, Yun L, et al. Comparison of changes in micropores and mesopores in the wood cell walls of sapwood and heartwood[J]. Wood Science and Technology, 2015, 49(5): 987−1001. doi: 10.1007/s00226-015-0741-9
|
[6] |
Park S, Venditti R A, Jameel H, et al. Changes in pore size distribution during the drying of cellulose fibers as measured by differential scanning calorimetry[J]. Carbohydrate Polymers, 2006, 66(1): 97−103. doi: 10.1016/j.carbpol.2006.02.026
|
[7] |
Zauer M, Kretzschmar J, Grossmann L, et al. Analysis of the pore-size distribution and fiber saturation point of native and thermally modified wood using differential scanning calorimetry[J]. Wood Science and Technology, 2014, 48(1): 177−193. doi: 10.1007/s00226-013-0597-9
|
[8] |
Grigsby W J, Kroese H, Dunningham E A. Characterisation of pore size distributions in variously dried Pinus radiata: analysis by thermoporosimetry[J]. Wood Science and Technology, 2013, 47(4): 737−747. doi: 10.1007/s00226-013-0537-8
|
[9] |
苌姗姗, 胡进波, 赵广杰. 不同干燥预处理对杨木应拉木孔隙结构的影响[J]. 北京林业大学学报, 2011, 33(2):91−95.
Chang S S, Hu J B, Zhao G J. Effects of different drying pretreatments on pore structure of poplar tension wood[J]. Journal of Beijing Forestry University, 2011, 33(2): 91−95.
|
[10] |
李京予, 马尔妮. 热处理及脱木质素对南方松木材吸湿极限与细胞壁饱和状态的影响[J]. 林业工程学报, 2021, 6(3):61−68.
Li J Y, Ma E N. Influence of heat treatment and delignification on hygroscopicity limit and cell wall saturation of southern pine wood[J]. Journal of Forestry Engineering, 2021, 6(3): 61−68.
|
[11] |
高鑫, 周凡, 庄寿增, 等. 纤维饱和点概念的演变, 测试方法及其应用[J]. 林业科学, 2019, 55(3):149−159. doi: 10.11707/j.1001-7488.20190317
Gao X, Zhou F, Zhuang S Z, et al. Concept evolution, test method and application of fiber saturation point[J]. Scientia Silvae Sinicae, 2019, 55(3): 149−159. doi: 10.11707/j.1001-7488.20190317
|
[12] |
刘一星, 赵广杰. 木材学[M]. 北京: 中国林业出版社, 2012.
Liu Y X, Zhao G J, Wood science[M]. Beijing: China Forestry Publishing House, 2012.
|
[13] |
Barrett E P, Joyner L G, Halenda P P. The determination of pore volume and area distributions in porous substances (I): computations from nitrogen isotherms[J]. Journal of the American Chemical Society, 1951, 73: 373−380. doi: 10.1021/ja01145a126
|
[14] |
Kimura M, Qi Z D, Isogai A. Analysis of mesopore structures in wood cell walls and pulp fibers by nitrogen adsorption method[J]. Nordic Pulp and Paper Research Journal, 2016, 31(2): 198−204. doi: 10.3183/npprj-2016-31-02-p198-204
|
[15] |
Jackson C L, McKenna G B. The melting behavior of organic materials confined in porous solids[J]. Journal of Chemical Physics, 1990, 93(12): 9002−9011. doi: 10.1063/1.459240
|
[16] |
Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure and Applied Chemistry, 1985, 57(4): 603−619. doi: 10.1351/pac198557040603
|
[17] |
罗文圣, 赵广杰. 木材细胞壁的空隙构造及物质的输运过程[J]. 北京林业大学学报, 2001, 23(2):85−89. doi: 10.3321/j.issn:1000-1522.2001.02.019
Luo W S, Zhao G J. The void structure of wood cell wall and the process of material transport[J]. Journal of Beijing Forestry University, 2001, 23(2): 85−89. doi: 10.3321/j.issn:1000-1522.2001.02.019
|
[18] |
Stayton C L, Hart C A. Determining pore-size distribution in softwoods with a mercury porosimeter[J]. Forest Products Journal, 1965, 15(10): 435−440.
|
[19] |
Jayme G, Krause T. On the packing-density of the cell walls in deciduous woods[J]. Holz als Roh- und Werkstoff, 1963, 21(1): 14−19. doi: 10.1007/BF02605990
|
[20] |
Liang R, Zhu Y H, Wen L, et al. Exploration of effect of delignification on the mesopore structure in poplar cell wall by nitrogen absorption method[J]. Cellulose, 2020, 27(4): 1921−1932. doi: 10.1007/s10570-019-02921-z
|
[21] |
Walker J. Primary wood processing[M]. Berlin: Springer, 2006.
