Citation: | He Xiao, Li Haikui, Zhang Yiru, Huang Jinjin. Growth model of carbon storage and driving force of carbon sequestration capacity of natural secondary forests[J]. Journal of Beijing Forestry University, 2023, 45(1): 1-10. DOI: 10.12171/j.1000-1522.20210265 |
[1] |
Sutherland I J, Gergel S E, Bennett E M. Seeing the forest for its multiple ecosystem services: indicators for cultural services in heterogeneous forests[J]. Ecological Indicators, 2016, 71: 123−133. doi: 10.1016/j.ecolind.2016.06.037
|
[2] |
Kolo H, Kindu M, Knoke T. Optimizing forest management for timber production, carbon sequestration and groundwater recharge[J]. Ecosystem Services, 2020, 44: 101147. doi: 10.1016/j.ecoser.2020.101147
|
[3] |
魏曦, 梁文俊, 毕华兴, 等. 晋西黄土区油松林分结构与水土保持功能的多因子复合关系[J]. 林业科学研究, 2020, 33(3): 39−47. doi: 10.13275/j.cnki.lykxyj.2020.03.005
Wei X, Liang W J, Bi H X, et al. Multifactor relationships between stand structure and soil and water conservation function of Pinus tabulaeformis plantations in the Loess Plateau of Western Shanxi[J]. Forest Research, 2020, 33(3): 39−47. doi: 10.13275/j.cnki.lykxyj.2020.03.005
|
[4] |
龚诗涵, 肖洋, 郑华, 等. 中国生态系统水源涵养空间特征及其影响因素[J]. 生态学报, 2017, 37(7): 2455−2462.
Gong S H, Xiao Y, Zheng H, et al. Spatial patterns of ecosystem water conservation in China and its impact factors analysis[J]. Acta Ecologica Sinica, 2017, 37(7): 2455−2462.
|
[5] |
Parker C, Mitchell A, Trivedi M, et al. The little REDD book: a guide to governmental and non-governmental proposals for reducing emissions from deforestation and degradation[M]. Oxford: Global Canopy Programme, 2008.
|
[6] |
牟长城, 杨明, 倪志英, 等. 不同恢复途径对大兴安岭森林沼泽群落结构与生产力的影响[J]. 东北林业大学学报, 2007, 35(5): 27−31. doi: 10.3969/j.issn.1000-5382.2007.05.009
Mu C C, Yang M, Ni Z Y, et al. Effects of different restoration approaches on structure and productivity of forest swamp communities in Daxing’an Mountain[J]. Journal of Northeast Forestry University, 2007, 35(5): 27−31. doi: 10.3969/j.issn.1000-5382.2007.05.009
|
[7] |
United Nations Environment Programme. The state of the world’s forests: forests, biodiversity and people[R/OL]. Rome: FAO, 2020 [2021−06−22]. http://resp.llas.ac.cn/C666/handle/2XK7JSWQ/270906.
|
[8] |
马姜明, 刘世荣, 史作民, 等. 退化森林生态系统恢复评价研究综述[J]. 生态学报, 2010, 30(12): 3297−3303.
Ma J M, Liu S R, Shi Z M, et al. A review on restoration evaluation studies of degraded forest ecosystem[J]. Acta Ecologica Sinica, 2010, 30(12): 3297−3303.
|
[9] |
Wu B, Meng X, Ye Q, et al. Method of estimating degraded forest area: cases from dominant tree species from Guangdong and Tibet in China[J]. Forests, 2020, 11(9): 930. doi: 10.3390/f11090930
|
[10] |
张小全, 侯振宏. 森林退化、森林退化、森林管理、植被破坏和恢复的定义与碳计量问题[J]. 林业科学, 2003, 39(4): 140−144. doi: 10.3321/j.issn:1001-7488.2003.04.023
Zhang X Q, Hou Z H. Definitions of forest degradation, forest management, devegetation and revegetation in relations to carbon accounting[J]. Scientia Silvae Sinicae, 2003, 39(4): 140−144. doi: 10.3321/j.issn:1001-7488.2003.04.023
|
[11] |
纪小芳, 鲁建兵, 杨军, 等. 凤阳山针阔混交林碳通量变化特征及其影响因子[J]. 东北林业大学学报, 2019, 47(3): 49−55. doi: 10.3969/j.issn.1000-5382.2019.03.010
Ji X F, Lu J B, Yang J, et al. Carbon flux variation characteristics and its influencing factors in coniferous and broadleaved mixed forest in Fengyang Mountain[J]. Journal of Northeast Forestry University, 2019, 47(3): 49−55. doi: 10.3969/j.issn.1000-5382.2019.03.010
|
[12] |
魏艳艳. 2009-2018年崇明岛主要土地利用类型植被碳储量变化及其驱动力分析[D]. 上海: 上海师范大学, 2020.
