Citation: | Zhou Hangyu, Fu Qiyao, Liang Wanting, Song Zhaopeng, Hou Jihua. Changing patterns of nitrogen and phosphorus contents in leaf-branch-root of natural Pinus tabuliformis with precipitation and temperature[J]. Journal of Beijing Forestry University, 2024, 46(1): 44-54. DOI: 10.12171/j.1000-1522.20210275 |
Studying the response of nitrogen and phosphorus contents in leaf-root of Pinus tabuliformis to hydrothermal changes can enhance our understanding of the strategies for forest community plants in warm temperate regions of China to confront the challenges posed by climatic shifts.
Seven representative sample locations were selected in the main distribution areas of natural P. tabuliformis forests in China, and the nitrogen (N) and phosphorus (P) contents in the leaves, branches, and roots of P. tabuliformis were meticulously assessed according to the theory of ecological stoichiometry.
(1) Differences in nitrogen (N) and phosphorus (P) contents among various plant organs of leaves, branches, and roots were evident. Notably, concentrations of N and P in leaves surpassed those in branches and roots. Additionally, both current leaves and branches exhibited higher N and P levels compared with their perennial counterparts, while absorbed roots displayed elevated N and P contents compared with secondary roots. The N∶P ratios in current leaves and branches were lower than those in perennial leaves and in perennial branches, whereas secondary roots demonstrated a higher N∶P ratio than absorbed roots. (2) Variability in nitrogen (N) and phosphorus (P) content differed among leaves, branches, and roots, as indicated by the overall coefficient of variation ranging from 12.3% to 44.4%. Notably, the highest variability was observed in absorbed roots, contrasting with the lowest variability observed in perennial leaves. (3) The adaptive responses of nitrogen (N) and phosphorus (P) stoichiometry within distinct organs of P. tabuliformis to environmental shifts exhibited notable variations. Specifically, the N content in perennial leaves, perennial branches, and current branches, along with the P content in perennial branches and both current branches and leaves, experienced significant decreases with escalating precipitation. Conversely, a significant uptrend in P content was observed in perennial leaves, perennial branches, current leaves, and current branches as the temperature increased. Simultaneously, the N∶P ratio in perennial leaves, perennial branches, and both current leaves and branches demonstrated substantial declines with rising temperatures. Notably, the P content in secondary roots displayed a marked increase with elevated temperature, whereas the N∶P ratio in secondary roots exhibited a notable decrease.
Both precipitation and temperature exert significant impacts on the nitrogen (N) and phosphorus (P) stoichiometry in the leaves, branches, and roots of P. tabuliformis. The diverse response trends and adaptation mechanisms of distinct organs to these two environmental factors exhibite marked variations.
[1] |
Yu Q, Chen Q S, Elser J J, et al. Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability[J]. Ecology Letters, 2010, 13(11): 1390−1399. doi: 10.1111/j.1461-0248.2010.01532.x
|
[2] |
Song Z L, Liu H Y, Zhao F J, et al. Ecological stoichiometry of N∶P: Si in China’s grasslands[J]. Plant and Soil, 2014, 380(1/2): 165−179.
|
[3] |
Roscher C, Thein S, Schmid B, et al. Complementary nitrogen use among potentially dominant species in a biodiversity experiment varies between two years[J]. Journal of Ecology, 2008, 96(3): 477−488. doi: 10.1111/j.1365-2745.2008.01353.x
|
[4] |
Han W X, Fang J Y, Guo D L, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytologist, 2005, 168(2): 377−385. doi: 10.1111/j.1469-8137.2005.01530.x
|
[5] |
杨明飞. 我国北方干旱至半湿润区分布的植物叶碳氮磷化学计量特征研究[D]. 兰州: 兰州大学, 2017.
Yang M F. Leaf carbon, nitrogen and phosphorus stoichiometry across plant species in the arid to semi-humid regions, North China[D]. Lanzhou: Lanzhou University, 2017.
|
[6] |
赵广帅, 刘珉, 石培礼, 等. 羌塘高原降水梯度植物叶片、根系性状变异和生态适应对策[J]. 生态学报, 2020, 40(1): 295−309.
