• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Liu Xiaoshuang, Li Caiwen, Zhao Yibing. Rapid detection of object-level invaded forest map patch based on high spatial resolution time series image[J]. Journal of Beijing Forestry University, 2022, 44(11): 60-69. DOI: 10.12171/j.1000-1522.20210261
Citation: Liu Xiaoshuang, Li Caiwen, Zhao Yibing. Rapid detection of object-level invaded forest map patch based on high spatial resolution time series image[J]. Journal of Beijing Forestry University, 2022, 44(11): 60-69. DOI: 10.12171/j.1000-1522.20210261

Rapid detection of object-level invaded forest map patch based on high spatial resolution time series image

More Information
  • Received Date: July 13, 2021
  • Revised Date: October 15, 2022
  • Available Online: October 20, 2022
  • Published Date: November 24, 2022
  •   Objective  In order to know the dynamic changes of forest resources, detect the infringement of forest land promptly, quickly and accurately, and solve the application bottlenecks of mainstream remote sensing change detection methods such as high requirements of consistency for data source and data time, too much manual interventions and complicated process, this research used a multi-scale object-level segmentation and change extraction method based on high spatial resolution time-series images to merge and simplify the two processes of classification and detection in mainstream methods.
      Method  Taking Baishui County in Shaanxi Province of northwestern China as the research area, using GF-1 and ZY-3 satellite data sources, the two remote sensing image bands were split and reorganized to form the time-series image, and the time-series image was segmented in a multi-scale object-oriented manner. The spectral change value of the segmentation result was statistically sampled to determine the critical point and establish the extraction threshold, and then the NDVI change value was used to optimize the result.
      Result  Taking the results of manual visual interpretation as a reference, the detection accuracy of this method was 86.2%. Among the classes that successfully detected invading forests, classes with good or almost consistent shapes accounted for 48.8%.
      Conclusion  This method can realize the rapid detection of invaded forest classes, and can meet the practical application needs of large-scale, multi-temporal, and mixed image data source forest resource monitoring in terms of detection efficiency, accuracy and adaptability.
  • [1]
    闫宏伟, 黄国胜, 曾伟生, 等. 全国森林资源一体化监测体系建设的思考[J]. 林业资源管理, 2011(6): 6−11. doi: 10.3969/j.issn.1002-6622.2011.06.002

    Yan H W, Huang G S, Zeng W S, et al. Considerations on construction of the integrated forest resource monitoring system in China[J]. Forest Resources Management, 2011(6): 6−11. doi: 10.3969/j.issn.1002-6622.2011.06.002
    [2]
    武红敢, 常原飞, 石木耀. 森林灾害的高分遥感辅助调查技术体系研究[J]. 林业资源管理, 2014(5): 43−50.

    Wu H G, Chang Y F, Shi M Y. Study on technical system of forest disaster investigation aided by high spatial resolution remote sensing technology[J]. Forest Resources Management, 2014(5): 43−50.
    [3]
    张煜星, 王雪军, 黄国胜, 等. 森林面积多阶遥感监测方法[J]. 林业科学, 2017, 53(7): 94−104. doi: 10.11707/j.1001-7488.20170710

    Zhang Y X, Wang X J, Huang G S, et al. Forest area remote sensing monitoring using the multi-level sampling interpretation approach[J]. Scientia Silvae Sinicae, 2017, 53(7): 94−104. doi: 10.11707/j.1001-7488.20170710
    [4]
    Hasanlou M, Seydi S T, Shah-Hosseini R. A sub-pixel multiple change detection approach for hyperspectral imagery[J]. Canadian Journal of Remote Sensing, 2018, 44(6): 601−615. doi: 10.1080/07038992.2019.1573137
    [5]
    Rokni K, Ahmad A, Solaimani K, et al. A new approach for surface water change detection: integration of pixel level image fusion and image classification techniques[J]. International Journal of Applied Earth Observations and Geoinformation, 2015, 34(1): 226−234.
    [6]
    马娜, 胡云锋, 庄大方, 等. 基于遥感和像元二分模型的内蒙古正蓝旗植被覆盖度格局和动态变化[J]. 地理科学, 2012, 32(2): 251−256.

    Ma N, Hu Y F, Zhuang D F, et al. Vegetation coverage distribution and its changes in Plan Blue Banner based on remote sensing data and dimidiate pixel model[J]. Scientia Geographica Sinica, 2012, 32(2): 251−256.
    [7]
    高敏, 王肖霞, 杨风暴, 等. 面向SAR图像像素级变化检测的去模糊化处理方法[J]. 激光与光电子学进展, 2020, 57(22): 277−283.