Wei Y Y. Analysis on the change and driving force of carbon storage of main land use types in Chongming Island from 2009 to 2018[D]. Shanghai: Shanghai Normal University, 2020.
|
[13] |
Gruba P, Socha J. Exploring the effects of dominant forest tree species, soil texture, altitude, and pH (H2O) on soil carbon stocks using generalized additive models[J]. Forest Ecology and Management, 2019, 447: 105−114. doi: 10.1016/j.foreco.2019.05.061
|
[14] |
柏广新, 牟长城. 抚育对长白山幼龄次生林群落结构与动态的影响[J]. 东北林业大学学报, 2012, 40(10): 48−55. doi: 10.3969/j.issn.1000-5382.2012.10.012
Bai G X, Mu C C. Effect of thinning on the structure and succession of secondary forest communities in Changbai Mountains of China[J]. Journal of Northeast Forestry University, 2012, 40(10): 48−55. doi: 10.3969/j.issn.1000-5382.2012.10.012
|
[15] |
朱教君, 李凤芹. 森林退化/衰退的研究与实践[J]. 应用生态学报, 2007, 18(7): 1601−1609. doi: 10.3321/j.issn:1001-9332.2007.07.032
Zhu J J, Li F Q. Forest degradation/decline research and practice[J]. Chinese Journal of Applied Ecology, 2007, 18(7): 1601−1609. doi: 10.3321/j.issn:1001-9332.2007.07.032
|
[16] |
Richards F J. A flexible growth function for empirical use[J]. Journal of Experimental Botany, 1959, 10: 290−300. doi: 10.1093/jxb/10.2.290
|
[17] |
李海奎, 法蕾. 基于分级的全国主要树种树高−胸径曲线模型[J]. 林业科学, 2011, 47(10): 83−90. doi: 10.11707/j.1001-7488.20111013
Li H K, Fa L. Height-diameter model for major tree species in China using the classified height method[J]. Scientia Silvae Sinicae, 2011, 47(10): 83−90. doi: 10.11707/j.1001-7488.20111013
|
[18] |
Li H X, Zhao P X. Improving the accuracy of tree-level aboveground biomass equations with height classification at a large regional scale[J]. Forest Ecology and Management, 2013, 289: 153−163. doi: 10.1016/j.foreco.2012.10.002
|
[19] |
唐守正, 郎奎建, 李海奎. 统计和生物数学模型计算(ForStat教程)[M]. 北京: 科学出版社, 2009.
Tang S Z, Lang K J, Li H K. Statistics and biomathematical models (ForStat textbook)[M]. Beijing: Science Press, 2009.
|
[20] |
刘晓彤, 李海奎, 曹磊, 等. 广东省森林土壤养分异质性析因[J]. 北京林业大学学报, 2021, 43(2): 90−101.
Liu X T, Li H K, Cao L, et al. Analysis on the heterogeneity of forest soil nutrients in Guangdong Province of southern China[J]. Journal of Beijing Forestry University, 2021, 43(2): 90−101.