Zhao G S, Liu M, Shi P L, et al. Variation of leaf and root traits and ecological adaptive strategies along a precipitation gradient on Changtang Plateau[J]. Acta Ecologica Sinica, 2020, 40(1): 295−309.
|
[7] |
宗宁, 石培礼, 赵广帅, 等. 降水量变化对藏北高寒草地养分限制的影响[J]. 植物生态学报, 2021, 45(5): 444−455. doi: 10.17521/cjpe.2020.0135
Zong N, Shi P L, Zhao G S, et al. Variations of nitrogen and phosphorus limitation along the environmental gradient in alpine grasslands on the Northern Xizang Plateau[J]. Chinese Journal of Plant Ecology, 2021, 45(5): 444−455. doi: 10.17521/cjpe.2020.0135
|
[8] |
Lü X T, Kong D L, Pan Q M, et al. Nitrogen and water availability interact to affect leaf stoichiometry in a semi-arid grassland[J]. Oecologia, 2012, 168(2): 301−310. doi: 10.1007/s00442-011-2097-7
|
[9] |
Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proceedings of the National Academy of Sciences, 2004, 101(30): 11001−11006. doi: 10.1073/pnas.0403588101
|
[10] |
Tjoelker M G, Reich P B, Oleksyn J. Changes in leaf nitrogen and carbohydrates underlie temperature and CO2 acclimation of dark respiration in five boreal tree species[J]. Plant, Cell & Environment, 1999, 22(7): 767−778.
|
[11] |
Han W X, Fang J Y, Reich P B, et al. Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China[J]. Ecology Letters, 2011, 14(8): 788−796. doi: 10.1111/j.1461-0248.2011.01641.x
|
[12] |
赵姗宇, 黎锦涛, 孙学凯, 等. 樟子松人工林原产地与不同自然降水梯度引种地土壤和植物叶片生态化学计量特征[J]. 生态学报, 2018, 38(20): 7189−7197.
Zhao S Y, Li J T, Sun X K, et al. Responses of soil and plant stoichiometric characteristics along rainfall gradients in Mongolian pine plantations in native and introduced regions[J]. Acta Ecologica Sinica, 2018, 38(20): 7189−7197.
|
[13] |
Chen Y H, Han W X, Tang L Y, et al. Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth form[J]. Ecography, 2013, 36(2): 178−184. doi: 10.1111/j.1600-0587.2011.06833.x
|
[14] |
王凯, 张大鹏, 宋立宁, 等. 氮沉降和降水增加对榆树幼苗不同器官碳氮磷分配格局的影响[J]. 林业科学, 2020, 56(3): 172−183.
Wang K, Zang D P, Song L N, et al. Effects of icreasing nitrogen peposition and precipitation on carbon, nitrogen, and phosphorus allocation in different organs of Ulmus pumila seedlings[J]. Scientia Silvae Sinicae, 2020, 56(3): 172−183.
|
[15] |
李俊慧, 彭国全, 杨冬梅. 常绿和落叶阔叶物种当年生小枝茎长度和茎纤细率对展叶效率的影响[J]. 植物生态学报, 2017, 41(6): 650−660. doi: 10.17521/cjpe.2016.0376
Li J H, Peng G Q, Yang D M. Effect of stem length to stem slender ratio of current-year twigs on the leaf display efficiency in evergreen and deciduous broadleaved trees[J]. Chinese Journal of Plant Ecology, 2017, 41(6): 650−660. doi: 10.17521/cjpe.2016.0376
|
[16] |
Yao F Y, Chen Y H, Yan Z B, et al. Biogeographic patterns of structural traits and C∶N∶P stoichiometry of tree twigs in China’s forests[J/OL]. PLoS One, 2015, 10(2): e0116391. https://orcid.org/0000-0001-8678-7147.
|
[17] |
邹丽梅. 亚热带6个树种细根形态比较与根序分级构型研究 [D]. 长沙: 中南林业科技大学, 2015.
