• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhong Xiang, Zhang Shaojun, Ma Erni. Variation in pore size distribution of wood cell wall under different moisture states[J]. Journal of Beijing Forestry University, 2021, 43(11): 128-136. DOI: 10.12171/j.1000-1522.20210260
Citation: Zhong Xiang, Zhang Shaojun, Ma Erni. Variation in pore size distribution of wood cell wall under different moisture states[J]. Journal of Beijing Forestry University, 2021, 43(11): 128-136. DOI: 10.12171/j.1000-1522.20210260

Variation in pore size distribution of wood cell wall under different moisture states

More Information
  • Received Date: July 13, 2021
  • Revised Date: September 25, 2021
  • Available Online: October 07, 2021
  • Published Date: November 29, 2021
  •   Objective  This work was conducted to investigate the changing tendency and mechanism of pore structure in wood cell wall induced by water, so as to provide theoretical guidance for heat and mass transfer within wood, wood permeability and wood modification.
      Method  Poplar wood and fir wood were prepared into wood slices of 5 mm (R) × 5 mm (T) × 1 mm (L) . Based on nitrogen sorption method and differential scanning thermoporosimetry, the characteristic parameters of pore size distribution, specific surface area, pore volume were investigated at four typical moisture content states including oven-dry state, air-dry state, fiber saturation state and saturated state. The pore structure differences between different states and different tree species were compared.
      Result  The pore size of wood cell wall was mostly less than 10 nm, especially below 4 nm, with relatively few pores above 10 nm. With the increase of moisture content, the pore size distribution curve of wood cell wall rose significantly. From air-dry state to fiber saturation state, the maximum pore size distribution of poplar wood and fir wood increased by 52.73% and 58.62%, respectively, furtherly from fiber saturation state to saturated state, those values increased by 435.24% and 470.43%, respectively.
      Conclusion  As the wood gradually changes from oven-dry state to saturated state, the pore volume of wood cell wall becomes higher obviously. When the wood reaches saturated state, the volume of cell wall pores reaches the maximum. However, due to the signal interference from a large amount of free water, the detecting range of pore size distribution measured by the differential scanning thermoporosimetry is limited. There is no obvious difference in pore distribution among different tree species in this study.
  • [1]
    Everett D H. Manual of symbols and terminology for physicochemical quantities and units, appendix II: definitions, terminology and symbols in colloid and surface[J]. Chemistry Pure and Applied Chemistry, 1972, 31(4): 577−638. doi: 10.1351/pac197231040577
    [2]
    Pfriem A, Zauer M, André W. Alteration of the pore structure of spruce (Picea abies (L.) Karst.) and maple (Acer pseudoplatanus L.) due to thermal treatment as determined by helium pycnometry and mercury intrusion porosimetry[J]. Holzforschung, 2009, 63(1): 94−98.
    [3]
    Chang S S, Bruno C, Julien R, et al. Mesoporosity as a new parameter for understanding tension stress generation in trees[J]. Journal of Experimental Botany, 2009, 60(11): 3023−3030. doi: 10.1093/jxb/erp133
    [4]
    苌姗姗, 胡进波, Clair Bruno, 等. 氮气吸附法表征杨木应拉木的孔隙结构[J]. 林业科学, 2011, 47(10):137−143.

    Chang S S, Hu J B, Bruno C, et al. Pore structure characterization of poplar tension wood by nitrogen adsorption-desorption method[J]. Scientia Silvae Sinicae, 2011, 47(10): 137−143.
    [5]
    Yin J, Song K, Yun L, et al. Comparison of changes in micropores and mesopores in the wood cell walls of sapwood and heartwood[J]. Wood Science and Technology, 2015, 49(5): 987−1001. doi: 10.1007/s00226-015-0741-9
    [6]
    Park S, Venditti R A, Jameel H, et al. Changes in pore size distribution during the drying of cellulose fibers as measured by differential scanning calorimetry[J]. Carbohydrate Polymers, 2006, 66(1): 97−103. doi: 10.1016/j.carbpol.2006.02.026
    [7]
    Zauer M, Kretzschmar J, Grossmann L, et al. Analysis of the pore-size distribution and fiber saturation point of native and thermally modified wood using differential scanning calorimetry[J]. Wood Science and Technology, 2014, 48(1): 177−193. doi: 10.1007/s00226-013-0597-9
    [8]
    Grigsby W J, Kroese H, Dunningham E A. Characterisation of pore size distributions in variously dried Pinus radiata: analysis by thermoporosimetry[J]. Wood Science and Technology, 2013, 47(4): 737−747. doi: 10.1007/s00226-013-0537-8
    [9]
    苌姗姗, 胡进波, 赵广杰. 不同干燥预处理对杨木应拉木孔隙结构的影响[J]. 北京林业大学学报, 2011, 33(2):91−95.