|
[22] |
Hill C A S. Wood modification: chemical, thermal and other process[M]. Chichester: John Wiley & Sons, Ltd., 2006.
|
[23] |
Telkki V V, Ylinemi M, Jokisaari J. Moisture in softwoods: fiber saturation point, hydroxyl site content, and the amount of micropores as determined from NMR relaxation time distributions[J]. Holzforschung, 2013, 67(3): 291−300. doi: 10.1515/hf-2012-0057
|
[24] |
Babiak M, Kúdela J. A contribution to the definition of the fiber saturation point[J]. Wood Science and Technology, 1995, 29(3): 217−226.
|
[25] |
Engelund E T, Thygesen L G, Svensson S, et al. A critical discussion of the physics of wood-water interactions[J]. Wood Science and Technology, 2013, 47(1): 141−161. doi: 10.1007/s00226-012-0514-7
|
[26] |
Li J, Ma E, Yang T. Differences between hygroscopicity limit and cell wall saturation investigated by LF-NMR on southern pine (Pinus spp.)[J]. Holzforschung, 2019, 73(10): 911−921. doi: 10.1515/hf-2018-0257
|
[27] |
Grnquist P, Frey M, Keplinger T, et al. Mesoporosity of delignified wood investigated by water vapor sorption[J]. ACS Omega, 2019, 4(7): 12425−12431. doi: 10.1021/acsomega.9b00862
|
[1] | Chen Xiaomeng, Wang Yuechen, Chai Xuying, Li Aining, Wang Yonglin. Deletion mutations and its phenotypic analysis of two-component genes in Lonsdalea populi[J]. Journal of Beijing Forestry University, 2021, 43(9): 25-37. DOI: 10.12171/j.1000-1522.20210007 |
[2] | Zhang Ping, Li Chaoyang, Zhao Qingquan, Wang Lihai, Ma Ling. Inhibition effects of biocontrol bacteria strains on the pathogen of Camellia oleifera anthracnose[J]. Journal of Beijing Forestry University, 2020, 42(10): 107-116. DOI: 10.12171/j.1000-1522.20190409 |
[3] | GAN Lu, SU Hao-tian, LING Xin-wen, YIN Shu-xia. Rust pathogen identification and mechanism of disease-resistance research on Kentucky bluegrass dwarf mutant[J]. Journal of Beijing Forestry University, 2017, 39(3): 87-92. DOI: 10.13332/j.1000-1522.20160315 |
[4] | LIU Jian-feng, ZHANG Yu-chu, LIU Ting, Celal Tuncer, CHENG Yun-qing. Screening of a highly pathogenic strain against hazelnut weevil and microscopic observation on its infection process[J]. Journal of Beijing Forestry University, 2017, 39(3): 32-37. DOI: 10.13332/j.1000-1522.20160322 |
[5] | CAO Feng, YANG Ling, GONG Shu-rong, ZHANG Lin, NIU Qiu-hong. Relationships between pathogenic bacterium and the endophytic bacteria isolated from Bursaphelenchus xylophilus.[J]. Journal of Beijing Forestry University, 2016, 38(9): 25-33. DOI: 10.13332/j.1000-1522.20160082 |
[6] | BEN Ai-ling, ZENG Fei-li, QIAO Xue-juan, ZHENG Jing-rong, HAN Zheng-min. Colonization and pathogenicity for American and Chinese bacterial strains carried by pine wood nematodes.[J]. Journal of Beijing Forestry University, 2013, 35(1): 83-87. |
[7] | HU Ching-yu, CHEN Jan-chang, WEI Chun-hung, CHEN Chaur-tzuhn. Using MODIS image data to estimate the terrestrial net primary productivity (NPP) of ecological zone in Taiwan.[J]. Journal of Beijing Forestry University, 2011, 33(4): 33-39. |
[8] | WANG Meng-chang, FAN Jun-feng, LIANG Jun, ZHOU Yong-xue, WANG Lei. Effects of canker pathogen on four antioxidase activities of poplar callus[J]. Journal of Beijing Forestry University, 2010, 32(2): 118-122. |
[9] | SUN Dong-mei, YANG Qian, SONG Jin-zhu. Study on inhibition pathogen of Cytospora chrysosperma by Trichoderma aureoviride metabolite[J]. Journal of Beijing Forestry University, 2006, 28(1): 76-79. |
[10] | ZHAO Bo-guang, LIANG Bo, ZHAO Lin-guo, XU Mei. Influence of pine wood nematode on production of phytotoxins of an accompanying pathogenic bacterial strain[J]. Journal of Beijing Forestry University, 2005, 27(6): 71-75. |
1. |
彭小静,黄海山,严芝银,邹星晨,贺康宁,程唱,王作枭,李睿,刘婧雯,石正阳,刘仟仟. 祁连山东部地区不同林分密度白桦天然林土壤理化性质特征. 生态学报. 2025(02): 743-756 .