Zou L M. Root identification and varitation in architecture of fine roots of subtropical tree species in southern China[D]. Changsha: Central South University of Forestry and Technology, 2015.
|
[18] |
Guo D L, Xia M X, Wei X, et al. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species[J]. New Phytologist, 2008, 180(3): 673−683. doi: 10.1111/j.1469-8137.2008.02573.x
|
[19] |
Freschet G T, Valverde-Barrantes O J, Tucker C M, et al. Climate, soil and plant functional types as drivers of global fine-root trait variation[J]. Journal of Ecology, 2017, 105(5): 1182−1196. doi: 10.1111/1365-2745.12769
|
[20] |
Hong J T, Wang X D, Wu J B. Stoichiometry of root and leaf nitrogen and phosphorus in a dry alpine steppe on the Northern Tibetan Plateau[J]. PLoS One, 2018, 9(10): e109052. doi: 10.1371/journal.pone.0109052
|
[21] |
张赟, 赵亚洲, 张春雨, 等. 北京松山油松种群结构及空间分布格局[J]. 应用与环境生物学报, 2009, 15(2): 175−179.
Zhang Y, Zhao Y Z, Zhang C Y, et al. Structure and spatial distribution of Pinus tabulaeformis population in the Songshan Nature Reserve, Beijing, China[J]. Chinese Journal of Applied and Environmental Biology, 2009, 15(2): 175−179.
|
[22] |
刘思文, 艾也博, 刘艳红. 北京松山油松叶功能性状沿海拔梯度的变化及其环境解释[J]. 北京林业大学学报, 2021, 43(4): 47−55.
Liu S W, Ai Y B, Liu Y H. Variations in leaf functional traits along the altitude gradient of Pinus tabuliformis and its environmental explanations in Beijing Songshan Mountain[J]. Journal of Beijing Forestry University, 2021, 43(4): 47−55.
|
[23] |
田岳梨, 杨航, 王芳玲, 等. 秦岭中段山脊油松叶功能性状差异及其对海拔梯度的响应[J]. 西北植物学报, 2021, 41(2): 300−309. doi: 10.7606/j.issn.1000-4025.2021.02.0300
Tian Y L, Yang H, Wang F L, et al. Difference of leaf functional traits of Pinus tabuliformis and its response to altitude gradient in the middle of Qinling mountains[J]. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(2): 300−309. doi: 10.7606/j.issn.1000-4025.2021.02.0300
|
[24] |
张凯, 侯继华, 梁冬. 降水梯度对油松天然林内主要植物叶功能性状的影响[J]. 中南林业科技大学学报, 2016, 36(7): 48−54.
Zhang K, Hou J H, Liang D. Effect of precipitation gradients on leaf functional traits of main plant in Pinus tabulaeformis forest[J]. Journal of Central South University of Forestry and Technology, 2016, 36(7): 48−54.
|
[25] |
姜沛沛, 曹扬, 陈云明, 等. 不同林龄油松(Pinus tabulaeformis)人工林植物、凋落物与土壤C、N、P化学计量特征[J]. 生态学报, 2016, 36(19): 6188−6197.
Jiang P P, Cao Y, Chen Y M, et al. Variation of C, N, and P stoichiometry in plant tissue, litter, and soil during stand development in Pinus tabulaeformis plantation[J]. Acta Ecologica Sinica, 2016, 36(19): 6188−6196.
|
[26] |
黄萍, 刘艳红. 北京松山油松林林分结构和地形对幼苗更新的影响[J]. 生态学杂志, 2018, 37(4): 1003−1009.
Huang P, Liu Y H. Effects of stand structure and terrain factors on seedling regeneration of Pinus tabuliformis forest in the Songshan National Nature Reserve, Beijing[J]. Chinese Journal of Ecology, 2018, 37(4): 1003−1009.
|
[27] |
欧晓岚, 刘艳红. 不同坡向及径级油松异龄叶的功能性状[J]. 南京林业大学学报(自然科学版), 2017, 41(4): 80−88.
Ou X L, Liu Y H. Effect of age, slope aspects and diameter classes on leaf functional traits of Pinus tabulaeformis in Songshan, Beijing[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2017, 41(4): 80−88.
|
[28] |
张凯. 油松各器官功能性状及其对环境因子响应的研究[D]. 北京: 北京林业大学, 2016.
Zhang K. The functional traits of different organs of Pinus tabulaeformis and their response to the environment[D]. Beijing: Beijing Forestry University, 2016.
|
[29] |
鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000.