    Chang S S, Hu J B, Zhao G J. Effects of different drying pretreatments on pore structure of poplar tension wood[J]. Journal of Beijing Forestry University, 2011, 33(2): 91−95.
    [10]
    李京予, 马尔妮. 热处理及脱木质素对南方松木材吸湿极限与细胞壁饱和状态的影响[J]. 林业工程学报, 2021, 6(3):61−68.

    Li J Y, Ma E N. Influence of heat treatment and delignification on hygroscopicity limit and cell wall saturation of southern pine wood[J]. Journal of Forestry Engineering, 2021, 6(3): 61−68.
    [11]
    高鑫, 周凡, 庄寿增, 等. 纤维饱和点概念的演变, 测试方法及其应用[J]. 林业科学, 2019, 55(3):149−159. doi: 10.11707/j.1001-7488.20190317

    Gao X, Zhou F, Zhuang S Z, et al. Concept evolution, test method and application of fiber saturation point[J]. Scientia Silvae Sinicae, 2019, 55(3): 149−159. doi: 10.11707/j.1001-7488.20190317
    [12]
    刘一星, 赵广杰. 木材学[M]. 北京: 中国林业出版社, 2012.

    Liu Y X, Zhao G J, Wood science[M]. Beijing: China Forestry Publishing House, 2012.
    [13]
    Barrett E P, Joyner L G, Halenda P P. The determination of pore volume and area distributions in porous substances (I): computations from nitrogen isotherms[J]. Journal of the American Chemical Society, 1951, 73: 373−380. doi: 10.1021/ja01145a126
    [14]
    Kimura M, Qi Z D, Isogai A. Analysis of mesopore structures in wood cell walls and pulp fibers by nitrogen adsorption method[J]. Nordic Pulp and Paper Research Journal, 2016, 31(2): 198−204. doi: 10.3183/npprj-2016-31-02-p198-204
    [15]
    Jackson C L, McKenna G B. The melting behavior of organic materials confined in porous solids[J]. Journal of Chemical Physics, 1990, 93(12): 9002−9011. doi: 10.1063/1.459240
    [16]
    Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure and Applied Chemistry, 1985, 57(4): 603−619. doi: 10.1351/pac198557040603
    [17]
    罗文圣, 赵广杰. 木材细胞壁的空隙构造及物质的输运过程[J]. 北京林业大学学报, 2001, 23(2):85−89. doi: 10.3321/j.issn:1000-1522.2001.02.019