|
[21] |
何潇, 赵嘉诚, 曹磊, 等. 广东省枫香单木干材生物量生长模型的研建[J]. 西北林学院学报, 2018, 33(6): 236−242. doi: 10.3969/j.issn.1001-7461.2018.06.37
He X, Zhao J C, Cao L, et al. Construction of individual bole biomass growth models for Liquidambar formosana in Guangdong Province[J]. Journal of Northwest Forestry University, 2018, 33(6): 236−242. doi: 10.3969/j.issn.1001-7461.2018.06.37
|
[22] |
雷相东, 符利勇, 李海奎, 等. 基于林分潜在生长量的立地质量评价方法与应用[J]. 林业科学, 2018, 54(12): 116−126. doi: 10.11707/j.1001-7488.20181213
Lei X D, Fu L Y, Li H K, et al. Methodology and applications of site quality assessment based on potential mean annual increment[J]. Scientia Silvae Sinicae, 2018, 54(12): 116−126. doi: 10.11707/j.1001-7488.20181213
|
[23] |
何潇, 曹磊, 徐胜林, 等. 内蒙古大兴安岭林区不同恢复阶段森林生物量特征与影响因素[J]. 北京林业大学学报, 2019, 41(9): 50−58. doi: 10.13332/j.1000-1522.20190030
He X, Cao L, Xu S L, et al. Forest biomass characteristics and influencing factors in different restoration stages in the Daxing’anling forest region of Inner Mongolia, northern China[J]. Journal of Beijing Forestry University, 2019, 41(9): 50−58. doi: 10.13332/j.1000-1522.20190030
|
[24] |
李江, 陈宏伟, 冯弦. 云南热区几种阔叶人工林碳储量的研究[J]. 广西植物, 2003, 23(4): 294−298. doi: 10.3969/j.issn.1000-3142.2003.04.002
Li J, Chen H W, Feng X. Carbon stock and rate of carbon sequestration assessment of hardwood plantations in tropical Yunnan, China[J]. Guihaia, 2003, 23(4): 294−298. doi: 10.3969/j.issn.1000-3142.2003.04.002
|
[25] |
郑立生, 李海奎. 模型形式和地域对落叶松地上生物量预测的影响[J]. 林业资源管理, 2013, 2: 83−88. doi: 10.3969/j.issn.1002-6622.2013.03.019
Zheng L S, Li H K. Effects of model form and region on prediction for aboveground biomass of Larix[J]. Forest Resources Management, 2013, 2: 83−88. doi: 10.3969/j.issn.1002-6622.2013.03.019
|
[26] |
李娜. 川西亚高山森林植被生物量及碳储量遥感估算研究[D]. 雅安: 四川农业大学, 2008.
Li N. Application of remote sensing model in biomass estimation and carbon storage of the subalpine coniferous forest in western Sichuan Province[D]. Ya’an: Sichuan Agricultural University, 2008.
|
[27] |
Latta G, Temesgen H, Adams D, et al. Analysis of potential impacts of climate change on forests of the United States Pacific Northwest[J]. Forest Ecology and Management, 2010, 259(4): 720−729. doi: 10.1016/j.foreco.2009.09.003
|
[28] |
Khan D, Muneer M A, Nisa Z U, et al. Effect of climatic factors on stem biomass and carbon stock of Larix gmelinii and Betula platyphylla in Daxing’anling Mountain of Inner Mongolia, China[J/OL]. Advances in Meteorology, 2019: 5692574 [2021−07−14]. http://doi.org/10.1155/2019/5692574.
|
[29] |
Aguirre A, Río M D, Ruiz-Peinado R, et al. Stand-level biomass models for predicting C stock for the main Spanish pine species[J]. Forest Ecosystems, 2021, 8: 29. doi: 10.1186/s40663-021-00308-w
|
[30] |
Baraloto C, Rabaud S, Molto Q, et al. Disentangling stand and environmental correlates of aboveground biomass in Amazonian forests[J]. Global Change Biology, 2011, 17(8): 2677−2688. doi: 10.1111/j.1365-2486.2011.02432.x
|
[31] |
Ali A, Sanaei A, Li M S, et al. Impacts of climatic and edaphic factors on the diversity, structure and biomass of species-poor and structurally-complex forests[J]. Science of the Total Environment, 2020, 706: 135719. doi: 10.1016/j.scitotenv.2019.135719
|
[32] |
Santiago-Garcia R J, Finegan B, Bosque-Perez N A. Soil is the main predictor of secondary rain forest estimated aboveground biomass across a Neotropical landscape[J]. Biotropica, 2019, 51: 10−17. doi: 10.1111/btp.12621
|
[33] |
Bennett A C, Penman T D, Arndt S K, et al. Climate more important than soils for predicting forest biomass at the continental scale[J]. Ecography, 2020, 43(11): 1692−1705. doi: 10.1111/ecog.05180
|
[34] |
Bengough A G. Root growth and function in relation to soil structure, composition, and strength[M]//de Kroon H, Visser E J W. Root ecology: ccological studies (analysis and synthesis). Berlin: Springer, 2003: 168.