Bao S D. Soil agrochemical analysis[M]. Beijing: China Agriculture Press, 2000.
|
[30] |
杨蕾, 孙晗, 樊艳文, 等. 长白山木本植物叶片氮磷含量的海拔梯度格局及影响因子[J]. 植物生态学报, 2017, 41(12): 1228−1238. doi: 10.17521/cjpe.2017.0115
Yang L, Sun H, Fan Y W, et al. Changes in leaf nitrogen and phosphorus stoichiometry of woody plants along an altitudinal gradient in Changbai Mountain, China[J]. Chinese Journal of Plant Ecology, 2017, 41(12): 1228−1238. doi: 10.17521/cjpe.2017.0115
|
[31] |
He J S, Wang X P, Flynn D F B, et al. Taxonomic, phylogenetic, and environmental trade-offs between leaf productivity and persistence[J]. Ecology, 2009, 90(10): 2779−2791. doi: 10.1890/08-1126.1
|
[32] |
Yuan Z Y, Chen H Y, Reich P B. Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus[J]. Nature Communications, 2011, 2: 344. doi: 10.1038/ncomms1346
|
[33] |
Wang Z Q, Gong H Y, Sardans J, et al. Divergent nitrogen and phosphorus allocation strategies in terrestrial plant leaves and fine roots: a global meta-analysis[J]. Journal of Ecology, 2022, 110: 2745−2758. doi: 10.1111/1365-2745.13985
|
[34] |
Reich P B, Tjoelker M G, Pregitzer K S, et al. Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants[J]. Ecology Letters, 2008, 11(8): 793−801. doi: 10.1111/j.1461-0248.2008.01185.x
|
[35] |
周红艳, 吴琴, 陈明月, 等. 鄱阳湖沙山单叶蔓荆不同器官碳、氮、磷化学计量特征[J]. 植物生态学报, 2017, 41(4): 461−470. doi: 10.17521/cjpe.2016.0231
Zhou H Y, Wu Q, Chen M Y, et al. C, N and P stoichiometry in different organs of Vitex rotundifolia in a Poyang Lake desertification hill[J]. Chinese Journal of Plant Ecology, 2017, 41(4): 461−470. doi: 10.17521/cjpe.2016.0231
|
[36] |
Pregitzer K S, de Forest J L, Burton A J, et al. Fine root architecture of nine north American trees[J]. Ecological Monographs, 2002, 72(2): 293−309. doi: 10.1890/0012-9615(2002)072[0293:FRAONN]2.0.CO;2
|
[37] |
Li A, Guo D L, Wang Z Q, et al. Nitrogen and phosphorus allocation in leaves, twigs, and fine roots across 49 temperate, subtropical and tropical tree species: a hierarchical pattern[J]. Functional Ecology, 2010, 24(1): 224−232. doi: 10.1111/j.1365-2435.2009.01603.x
|
[38] |
Bo H J, Wen C Y, Song L J, et al. Fine-root responses of Populus tomentosa forests to stand density[J]. Forests, 2018, 9(9): 562. doi: 10.3390/f9090562
|
[39] |
Hishi T. Heterogeneity of individual roots within the fine root architecture: causal links between physiological and ecosystem functions[J]. Journal of Forest Research, 2007, 12(2): 126−133. doi: 10.1007/s10310-006-0260-5
|
[40] |
Zadworny M, Eissenstat D M. Contrasting the morphology, anatomy and fungal colonization of new pioneer and fibrous roots[J]. New Phytologist, 2011, 190(1): 213−221. doi: 10.1111/j.1469-8137.2010.03598.x
|
[41] |
Williams K, Percival F, Merino J, et al. Estimation of tissue construction cost from heat of combustion and organic nitrogen content[J]. Plant, Cell & Environment, 1987, 10(9): 725−734.