    Gao M, Wang X X, Yang F B, et al. Deblurring processing method for pixel level change detection of SAR images[J]. Laser & Optoelectronics Progress, 2020, 57(22): 277−283.
    [8]
    张学, 童小华, 刘妙龙. 一种扩展的土地覆盖转换像元变化检测方法[J]. 同济大学学报(自然科学版), 2009, 37(5): 685−689.

    Zhang X, Tong X H, Liu M L. An extended dectection method for land cover transformation[J]. Journal of Tongji University (Natural Science), 2009, 37(5): 685−689.
    [9]
    Ardila J P, Bijker W, Tolpekin VA, et al. Multitemporal change detection of urban trees using localized region-based active contours in VHR images[J]. Remote Sensing of Environment, 2012, 124: 413−426. doi: 10.1016/j.rse.2012.05.027
    [10]
    Santosh C, Krishnaiah C, Praveen G D. Land use/land cover and change detection in Chikodi Taluk, Belagavi District, Karnataka using object based image classification[J]. International Journal of Engineering and Advanced Technology (IJEAT), 2019, 9(1): 1522−1527. doi: 10.35940/ijeat.A1290.109119
    [11]
    赵敏, 赵银娣. 面向对象的多特征分级CVA遥感影像变化检测[J]. 遥感学报, 2018, 22(1): 119−131. doi: 10.11834/jrs.20186293

    Zhao M, Zhao Y D. Object-oriented and multi-feature hierarchical change detection based on CVA for high-resolution remote sensing imagery[J]. Journal of Remote Sensing, 2018, 22(1): 119−131. doi: 10.11834/jrs.20186293
    [12]
    李春干, 梁文海. 基于面向对象变化向量分析法的遥感影像森林变化检测[J]. 国土资源遥感, 2017, 29(3): 77−84.

    Li C G, Liang W H. Forest change detection using remote sensing image based on object-oriented change vector analysis[J]. Remote Sensing for Land & Resources, 2017, 29(3): 77−84.
    [13]
    Volpi M, Tuia D, Bovolo F, et al. Supervised change detection in VHR images using contextual information and support vector machines[J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 20(1): 77−85.
    [14]
    He P F, Zhao X W, Shi Y L, et al. Unsupervised change detection from remotely sensed images based on multi-scale visual saliency coarse-to-fine fusion[J/OL]. Remote Sensing, 2021, 13(4): 630[2021−12−20]. https://doi.org/10.3390/rs13040630.
    [15]
    庄会富, 邓喀中, 范洪冬. 纹理特征向量与最大化熵法相结合的SAR影像非监督变化检测[J]. 测绘学报, 2016, 45(3): 339−346. doi: 10.11947/j.AGCS.2016.20150022

    Zhuang H F, Deng K Z, Fan H D. SAR images unsupervised change detection based on combination of texture feature vector with maximum entropy principle[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(3): 339−346. doi: 10.11947/j.AGCS.2016.20150022
    [16]
    谢福鼎, 赫佳妮, 郑宏亮. 半监督离散势理论在遥感影像变化检测中的应用[J]. 测绘通报, 2019(8): 54−58.

    Xie F D, He J N, Zheng H L. Application of semi-supervised discrete potential theory in remote sensing image change detection[J]. Bulletin of Surveying and Mapping, 2019(8): 54−58.
    [17]
    张涵, 秦昆, 毕奇, 等. 注意力引导的三维卷积网络用于遥感场景变化检测[J]. 应用科学学报, 2021, 39(2): 272−280. doi: 10.3969/j.issn.0255-8297.2021.02.009

    Zhang H, Qin K, Bi Q, et al. Attention guided 3D Conv Net for aerial scene change detection[J]. Journal of Applied Sciences-Electronics and Information Engineering, 2021, 39(2): 272−280. doi: 10.3969/j.issn.0255-8297.2021.02.009
    [18]
    华夏, 王新晴, 王东, 等. 基于改进SSD的交通大场景多目标检测[J]. 光学学报, 2018, 38(12): 221−231.

