Citation: | Zhang Shaojun, Zhong Xiang, Ma Erni, Liu Ru. Dimensional stability of fast-growing Populus cathayana modified with the compound of alkali lignin and hyperbranched polyacrylate emulsion[J]. Journal of Beijing Forestry University, 2021, 43(11): 118-127. DOI: 10.12171/j.1000-1522.20210268 |
[1] |
张英豪, 奉国强. 中国木材供需现状与趋势[J]. 林业经济, 2015, 37(2):68−72.
Zhang Y H, Feng G Q. China’s timber supply and demand: status and trend[J]. Forestry Economics, 2015, 37(2): 68−72.
|
[2] |
Trinh H M, Militz H, Mai C. Modification of beech veneers with N-methylol melamine compounds for the production of plywood: natural weathering[J]. European Journal of Wood and Wood Products, 2012, 70(1−3): 279−286. doi: 10.1007/s00107-011-0554-y
|
[3] |
郎倩. 复合改性剂对速生杨木和椿木改性效应及机理研究[D]. 北京: 北京林业大学, 2016.
Lang Q. Research on properties and mechanism of fast-growing poplar and ailanthus treated by multi-functional modifier[D]. Beijing: Beijing Forestry University, 2016.
|
[4] |
詹先旭, 张伟, 谢序勤, 等. 速生木材的增强改性研究进展[J]. 家具, 2019, 40(1):13−21.
Zhan X X, Zhang W, Xie X Q, et al. Research progress on enhanced modification of wood from fast-growing trees[J]. Furniture, 2019, 40(1): 13−21.
|
[5] |
Cannatelli M D, Ragauskas A J. Laccase-mediated synthesis of lignin-core hyperbranched copolymers[J]. Applied Microbiology and Biotechnology, 2017, 101(16): 6343−6353. doi: 10.1007/s00253-017-8325-2
|
[6] |
Li H, Sivasankarapillai G, McDonald A G. Highly biobased thermally-stimulated shape memory copolymeric elastomers derived from lignin and glycerol-adipic acid based hyperbranched prepolymer[J]. Industrial Crops and Products, 2015, 67: 143−154. doi: 10.1016/j.indcrop.2015.01.031
|
[7] |
Liu M, Yi Q R, Li J Y, et al. Synergistic effect of montmorillonite/lignin on improvement of water resistance and dimensional stability of Populus cathayana[J]. Industrial Crops and Products, 2019, 141: 111747. doi: 10.1016/j.indcrop.2019.111747
|
[8] |
刘敏. 碱木质素/纳米蒙脱土协同提升速生杨尺寸稳定性研究[D]. 北京: 北京林业大学, 2019.
Liu M. Synergistic effect of alkali lignin and nano-montmorillonite on improvement of dimensional stability of Populus cathayana[D]. Beijing: Beijing Forestry University, 2019.
|
[9] |
周海珍. 碱木质素多尺度提升速生杨木尺寸稳定性研究[D]. 北京: 北京林业大学, 2018.
Zhou H Z. Multiscale modifications on dimensional stability of Populus cathayana by alkali lignin[D]. Beijing: Beijing Forestry University, 2018.
|
[10] |
Gurunathan T, Mohanty S, Nayak S K. Hyperbranched polymers for coating applications: a review[J]. Polymer-Plastics Technology and Engineering, 2016, 55(1): 92−117. doi: 10.1080/03602559.2015.1021482
|
[11] |
谭惠民. 超支化聚合物[M]. 北京: 化学工业出版社, 2005.
Tan H M. Hyperbranched polymer[M]. Beijing: Chemical Industry Press, 2005.
|
[12] |
Kim Y H, Webster O W. Water soluble hyperbranched polyphenylene: a unimolecular micelle?[J]. Journal of the American Chemical Society, 1990, 112(11): 4592−4593. doi: 10.1021/ja00167a094
|
[13] |
Hawker C J, Chu F. Hyperbranched poly(ether ketones): manipulation of structure and physical properties[J]. Macromolecules, 1996, 29(12): 4370−4380. doi: 10.1021/ma9516706
|
[14] |
Wang D, Jin Y, Zhu X, et al. Synthesis and applications of stimuli-responsive hyperbranched polymers[J]. Progress in Polymer Science, 2017, 64: 114−153. doi: 10.1016/j.progpolymsci.2016.09.005
|
[15] |
Lai N J, Wu T, Ye Z B, et al. Preparation and properties of hyperbranched polymer containing functionalized Nano-SiO2 for low-moderate permeability reservoirs[J]. Russian Journal of Applied Chemistry, 2016, 89(10): 1681−1693. doi: 10.1134/S1070427216100189
|
[16] |
Li Y F, Dong X Y, Liu Y X, et al. Improvement of decay resistance of wood via combination treatment on wood cell wall: Swell-bonding with maleic anhydride and graft copolymerization with glycidyl methacrylate and methyl methacrylate[J]. International Biodeterioration & Biodegradation, 2011, 65(7): 1087−1094.
|
[17] |
Li X Y, Xu J F, Long L, et al. Wood composites modified with waterborne hyperbranched polyacrylate dispersed organo-montmorillonite emulsion and the permeability investigations by surface characterizations[J]. Polymer Composites, 2020, 41(9): 3798−3806. doi: 10.1002/pc.25677
|
[18] |
Xu J F, Li X Y, Long L, et al. Enhancement of the physical and mechanical properties of wood using a novel organo-montmorillonite/hyperbranched polyacrylate emulsion[J]. Holzforschung, 2021, 75(6): 545−554. doi: 10.1515/hf-2020-0042
|
[19] |
Omara S S, Abdel R M H, Ghoneim A, et al. Structure-property relationships of hyperbranched polymer/kaolinite nanocomposites[J]. Macromolecules, 2015, 48(18): 6562−6573. doi: 10.1021/acs.macromol.5b01693
|
[20] |
Macromolecule Academy. Physical properties of macromolecules[M]. Tokyo: Kyoritsu Press, 1958.
|
[21] |
Qi M W, Zhou Y F. Multimicelle aggregate mechanism for spherical multimolecular micelles: from theories, characteristics and properties to applications[J]. Materials Chemistry Frontiers, 2019, 3(10): 1994−2009. doi: 10.1039/C9QM00442D
|
[22] |
Wang Y L, Li B, Zhou Y F, et al. Dissipative particle dynamics simulation study on the mechanisms of self-assembly of large multimolecular micelles from amphiphilic dendritic multiarm copolymers[J]. Soft Matter, 2013, 9(12): 3293−3304. doi: 10.1039/c3sm27396b
|
[23] |
李坚. 木材波谱学[M]. 北京: 科学出版社, 2003.
Li J. Wood spectroscopy[M]. Beijing: Science Press, 2003.
|
[24] |
Anandhan S, Patil H G, Babu R R. Characterization of poly(ethylene-co-vinyl acetate-co-carbon monoxide)/layered silicate clay hybrids obtained by melt mixing[J]. Journal of Materials Science, 2011, 46(23): 7423−7430. doi: 10.1007/s10853-011-5705-3
|