|
[42] |
Kerkhoff A J, Fagan W F, Elser J J, et al. Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants[J]. The American Naturalist, 2006, 168(4): E103−E122. doi: 10.1086/507879
|
[43] |
Sims D A, Pearcy R W. Response of leaf anatomy and photosynthetic capacity in Alocasia macrorrhiza (Araceae) to a transfer from low to high light[J]. American Journal of Botany, 1992, 79(4): 449−455. doi: 10.1002/j.1537-2197.1992.tb14573.x
|
[44] |
Bleecker A B. The evolutionary basis of leaf senescence: method to the madness?[J]. Current Opinion in Plant Biology, 1998, 1(1): 73−78. doi: 10.1016/S1369-5266(98)80131-3
|
[45] |
Field C, Mooney H A. Leaf age and seasonal effects on light, water, and nitrogen use efficiency in a California shrub[J]. Oecologia, 1983, 56(2-3): 348−355. doi: 10.1007/BF00379711
|
[46] |
刘万德, 苏建荣, 李帅锋, 等. 云南普洱季风常绿阔叶林优势物种不同生长阶段叶片碳、氮、磷化学计量特征[J]. 植物生态学报, 2015, 39(1): 52−62. doi: 10.17521/cjpe.2015.0006
Liu W D, Su J R, Li S F, et al. Leaf carbon, nitrogen and phosphorus stoichiometry at different growth stages in dominant tree species of a monsoon broad-leaved evergreen forest in Pu’er, Yunnan Province, China[J]. Chinese Journal of Plant ecology, 2015, 39(1): 52−62. doi: 10.17521/cjpe.2015.0006
|
[47] |
汪涛, 杨元合, 马文红. 中国土壤磷库的大小、分布及其影响因素[J]. 北京大学学报(自然科学版), 2008, 44(6): 945−952.
Wang T, Yang Y H, Ma W H. The size, distribution and influencing factors of soil phosphorus pools in China storage, patterns and environmental controls of soil phosphorus in China[J]. Acta Scientiarum Naturalium Universitae Pekinensis (Natural Sciences Edition), 2008, 44(6): 945−952.
|
[48] |
Smeck N E. Phosphorus dynamics in soils and landscapes[J]. Geoderma, 1985, 36(3−4): 185−199. doi: 10.1016/0016-7061(85)90001-1
|
[49] |
宁志英, 李玉霖, 杨红玲, 等. 科尔沁沙地主要植物细根和叶片碳、氮、磷化学计量特征[J]. 植物生态学报, 2017, 41(10): 1069−1080. doi: 10.17521/cjpe.2017.0048
Ning Z Y, Li Y L, Yang H L, et al. Carbon, nitrogen and phosphorus stoichiometry in leaves and fine roots of dominant plants in Horqin Sandy Land[J]. Chinese Journal of Plant Ecology, 2017, 41(10): 1069−1080. doi: 10.17521/cjpe.2017.0048
|
[50] |
高德新, 张伟, 任成杰, 等. 黄土高原典型植被恢复过程土壤与叶片生态化学计量特征[J]. 生态学报, 2019, 39(10): 3622−3630.
Gao D X, Zhang W, Ren C J, et al. Ecological stoichiometry characteristics of soil and leaves during the recovery process of typical vegetation on the Loess Plateau[J]. Acta Ecologica Sinica, 2019, 39(10): 3622−3630.
|
[51] |
姜沛沛, 曹扬, 陈云明, 等. 陕西省3种主要树种叶片、凋落物和土壤N、P化学计量特征[J]. 生态学报, 2017, 37(2): 443−454.
Jiang P P, Cao Y, Chen Y M, et al. N and P stoichiometric characteristics of leaves, litter, and soil for three dominant tree species in the Shaanxi Province[J]. Acta Ecologica Sinica, 2017, 37(2): 443−454.
|
[52] |
He J S, Fang J Y, Wang Z H, et al. Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China[J]. Oecologia, 2006, 149(1): 115−122. doi: 10.1007/s00442-006-0425-0
|
[53] |
张慧, 郭卫红, 杨秀清, 等. 麻栎种源林叶片碳、氮、磷化学计量特征的变异[J]. 应用生态学报, 2016, 27(7): 2225−2230.