    Luo W S, Zhao G J. The void structure of wood cell wall and the process of material transport[J]. Journal of Beijing Forestry University, 2001, 23(2): 85−89. doi: 10.3321/j.issn:1000-1522.2001.02.019
    [18]
    Stayton C L, Hart C A. Determining pore-size distribution in softwoods with a mercury porosimeter[J]. Forest Products Journal, 1965, 15(10): 435−440.
    [19]
    Jayme G, Krause T. On the packing-density of the cell walls in deciduous woods[J]. Holz als Roh- und Werkstoff, 1963, 21(1): 14−19. doi: 10.1007/BF02605990
    [20]
    Liang R, Zhu Y H, Wen L, et al. Exploration of effect of delignification on the mesopore structure in poplar cell wall by nitrogen absorption method[J]. Cellulose, 2020, 27(4): 1921−1932. doi: 10.1007/s10570-019-02921-z
    [21]
    Walker J. Primary wood processing[M]. Berlin: Springer, 2006.
    [22]
    Hill C A S. Wood modification: chemical, thermal and other process[M]. Chichester: John Wiley & Sons, Ltd., 2006.
    [23]
    Telkki V V, Ylinemi M, Jokisaari J. Moisture in softwoods: fiber saturation point, hydroxyl site content, and the amount of micropores as determined from NMR relaxation time distributions[J]. Holzforschung, 2013, 67(3): 291−300. doi: 10.1515/hf-2012-0057
    [24]
    Babiak M, Kúdela J. A contribution to the definition of the fiber saturation point[J]. Wood Science and Technology, 1995, 29(3): 217−226.
    [25]
    Engelund E T, Thygesen L G, Svensson S, et al. A critical discussion of the physics of wood-water interactions[J]. Wood Science and Technology, 2013, 47(1): 141−161. doi: 10.1007/s00226-012-0514-7
    [26]
    Li J, Ma E, Yang T. Differences between hygroscopicity limit and cell wall saturation investigated by LF-NMR on southern pine (Pinus spp.)[J]. Holzforschung, 2019, 73(10): 911−921. doi: 10.1515/hf-2018-0257
    [27]
    Grnquist P, Frey M, Keplinger T, et al. Mesoporosity of delignified wood investigated by water vapor sorption[J]. ACS Omega, 2019, 4(7): 12425−12431. doi: 10.1021/acsomega.9b00862
  • Related Articles

    [1]Cui Tingting, Zhu Liying, Zhang Litian, Ye Yongxiang, Lin Qinlan, Yan Minlong. Analysis of spatial vitality characteristics and influencing factors of Wuyi Mountain National Park from online and offline perspectives[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240278
    [2]Yu Xiao, Ouyang Xunzhi, Pan Ping, Deng Wenping, Peng Songli, Zang Hao, Hu Rongrong. Spatial structure characteristics and its evaluation of evergreen broadleaved forest at different growth stages in Lushan Mountain, Jiangxi Province of eastern China[J]. Journal of Beijing Forestry University, 2022, 44(12): 32-40. DOI: 10.12171/j.1000-1522.20210450
    [3]Sun Qiaoyun, Bao Menghan, Huang Hanwen, Zhang Yujun. Boundary delimitation of the proposed Songnen Plain National Park of northeastern China[J]. Journal of Beijing Forestry University, 2022, 44(1): 103-112. DOI: 10.12171/j.1000-1522.20210418
    [4]Tang Weilu, Jin Kun. Preliminary study on night lodging habitat selection of Nomascus hainanus in Hainan Tropical Rainforest National Park, southern China[J]. Journal of Beijing Forestry University, 2021, 43(2): 113-126. DOI: 10.12171/j.1000-1522.20200185
    [5]YU Jia-lin, ZHANG Wei-guo, TIAN Kun, SONG Wei-hong, LI Qiu-ping, YANG Rong, ZHANG Yun. Response of radial growth of three conifer trees to climate change at their upper distribution limits in Potatso National Park, Shangri-La, southwestern China[J]. Journal of Beijing Forestry University, 2017, 39(1): 43-51. DOI: 10.13332/j.1000-1522.20160184
    [6]ZHAO Wen-xia, ZOU Bin, ZHENG Jing-ming, LUO Jiu-fu. Correlations between leaf, stem and root functional traits of common tree species in an evergreen broad-leaved forest[J]. Journal of Beijing Forestry University, 2016, 38(6): 35-41. DOI: 10.13332/j.1000-1522.20160087
    [7]WANG Yong, QIAO Yong, SUN Xiang-yang. Soil taxonomy in Jiufeng National Forest Park, Beijing[J]. Journal of Beijing Forestry University, 2010, 32(3): 217-220.
    [8]CUI Li-juan, ZHANG Man-yin, LI Wei, WANG Yi-fei, SHANG Xiao-jing.. Management and assessment of national wetland parks.[J]. Journal of Beijing Forestry University, 2009, 31(5): 102-107.
    [9]SHI Qiang, HE Qing-tang. The best tourism environmental capacity of Zhangjiajie National Forest Park, southern China[J]. Journal of Beijing Forestry University, 2007, 29(4): 143-147. DOI: 10.13332/j.1000-1522.2007.04.029
    [10]WANG Qing-kui, WANG Si-long, FENG Zong-wei. Comparison of active soil organic carbon pool between Chinese fir plantations and evergreen broadleaved forests[J]. Journal of Beijing Forestry University, 2006, 28(5): 1-6.
  • Cited by