|
[35] |
Lindner M, Fitzgerald J B, Zimmermann N E, et al. Climate change and European forests: what do we know, what are the uncertainties, and what are the implications for forest management?[J]. Journal of Environmental Management, 2014, 146: 69−83.
|
1. |
孙丽,张颖,李文彬,包红光,孙迎坤. 青岛市3种常绿灌木滞尘量与叶微观特征及光合作用等的相关性分析. 西北林学院学报. 2024(04): 232-241 .
![]() | |
2. |
裴云霞,洪慧,包美玲,邓俊,陈岷轩,张强. 农业环境损害鉴定中受体植物的损害因素判别及损害程度分析. 中国司法鉴定. 2024(04): 40-48 .
![]() | |
3. |
贺丹,李朝梅,华超,李思洁,雷雅凯,张曼. 郑州市10种园林植物叶片滞尘与富集重金属的能力. 西北林学院学报. 2023(01): 230-237 .
![]() | |
4. |
张碧媛,李智琦,阮琳,潘勇军,陈国财,代色平,冯娴慧. 2种常用的植物滞纳能力测定方法对比研究. 林业与环境科学. 2023(01): 112-119 .
![]() | |
5. |
罗建平,王宁,宋菲菲,魏汉博,原白玉,唐钰鑫. 大庆市6种绿化树种对SO_2、NO_2的消减及滞尘效应. 生态学报. 2023(11): 4561-4569 .
![]() | |
6. |
张翠,马瑞,谭立佳,杜婉倩,刘涵科. 兰州市10种常用园林绿化树种叶表面微结构对其滞尘量的影响. 甘肃农业大学学报. 2023(04): 192-200+211 .
![]() | |
7. |
廖慧敏,师凤起,李明,朱逸龙. 长沙市典型园林植物叶片的滞尘等级与模式识别研究. 生态环境学报. 2022(01): 110-116 .
![]() | |
8. |
贺丹,汪安印,李紫萱,王翼飞,李朝梅,雷雅凯,李永华,董娜琳. 郑州市常绿树种滞尘能力与叶片生理结构的响应. 福建农业学报. 2022(02): 203-212 .
![]() | |
9. |
李晓璐,叶锦东,章剑,周毅烈,袁楚阳,于慧,张天然,黄芳,张贵豪,邵锋. 乔木滞留大气颗粒物能力及其与叶表面微结构关系. 中国城市林业. 2022(03): 22-28+120 .
![]() | |
10. |
王军梦,汪安印,王翼飞,贺丹,李永华,董娜琳. 不同污染程度下树种滞尘能力与叶表微形态关系研究. 林业调查规划. 2022(05): 16-21+37 .
![]() | |
11. |
孟畅,彭洋,赵杨,王秀荣,肖枫. 2种叶型膏桐幼苗的形态结构和光合特性. 林业科学. 2022(12): 32-41 .
![]() | |
12. |
岳晨,李广德,席本野,曹治国. 叶片大气颗粒物滞纳能力评估方法的定量对比. 环境科学. 2021(01): 114-126 .
![]() | |
13. |
徐立人,刘宠,张军,柳俊明,王立成,李清泉,杨敏生,李彦慧. 单叶刺槐半同胞子代叶片的滞尘能力及叶表SEM特征分析. 西部林业科学. 2021(01): 124-131 .
![]() | |
14. |
杨克彤,陈国鹏,李广,汤东,张凯. 兰州市常见阔叶树种对大气颗粒物吸滞能力的评估. 东北林业大学学报. 2021(05): 84-89 .
![]() | |
15. |
刘宇,张楠,王晓立,周力行,韩浩章. 冬季苏北8种常绿乔木吸滞颗粒物能力与叶表微结构关系. 西北林学院学报. 2021(03): 80-87+127 .