Zhang H, Guo W H, Yang X Q, et al. Variations in leaf C, N, P stoichiometry of Quercus acutissima provenance forests[J]. Chinese Journal of Applied Ecology, 2016, 27(7): 2225−2230.
|
[54] |
Dijkstra F A, Blumenthal D, Morgan J A, et al. Contrasting effects of elevated CO2 and warming on nitrogen cycling in a semiarid grassland[J]. New Phytologist, 2010, 187(2): 426−437. doi: 10.1111/j.1469-8137.2010.03293.x
|
[55] |
Liu G F, Freschet G T, Pan X, et al. Coordinated variation in leaf and root traits across multiple spatial scales in Chinese semiarid and arid ecosystems[J]. New Phytologist, 2010, 188(2): 543−553. doi: 10.1111/j.1469-8137.2010.03388.x
|
[56] |
Mcgroddy M, Daufresne T, Hedin L. Scaling of C∶N∶P stoichiometry in forests worldwide: implications of terrestrial redfield type rations[J]. Ecology, 2004, 85(9): 2390−2401. doi: 10.1890/03-0351
|
[57] |
Lovelock C E, Feller I C, Ball M C, et al. Testing the growth rate vs. geochemical hypothesis for latitudinal variation in plant nutrients[J]. Ecology Letters, 2007, 10(12): 1154−1163. doi: 10.1111/j.1461-0248.2007.01112.x
|
[58] |
任书杰, 于贵瑞, 陶波, 等. 中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究[J]. 环境科学, 2007, (12): 2665−2673. doi: 10.3321/j.issn:0250-3301.2007.12.001
Ren S J, Yu G R, Tao B, et al. Leaf nitrogen and phosphorus stoichiometry across 654 terrestrial plant species in NSTEC[J]. Environmental Science, 2007, (12): 2665−2673. doi: 10.3321/j.issn:0250-3301.2007.12.001
|
1. |
许馨元,田刚,唐铭野. 中俄两国森林碳汇合作潜力及绿色效应研究. 商业经济. 2025(01): 80-83 .
![]() | |
2. |
段晓梅,章程,李松青,甘晓丽. 岩溶碳汇产品价值实现路径研究. 生态经济. 2025(02): 22-28 .
![]() | |
3. |
刘贤赵,罗政英,王一笛. 长株潭绿心区碳汇能力时空格局及多情景预测. 应用生态学报. 2025(02): 559-568 .
![]() | |
4. |
胡茸茸,郭杨,欧阳勋志,刘军,潘萍. 赣中杉木林碳密度空间分布格局及其影响因素. 生态学杂志. 2025(02): 365-372 .
![]() | |
5. |
辛守英,王晓红,焦琳琳. 基于遥感数据和优化Blending算法的人工林地上生物量估算研究. 西北林学院学报. 2025(02): 207-219 .
![]() | |
6. |
付甜,杨佳伟,王晓荣,胡兴宜,陈明震,漆小兵,胡定邦. 基于森林资源二类调查数据的县域森林碳汇估算及潜力预测. 环境生态学. 2025(03): 43-47+90 .
![]() | |
7. |
聂薇,邓华锋. 使用二类调查数据对森林碳储量评估及多因素预测. 东北林业大学学报. 2024(02): 52-59 .
![]() | |
8. |
裴薇薇,杨喆,王云英,王新,杜岩功. 祁连山区青海云杉林碳汇特征及调控因子. 中国农业科技导报. 2024(01): 226-233 .
![]() | |
9. |
徐思若,成志影,那雪迎,张栩嘉,马大龙,张鹏. 黑龙江省森林碳汇及其经济价值的变化分析与潜力预测. 生态学杂志. 2024(01): 197-205 .
![]() | |
10. |
王立国,朱海,叶炎婷,贺焱,宋薇. 中国省域旅游业碳中和时空分异与模拟. 生态学报. 2024(02): 625-636 .
![]() | |
11. |
高怡凡,杨志衍,彭荣开,孙子芸,高培超,宋长青. 森林蓄积量的碳达峰行动目标与经济发展期望对福建省土地利用/覆被的权衡影响. 北京师范大学学报(自然科学版). 2024(01): 129-137 .
![]() | |
12. |
李郊,王冰,王晨,高鹤,吴辉龙,郑鑫,彭华福. 2005—2020年江西省森林碳储量时空变化趋势及影响因素. 林草资源研究. 2024(01): 17-24 .
![]() | |
13. |
游景晖,欧阳勋志,李坚锋,毛述震,潘萍. 闽楠天然次生林不同林层碳密度变化特征及其影响因素. 东北林业大学学报. 2024(04): 89-94 .
![]() | |
14. |
石铁矛,高杨,王迪. 双碳目标下城市空间碳固存与增汇路径研究. 沈阳建筑大学学报(自然科学版). 2024(02): 193-202 .