    Hua X, Wang X Q, Wang D, et al. Multi-objective detection of traffic scenes based on improved SSD[J]. Acta Optica Sinica, 2018, 38(12): 221−231.
    [19]
    Mahmoudi F T, Hosseini S. Three-dimensional building change detection using object-based image analysis (case study: Tehran)[J]. Applied Geomatics, 2021(prepublish): 1−8.
    [20]
    Nagarajan, Khamaru, Witt D. UAS based 3D shoreline change detection of jupiter inlet lighthouse ONA after hurricane irma[J]. International Journal of Remote Sensing, 2019, 40(24): 9140−9158. doi: 10.1080/01431161.2019.1569792
    [21]
    彭代锋, 张永军, 熊小东. 结合LiDAR点云和航空影像的建筑物三维变化检测[J]. 武汉大学学报(信息科学版), 2015, 40(4): 462−468.

    Peng D F, Zhang Y J, Xiong X D. 3D building change detection by combining LiDAR point clouds and aerial imagery[J]. Geomatics and Information Science of Wuhan University, 2015, 40(4): 462−468.
    [22]
    李畅, 王欢, 李奇, 等. GIS数据辅助灾区影像平面扫描密集匹配及其三维变化检测[J]. 武汉大学学报(信息科学版), 2014, 39(3): 295−299.

    Li C, Wang H, Li Q, et al. Multi-view plane sweep dense image matching and 3D change detection of geological disasters from remotely sensed stereo pairs with GIS-aided data[J]. Geomatics and Information Science of Wuhan University, 2014, 39(3): 295−299.
    [23]
    Islam K, Jashimuddin M, Nath B, et al. Land use classification and change detection by using multi-temporal remotely sensed imagery: the case of Chunati wildlife sanctuary, Bangladesh[J]. The Egyptian Journal of Remote Sensing and Space Sciences, 2018, 21(1): 37−47. doi: 10.1016/j.ejrs.2016.12.005
    [24]
    Du P J, Liu S C, Xia J S. Information fusion techniques for change detection from multi-temporal remote sensing images[J]. Information Fusion, 2013, 14(1): 19−27. doi: 10.1016/j.inffus.2012.05.003
    [25]
    黄亮. 多时相遥感影像变化检测技术研究[J]. 测绘学报, 2020, 49(6): 801.

    Huang L. Research on change detection technology in multi-temporal remote sensing images[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 801.
    [26]
    杜培军, 王欣, 蒙亚平, 等. 面向地理国情监测的变化检测与地表覆盖信息更新方法[J]. 地球信息科学学报, 2020, 22(4): 857−866. doi: 10.12082/dqxxkx.2020.190747

    Du P J, Wang X, Meng Y P, et al. Effective change detection approaches for geographic national condition monitoring and land cover map updating[J]. Journal of Geo-information Science, 2020, 22(4): 857−866. doi: 10.12082/dqxxkx.2020.190747
    [27]
    赵金奇. 多时相极化SAR影像变化检测方法研究[J]. 测绘学报, 2019, 48(4): 536. doi: 10.11947/j.AGCS.2019.20180281

    Zhao J Q. Research on change detection method in multi-temporal polarimetric SAR imagery[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(4): 536. doi: 10.11947/j.AGCS.2019.20180281
    [28]
    Philipp G, Michael F, Alishir K, et al. Object based change detection of Central Asian Tugai vegetation with very high spatial resolution satellite imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2014, 31(5): 110−121.
    [29]
    张春霖, 吴蓉蓉, 李国君, 等. 面向对象的高空间分辨率遥感影像箱线图变化检测方法[J]. 国土资源遥感, 2020, 32(2): 19−25.

    Zhang C L, Wu R R, Li G J, et al. High resolution remote sensing image object change detection based on box- plot method[J]. Remote Sensing for Land & Resources, 2020, 32(2): 19−25.
    [30]
    魏晶昱, 毛学刚, 方本煜, 等. 基于Landsat 8 OL1辅助的亚米级遥感影像树种识别[J]. 北京林业大学学报, 2016, 38(11): 23−33.

    Wei J Y, Mao X G, Fang B Y, et al. Submeter remote sensing image recognition of trees based on Landsat 8 OLI support[J]. Journal of Beijing Forestry University, 2016, 38(11): 23−33.
    [31]
    陈鹏, 吕鹏远, 宋蜜, 等. 高空间分辨率遥感影像下的违法用地变化检测[J]. 测绘通报, 2018(4): 108−111.