![]() | |
2. |
张佳凝,张建军,赖宗锐,赵炯昌,胡亚伟,李阳,卫朝阳. 林分密度对刺槐人工林土壤养分和微生物群落的影响. 干旱区研究. 2025(02): 274-288 .
![]() | |
3. |
武燕,李歆玉,张奕婷,丁波,张运林,符裕红,刘讯. 西南喀斯特地区不同龄组马尾松人工林枯落物碳氮磷化学计量特征及其影响因子. 北京林业大学学报. 2024(02): 87-94 .
![]() | |
4. |
巩大鹏,毕华兴,王劲峰,赵丹阳,黄靖涵,宋艺琳. 晋西黄土区不同密度刺槐人工林叶片-枯落物-土壤化学计量特征. 林业科学研究. 2024(02): 156-164 .
![]() | |
5. |
陈宇,庞涛,瞿相,彭建,杨汉波,代林利,辜云杰. 造林密度对楠木幼龄林生长、土壤理化性质与酶活性的影响. 四川林业科技. 2024(03): 9-20 .
![]() | |
6. |
龚世豪,查同刚,张晓霞,张恒硕,高连炜,于洋. 晋西黄土区典型林分凋落物-土壤养分对降雨再分配变化的响应. 生态学报. 2024(17): 7748-7759 .
![]() | |
7. |
窦金萍,武小钢,杨秀云,陈冠光,靳雅君,吴茜. 不同类型豆科植物群落凋落物对城市土壤质量的影响. 林业调查规划. 2024(05): 198-204 .
![]() | |
8. |
贾亚倢,杨建英,张建军,胡亚伟,张犇,赵炯昌,李阳,唐鹏. 晋西黄土区林分密度对油松人工林生物量及土壤理化性质的影响. 浙江农林大学学报. 2024(06): 1211-1221 .
![]() | |
9. |
陈涛,王露露,王思崇,朱学灵,叶永忠. 河南省丘陵低山区刺槐人工林立地分类及立地质量评价. 西北林学院学报. 2023(01): 153-159 .
![]() | |
10. |
高利强,刘莹,王国梁. 人工和天然油松林表层土壤不同粒径团聚体有机碳及其组分分布特征. 水土保持学报. 2023(02): 320-328 .
![]() | |
11. |
孙阔,袁兴中,王晓锋,袁嘉,候春丽,魏丽景. 三峡水库消落带土壤养分含量及生态化学计量特征. 长江流域资源与环境. 2023(02): 403-414 .
![]() | |
12. |
张誉. 不同造林技术对水土保持林土壤特性的影响研究. 广东蚕业. 2023(03): 50-52 .
![]() | |
13. |
钟欢,董文渊,浦婵,谢泽轩,张炜,郑静楠,夏莉. 滇东北4种类型筇竹林分土壤碳氮磷生态化学计量特征研究. 西南林业大学学报(自然科学). 2023(03): 111-119 .
![]() | |
14. |
魏亚娟,刘美英,解云虎,李星. 吉兰泰盐湖防护体系建立38 a以来土壤养分特征. 干旱区研究. 2023(05): 747-755 .
![]() | |
15. |
党记刚. 陕西黄土区典型人工林分结构与水土保持功能耦合关系研究. 科技创新与生产力. 2023(08): 47-50 .
![]() | |
16. |
朱燕,翟博超,孙美美,罗伶书,王瑛,杜盛. 黄土丘陵区不同密度刺槐和油松人工林土壤理化性质与化学计量特征. 水土保持研究. 2023(06): 160-167 .
![]() | |
17. |
兰道云,毕华兴,赵丹阳,王宁,云慧雅,王珊珊,崔艳红. 晋西黄土区不同密度油松人工林保育土壤功能评价. 水土保持学报. 2022(02): 189-196 .
![]() | |
18. |
郭强,官凤英,辉朝茂,刘蔚漪,邹学明. 密度和施肥调控对巨龙竹新竹生长及生物量特征的影响. 北京林业大学学报. 2022(04): 95-106 .
![]() | |
19. |
张恒宇,孙树臣,吴元芝,安娟,宋红丽. 黄土高原不同植被密度条件下土壤水、碳、氮分布特征. 生态环境学报. 2022(05): 875-884 .
![]() | |
20. |
郭鑫,魏天兴,陈宇轩,沙国良,任康,于欢. 黄土丘陵区典型退耕恢复植被土壤生态化学计量特征. 干旱区地理. 2022(06): 1899-1907 .
![]() | |
21. |
梁广国,陶建元,郭坤,王子旗,张艳明,王金颖. 不同林型、不同林分密度植被下土壤养分及其化学计量比研究. 吉林林业科技. 2021(06): 14-21 .
![]() |