![]() | |
15. |
杨俊豪,张皓东,李永昌,刘书敏. 基于可加性模型的云南松和华山松碳储量模型构建. 昆明理工大学学报(自然科学版). 2024(02): 140-150 .
![]() | |
16. |
张自强,周伟,杨重玉. 碳中和背景下森林采伐限额对中国森林碳汇影响的空间效应. 统计与决策. 2024(08): 84-88 .
![]() | |
17. |
陈文汇,李华. 林草生态系统固碳增汇的增长潜力及交易机制. 科技导报. 2024(07): 93-102 .
![]() | |
18. |
刘世荣,王晖,李海奎,余振,栾军伟. 碳中和目标下中国森林碳储量、碳汇变化预估与潜力提升途径. 林业科学. 2024(04): 157-172 .
![]() | |
19. |
蔡为民,王燕秋,林国斌,霍长宝,孙晓兵,王萌萌. 基于“资源-资产-资本-资金”转化路径的森林碳汇价值实现机制. 中国人口·资源与环境. 2024(03): 60-67 .
![]() | |
20. |
吕洁华,杨廷瑜. 基于“脱碳”视角的中国省际低碳效率时空分异研究. 生态经济. 2024(06): 13-20+29 .
![]() | |
21. |
孙晓驰,朱洁,周松. 京津冀城市群碳足迹压力空间关联网络结构及影响因素研究. 统计与管理. 2024(03): 4-17 .
![]() | |
22. |
黄超群,梁波,何英姿,李震,刘春花. 广西国有七坡林场森林碳汇价值评价. 林业调查规划. 2024(03): 71-75 .
![]() | |
23. |
袁天健,霍礼鑫,王芳,过建春,柯佑鹏. “两山”理念下海南省森林固碳量与影响因素分析. 林业经济问题. 2024(01): 51-58 .
![]() | |
24. |
那雪迎. 中国森林碳储量变化及固碳潜力的研究. 现代园艺. 2024(15): 59-63 .
![]() | |
25. |
王春晓,邓孟婷,汪雪飞,洪武扬. 基于PLUS-InVEST模型的碳储量时空演变与预测模拟. 中国园林. 2024(06): 70-76 .
![]() | |
26. |
肖嘉文,刘金福,郑雯,王智苑,方梦凡,洪宇,谭芳林. 1974—2018年福建省森林碳储量特征及动态变化. 植物资源与环境学报. 2024(04): 101-108 .
![]() | |
27. |
朱娘金,钟德君,李海滨,罗攀峰,刘荣杰,吴林芳,张蒙. 莲花山白盆珠省级自然保护区2017年——2023年森林动态变化研究. 热带林业. 2024(02): 77-81 .
![]() | |
28. |
吴伟光,许骞骞,羊凌玉,刘宇. 林业增汇潜力及其对中国碳中和的经济影响分析. 农业技术经济. 2024(08): 128-144 .
![]() | |
29. |
李元会,吴富雨,刘燕云,余海清,文嫱,刘韩. 甘孜州林业碳汇资源分析及开发策略. 现代农业科技. 2024(16): 76-80+95 .
![]() | |
30. |
张启航,张亚连,谭桂菲,黄崇超,袁宝龙. 中国林业碳汇效率时空演化特征——基于三阶段超效率数据包络分析模型. 生态学报. 2024(15): 6769-6782 .
![]() | |
31. |
卫格冉,李明泽,全迎,王斌,刘建阳,明烺. 基于地理加权随机森林的黑龙江省森林碳储量遥感估测. 中南林业科技大学学报. 2024(07): 64-76 .
![]() | |
32. |
游欣,冯晓菁,魏绪英,柯琳琳,蔡军火,陈美玲. 南昌市土地利用碳储量变化及多情景预测. 南方林业科学. 2024(05): 30-38 .
![]() | |
33. |
白念森,吴超,勾啸,崔嘉辰,李炜桢,贾朋,赵志刚. 珠江三角洲城市公益林资源分布差异. 林业与环境科学. 2024(05): 130-136 .
![]() | |
34. |
卢昆,李汉瑾,Hui Yu,王健,吴春明,孙祥科. 中国海洋产业蓝碳源汇识别与碳汇发展潜力初探. 中国海洋经济. 2024(02): 188-215+222-223 .