    Chen P, Lü P Y, Song M, et al. Change detection using high spatial resolution remote sensing images for illegal land use extraction[J]. Bulletin of Surveying and Mapping, 2018(4): 108−111.
    [32]
    祝锦霞, 王珂. 面向对象的高分辨率影像变化检测方法研究[J]. 农业机械学报, 2013, 44(4): 184−189. doi: 10.6041/j.issn.1000-1298.2013.04.032

    Zhu J X, Wang K. Object-oriented change detection method using very high spatial resolution imagery[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(4): 184−189. doi: 10.6041/j.issn.1000-1298.2013.04.032
    [33]
    Zhou H P, Jiang H, Huang Q H. Landscape and water auality change detection in urban wetland: a post-classification comparison method with IKONOS data[J]. Procedia Environmental Sciences, 2011, 10: 1726−1731. doi: 10.1016/j.proenv.2011.09.271
    [34]
    庞博, 王浩, 宁晓刚. 基于稳定像元的决策树分类后比较法在林地变化检测中的应用[J]. 生态学杂志, 2018, 37(9): 2849−2855.

    Pang B, Wang H, Ning X G. Application of decision tree post-classification comparison based on stable pixels in forest-land change detection[J]. Chinese Journal of Ecology, 2018, 37(9): 2849−2855.
    [35]
    吴田军, 胡晓东, 夏列钢, 等. 基于对象级分类的土地覆盖动态变化及趋势分析[J]. 遥感技术与应用, 2014, 29(4): 600−606.

    Wu T J, Hu X D, Xia L G, et al. Analysis on dynamic change and tendency of land-cover based on object-oriented classification[J]. Remote Sensing Technology and Application, 2014, 29(4): 600−606.
    [36]
    王崇阳, 田昕. 基于GF-1 PMS数据的森林覆盖变化检测[J]. 遥感技术与应用, 2021, 36(1): 208−216.

    Wang C Y, Tian X. Forest cover change detection based on GF-1 PMS data[J]. Remote Sensing Technology and Application, 2021, 36(1): 208−216.
    [37]
    史忠奎, 李培军, 罗伦, 等. 基于形态学属性剖面和单类随机森林分类的道路路域新增建筑物提取方法[J]. 北京大学学报(自然科学版), 2018, 54(1): 105−114.

    Shi Z K, Li P J, Luo L, et al. A method for extraction of newly-built buildings in road region using morphological attribute profiles and one-class random forest[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2018, 54(1): 105−114.
    [38]
    陈雪, 马建文, 戴芹. 基于贝叶斯网络分类的遥感影像变化检测[J]. 遥感学报, 2005, 9(6): 667−672. doi: 10.11834/jrs.20050698

    Chen X, Ma J W, Dai Q. Remote sensing change detection based on bayesian networks classifications[J]. Journal of Remote Sensing, 2005, 9(6): 667−672. doi: 10.11834/jrs.20050698
    [39]
    刘巨峰, 刘勇, 蒋月, 等. 集成基于对象影像分析与贝叶斯软融合的土地覆被变化检测[J]. 兰州大学学报(自然科学版), 2020, 56(2): 196−204.

    Liu J F, Liu Y, Jiang Y, et al. Land cover change detection based on the object-based image analysis and Bayesian soft fusion method[J]. Journal of Lanzhou University (Natural Sciences), 2020, 56(2): 196−204.
    [40]
    连喜红, 祁元, 王宏伟, 等. 基于面向对象的青海湖环湖区居民地信息自动化提取[J]. 遥感技术与应用, 2020, 35(4): 775−785.

    Lian X H, Qi Y, Wang H W, et al. Automatic extraction of residential information based on object-oriented in the areas around the Qinghai Lake[J]. Remote Sensing Technology and Application, 2020, 35(4): 775−785.
    [41]
    杨超, 邬国锋, 李清泉, 等. 植被遥感分类方法研究进展[J]. 地理与地理信息科学, 2018, 34(4): 24−32. doi: 10.3969/j.issn.1672-0504.2018.04.005

    Yang C, Wu G F, Li Q Q, et al. Research progress on remote sensing classification of vegetation[J]. Geography and Geo-Information Science, 2018, 34(4): 24−32. doi: 10.3969/j.issn.1672-0504.2018.04.005
    [42]
    张丽云, 赵天忠, 夏朝宗, 等. 遥感变化检测技术在林业中的应用[J]. 世界林业研究, 2016, 29(2): 44−48.