![]() | |
16. |
王薇,张蕾. 基于CiteSpace的城市环境中细颗粒物研究进展的可视化分析. 生态环境学报. 2021(06): 1321-1332 .
![]() | |
17. |
谢长坤,郭健康,梁安泽,汪静,姜睿原,车生泉. 园林植物表面对大气颗粒物削减过程研究进展. 世界林业研究. 2021(05): 38-43 .
![]() | |
18. |
吴桂香,徐成林,刘杰,杨燕飞. 城市道路植物叶面滞尘的微观效应研究. 昆明理工大学学报(自然科学版). 2021(06): 109-115 .
![]() | |
19. |
陈胜楠,陈左司南,张志强. 北京山区油松和元宝槭冠层气孔导度特征及其环境响应. 植物生态学报. 2021(12): 1329-1340 .
![]() | |
20. |
王琴,冯晶红,黄奕,王鹏程,谢梦婷,万好,苏泽琳,王仁鹏,王征洋,余刘思. 武汉市15种阔叶乔木滞尘能力与叶表微形态特征. 生态学报. 2020(01): 213-222 .
![]() | |
21. |
童凌云,何婉璎,裘璐函,陈健,刘美华. 基于层次分析法的杭州市8种园林植物林分环境质量评价. 浙江林业科技. 2020(01): 56-62 .
![]() | |
22. |
苏维,刘苑秋,赖胜男,古新仁,刘青,龚鹏. 南昌市8种乔木叶片性状对叶表滞留颗粒物的影响. 西北林学院学报. 2020(04): 61-67 .
![]() | |
23. |
刘开琳,李学敏,万翔,刘淑娟,李菁菁,徐先英,刘虎俊. 民勤植物园3种灌木的叶面微结构及其滞尘能力研究. 中国农学通报. 2020(26): 62-68 .
![]() | |
24. |
孙应都,陈奇伯,李艳梅,杨思莹. 昆明市6个绿化树种叶表微结构与滞尘能力的关系研究. 西南林业大学学报(自然科学). 2019(03): 78-85 .
![]() | |
25. |
张俊叶,邹明,刘晓东,王林,朱晨晨,俞元春. 南京城市森林植物叶面颗粒物的含量特征. 环境污染与防治. 2019(07): 837-843 .
![]() | |
26. |
林星宇,李海梅,李彦华,姜月梅. 八种乔木滞尘效益及其与叶表面特征关系. 北方园艺. 2019(17): 94-101 .
![]() | |
27. |
林星宇,李海梅,李彦华,刘志科. 灌木滞尘能力与重金属含量间的关系. 江苏农业科学. 2019(15): 180-183 .
![]() | |
28. |
姜霞,侯贻菊,刘延惠,舒德远,崔迎春,李成龙,杨冰,丁访军. 3种木樨科树种叶片滞尘效应动态变化及其与叶片特征的关系. 江苏农业科学. 2019(16): 150-154 .
![]() | |
29. |
林星宇,李彦华,李海梅,李士美. 乔木对不同粒径颗粒物吸滞作用研究. 福建农业学报. 2019(08): 912-919 .
![]() | |
30. |
阿丽亚·拜都热拉,甄敬,潘存德,张中远,胡梦玲,喀哈尔·扎依木. 乌鲁木齐市河滩快速路林带内颗粒物浓度变化特征. 新疆农业大学学报. 2019(05): 378-384 .
![]() | |
31. |
林星宇,李海梅,李彦华,郑茗月. 5种灌木的滞尘效益研究. 现代农业科技. 2018(02): 150-151+155 .
![]() | |
32. |
赵文君,侯贻菊,舒德远,刘延惠,崔迎春,丁访军. 贵阳市木兰科树种叶片滞尘效应及影响因素. 贵州林业科技. 2018(02): 19-24 .
![]() | |
33. |
李艳梅,陈奇伯,王邵军,孙应都,杨淏舟,杨思莹. 昆明市主要绿化树种叶片滞尘能力的叶表微形态学解释. 林业科学. 2018(05): 18-29 .
![]() | |
34. |
朱济友,于强,刘亚培,覃国铭,李金航,徐程扬,何韦均. 植物功能性状及其叶经济谱对城市热环境的响应. 北京林业大学学报. 2018(09): 72-81 .
![]() |