    Periodical cited type(36)

    1. 张瑜,徐子棋,陈光明,张志军,杨献坤,崔斌,王大中,芦贵君. 不同林草治沙模式对盐碱沙地沉积物粒度特征的影响. 中国水土保持. 2024(03): 29-33 .
    2. 田震,高凡,赛硕,杨之恒,丁国栋. 清水河县森林生态系统碳储量、碳密度分布特征. 干旱区资源与环境. 2024(06): 166-173 .
    3. 董鹏,任悦,高广磊,丁国栋,张英. 呼伦贝尔沙地樟子松枯落物和土壤碳、氮、磷化学计量特征. 干旱区研究. 2024(08): 1354-1363 .
    4. 包润泽,张星,姚庆智. 接种褐环乳牛肝菌对樟子松及油松根际土壤细菌群落的影响. 安徽农业科学. 2023(06): 148-151+162 .
    5. 拓卫卫,范家伟,周雅洁,杨京,张延文,佟小刚,吴发启,姚冲. 毛乌素沙地樟子松林植物-土壤生态化学计量特征演变关系. 水土保持研究. 2023(06): 177-186 .
    6. 刘明慧,柳叶,任悦,高广磊,丁国栋,张英,赵珮杉,刘轩. 科尔沁沙地樟子松人工林土壤真菌共现网络及其与土壤因子的关系. 生态学报. 2023(23): 9912-9924 .
    7. 邹星晨,王欣苗,左亚凡,张泽鑫,贺康宁. 青海云杉不同演替阶段林下草本多样性特征及其环境解释. 生态学报. 2023(24): 10285-10294 .
    8. 阿拉萨,王陇,高广磊,张英,曹红雨,杜宇佳,刘雪锋. 乌兰布和沙漠沿黄段风沙土有机质和碳酸钙含量特征. 中国水土保持科学(中英文). 2022(01): 41-47 .
    9. 刘轩,赵珮杉,高广磊,赵媛媛,丁国栋,糜万林. 沙地樟子松(Pinus sylvestris var. mongolica)物候特征及其对气候的响应. 中国沙漠. 2022(02): 25-35 .
    10. 张恒宇,孙树臣,吴元芝,安娟,宋红丽. 黄土高原不同植被密度条件下土壤水、碳、氮分布特征. 生态环境学报. 2022(05): 875-884 .
    11. 阿拉萨,高广磊,丁国栋,张英,曹红雨,杜宇佳. 土壤微生物膜生理生态功能研究进展. 应用生态学报. 2022(07): 1885-1892 .
    12. 王辉丽,于树学,郭立,梁海龙,李伟. 樟子松优树群体遗传多样性评价及指纹图谱构建. 甘肃农业大学学报. 2022(03): 103-110 .
    13. 王学林,高广磊,丁国栋,曹红雨. 沙地樟子松人工林土壤酶活性研究. 干旱区资源与环境. 2021(01): 114-120 .
    14. 徐畅,雷泽勇,周凤艳,毛禹. 沙地樟子松人工林生长对非降雨季节土壤水分的影响. 生态学杂志. 2021(01): 58-66 .
    15. 曹怡立. 章古台沙地樟子松人工林衰退的原因以及可持续经营措施. 农业与技术. 2021(03): 75-77 .
    16. 韦睿,罗玉亮,兰岚,于宏影,裴晓娜,刘亭亭. 截顶及遗传因素对樟子松无性系种子园种实差异的影响. 温带林业研究. 2021(02): 32-37 .
    17. 王雨,郭米山,高广磊,曹红雨,丁国栋,梁海军,赵珮杉. 三种外生菌根真菌对沙地樟子松幼苗生长的影响. 干旱区资源与环境. 2021(10): 135-140 .
    18. 李嘉珞,郭米山,高广磊,阿拉萨,杜凤梅,殷小琳,丁国栋. 沙地樟子松菌根化幼苗对干旱胁迫的生理响应. 干旱区研究. 2021(06): 1704-1712 .
    19. 黄艳章,信忠保. 不同生态恢复模式对黄土残塬沟壑区深层土壤有机碳的影响. 生态学报. 2020(03): 778-788 .