    Zhang L Y, Zhao T Z, Xia C Z, et al. Application of change detection technologies of remote sensing to forestry[J]. World Forestry Research, 2016, 29(2): 44−48.
    [43]
    李慧, 唐韵玮, 刘庆杰, 等. 一种改进的基于最小生成树的遥感影像多尺度分割方法[J]. 测绘学报, 2015, 44(7): 791−796. doi: 10.11947/j.AGCS.2015.20140060

    Li H, Tang Y W, Liu Q J, et al. An improved algorithm based on minimum spanning tree for multi-scale segmentation of remote sensing imagery[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(7): 791−796. doi: 10.11947/j.AGCS.2015.20140060
    [44]
    经波, 宁文怡. 基于阈值分割与决策树的SAR影像水体信息提取[J]. 地理空间信息, 2021, 19(3): 46−49. doi: 10.3969/j.issn.1672-4623.2021.03.013

    Jing B, Ning W Y. Water body information extraction of SAR images based on threshold segmentation and decision tree[J]. Geospatial Information, 2021, 19(3): 46−49. doi: 10.3969/j.issn.1672-4623.2021.03.013
  • Cited by

    Periodical cited type(19)

    1. 陈逊龙,孙一铭,郭仕杰,段煜柯,唐桉琦,叶章熙,张厚喜. 应用无人机可见光影像和面向对象的随机森林模型对城市树种分类. 东北林业大学学报. 2024(03): 48-59 .
    2. 王柳,肖艳琴,陈秋月,周增志,阿开贤,赵明,马燕. 茶园间种桉树对茶叶品质的影响研究. 茶叶通讯. 2024(01): 37-47 .
    3. 付永浩,李伟坡,张爱军. 面向对象和集成学习算法在森林蓄积量遥感估测中的应用. 东北林业大学学报. 2024(06): 64-69+78 .
    4. 孙妙琦,岳彩荣,段云芳,罗洪斌,余琼芬,罗广飞,徐天蜀. 光学协同合成孔径雷达数据的森林类型分类研究. 森林工程. 2024(04): 115-126 .
    5. 周湘山,杨武年,罗可,朴虹奕,周涛,周杰,唐晓鹿. 基于机器学习算法和空间分辨率调整的无人机高光谱树种分类研究. 遥感技术与应用. 2024(04): 880-896 .
    6. 谢天义,潘洁,孙玉琳,郑光. 应用多维遥感信息协同的森林树种分类. 东北林业大学学报. 2023(03): 73-78 .
    7. 董世英,吴田军,焦思佳. 地块级航空高光谱遥感土地覆盖制图及其精度评估. 遥感技术与应用. 2023(02): 353-361 .
    8. 帅爽,张志,张天,张焜,肖成志,陈安. 特征优化结合随机森林算法的干旱区植被高光谱遥感分类方法. 农业工程学报. 2023(09): 287-293 .
    9. 胡振华,张乔艳. 基于ASD与Hyperion高光谱数据的主要针叶树种分类研究. 林业调查规划. 2023(03): 1-6+12 .
    10. 邹泽林,程霞,刘紫薇,黄鑫. Stacking集成学习模型在森林蓄积量估测中的应用. 湖北林业科技. 2023(04): 52-57 .
    11. 王钰,董亚坤,何紫玲,王鹏,赵昊,曾维军. 基于Sentinel-2A影像的复合轮作种植结构提取. 南方农业学报. 2023(08): 2490-2498 .
    12. 温昱婷,赵静,兰玉彬,杨东建,潘方江,曹佃龙. 基于无人机可见光影像和面向对象的树种分类研究. 西北林学院学报. 2022(01): 74-80+144 .
    13. 郑迪,沈国春,王舶鉴,戴冠华,蔺菲,胡家瑞,叶吉,房帅,郝占庆,王绪高,原作强. 基于无人机高光谱影像和深度学习算法的长白山针阔混交林优势树种分类. 生态学杂志. 2022(05): 1024-1032 .
    14. 刘曼,张静. 基于多特征融合的白鹿原地区土地利用分类研究. 农业与技术. 2022(20): 84-90 .
    15. 顾云志,曹月娥,赵珮珮. 干旱区水浇地提取研究. 江苏农业科学. 2021(10): 176-182 .
    16. 钟浩,刘浩然,林文树. 激光雷达和高光谱遥感技术在树种识别中的应用. 世界林业研究. 2021(04): 41-45 .
    17. 唐锡奎. 桉树套种湿地松的生长问题探讨——以广西国有钦廉林场为例. 绿色科技. 2021(13): 117-119 .
    18. 王娟,陈永富,陈巧,李华玉,张超. 基于无人机遥感的森林参数信息提取研究进展. 林业资源管理. 2020(05): 144-151 .
    19. 邢璐琪,张桂莲,张浪,易扬,林勇,江子尧,郑谐维. 高光谱技术在植被特征监测中的应用. 园林. 2020(11): 8-14 .

    Other cited types(23)

Catalog

    Article views (682) PDF downloads (78) Cited by(42)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return