    20. 王一佩,孙美美,程然然,关晋宏,李国庆,杜盛. 黄土高原中西部人工针叶林浅层土壤有机碳积累及影响因素. 水土保持研究. 2020(03): 30-36 .
    21. 林雅超,高广磊,丁国栋,王学林,魏晓帅,王陇. 沙地樟子松人工林土壤理化性质与微生物生物量的动态变化. 生态学杂志. 2020(05): 1445-1454 .
    22. 白晓霞,艾海舰. 榆林沙地樟子松人工林土壤养分变化特征. 西部林业科学. 2020(03): 80-85 .
    23. 周磊,吴慧,王树力. 不同林分红皮云杉针叶养分含量及生态化学计量特征研究. 植物资源与环境学报. 2020(03): 19-25+33 .
    24. 白晓霞,鱼慧利,张静,艾海舰. 榆林沙地樟子松人工林可持续经营措施研究. 榆林学院学报. 2020(04): 46-49 .
    25. 魏晓帅,郭米山,高广磊,任悦,丁国栋,张英. 呼伦贝尔沙地樟子松根内真菌群落结构与功能群特征. 北京大学学报(自然科学版). 2020(04): 710-720 .
    26. 赵珮杉,郭米山,高广磊,丁国栋,张英. 科尔沁沙地樟子松根内真菌群落结构和功能群特征. 林业科学. 2020(09): 87-96 .
    27. 李佳文,赵珮杉,高广磊,任悦,丁国栋,张英,郭米山,魏晓帅. 陕西榆林沙区樟子松根内真菌群落结构和功能群特征. 菌物学报. 2020(10): 1854-1865 .
    28. 王家源,殷小琳,任悦,高广磊,丁国栋,张英,赵珮杉,郭米山. 毛乌素沙地樟子松外生菌根真菌多样性特征. 微生物学通报. 2020(11): 3856-3867 .
    29. 任悦,高广磊,丁国栋,张英,郭米山,曹红雨,苏敏. 沙地樟子松人工林叶片-枯落物-土壤氮磷化学计量特征. 应用生态学报. 2019(03): 743-750 .
    30. 曲杭峰,董希斌,佘光宇,杨兰,何山. 大兴安岭蒙古栎天然次生林不同改培模式对枯落物持水性的影响. 温带林业研究. 2019(01): 31-38 .
    31. 陈宇轩,丁国栋,高广磊,张英,赵洋,王陇. 呼伦贝尔沙地风沙土有机质和碳酸钙含量特征. 中国水土保持科学. 2019(04): 104-111 .
    32. 张宁宁,谭凯亮,亢福仁,刘普灵. 毛乌素沙地樟子松林恢复过程的土壤有机质含量变化特征. 水土保持研究. 2019(05): 95-99 .
    33. 阎雄飞,曹存宏,袁小琴,张增强,郭荣,陈巧燕,刘永华. 截冠处理对种子园樟子松壮龄母树结实的影响. 北京林业大学学报. 2019(08): 48-56 . 本站查看
    34. 曹红雨,高广磊,丁国栋,张英,赵媛媛,任悦,陈宇轩,郭米山. 呼伦贝尔沙区4种生境土壤真菌群落结构和多样性. 林业科学. 2019(08): 118-127 .
    35. 阎雄飞,刘永华,冯永宏,张增强,袁小琴,陈巧燕,郭荣,曹存宏,杨涛. 2种截冠处理对种子园樟子松幼龄母树生长的影响. 农学学报. 2019(10): 42-47 .
    36. 王树力,郝玉琢,周磊,吴慧. 水曲柳人工林树木叶片营养元素及其化学计量特征的季节动态. 北京林业大学学报. 2018(10): 24-33 . 本站查看

    Other cited types(22)

Catalog

    Article views (1447) PDF downloads (134) Cited by(58)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return