![]() | |
35. |
张灵蕤,刘辉,邓岚,李群. “双碳”目标下我国农林业碳排放效率的时空演变及影响因素分析. 林业经济. 2024(08): 59-83 .
![]() | |
36. |
张子璇,张颖,孙剑锋,孟娜. 森林碳汇计量研究进展与展望. 北京林业大学学报(社会科学版). 2024(04): 52-61 .
![]() | |
37. |
朱念福,郑晔施,童冉,原文文,刘道平,洪奕丰,吴统贵. 长三角地区乔木林碳汇及其对“双碳”目标贡献预测. 生态学杂志. 2024(12): 3817-3827 .
![]() | |
38. |
陈周光,崔伟伟,龙飞. 交通基础设施能影响森林碳汇增长吗?. 兰州财经大学学报. 2023(01): 81-91 .
![]() | |
39. |
史茂源,杜珊,田乐宇,余雪标,周华,吴金群. 海南屯昌不同林龄槟榔人工林地下部分碳储量的分布特征. 海南大学学报(自然科学版). 2023(01): 38-47 .
![]() | |
40. |
姚永华,赵泽新,熊安华. 基于森林资源二类调查的县域森林碳汇及其价值估算研究——以湖北省当阳市为例. 湖北林业科技. 2023(01): 36-42 .
![]() | |
41. |
朱安明,洪奕丰,张旭峰,于海霞,王洪涛,王雅梅,于文吉. 全生命周期木/竹产品碳足迹研究进展. 林产工业. 2023(02): 83-87 .
![]() | |
42. |
刘雨欣. 间伐保留密度对杉木中龄林碳储量的影响. 福建林业科技. 2023(01): 17-22+30 .
![]() | |
43. |
解瑞丽,田丹宇,刘伯翰,柴麒敏. 生态系统碳汇特征分析及对我国生态系统碳汇发展的启示. 环境保护. 2023(03): 30-34 .
![]() | |
44. |
胡勐鸿,李万峰,吕寻. 日本落叶松自由授粉家系选择和无性繁殖利用. 温带林业研究. 2023(01): 7-16 .
![]() | |
45. |
刘亚,黄安胜. 森林碳汇环境库兹涅茨曲线特征及其影响因素分析. 世界林业研究. 2023(02): 132-137 .
![]() | |
46. |
汤颖颖,吴秀芹. 广西岩溶碳汇对气候变化和石漠化治理措施的响应. 北京大学学报(自然科学版). 2023(02): 189-196 .
![]() | |
47. |
陈治中,昝梅,杨雪峰,董煜. 新疆森林植被碳储量预测研究. 生态环境学报. 2023(02): 226-234 .
![]() | |
48. |
牛晓耕,李莹,屈秋实. 碳达峰碳中和目标下河北省森林碳汇估算与潜力预测. 保定学院学报. 2023(03): 18-25 .
![]() | |
49. |
魏玺,邵亚,蔡湘文,林珍铭,肖连刚,刘泽昊. 漓江流域陆地生态系统碳储量时空特征与预测. 环境工程技术学报. 2023(03): 1223-1233 .
![]() | |
50. |
董瑞林,侯艳闯,丁宇婷. 基于饱和发生率、人工防治时滞等非线性变化特征的松材线虫病生态侵染模型构建研究. 南开大学学报(自然科学版). 2023(03): 92-102 .
![]() | |
51. |
徐彩瑶,任燕,孔凡斌. 浙江省土地利用变化对生态系统固碳服务的影响及其预测. 应用生态学报. 2023(06): 1610-1620 .
![]() | |
52. |
肖君. 福州市主要森林类型林下灌木层生物量和碳密度研究. 林业勘察设计. 2023(01): 1-4 .
![]() | |
53. |
刘晓曼,王超,高吉喜,袁静芳,黄艳,王斌,彭阳. 服务双碳目标的中国人工林生态系统碳增汇途径. 生态学报. 2023(14): 5662-5673 .
![]() | |
54. |
曾霞,张勰,廖德志,唐洁,杨艳,黎蕾,李永进,曾梦雪,吉悦娜,刘珉,赵文,易平英,阳涛,徐建军. 不同经营模式杉木人工林乔木层碳储量研究. 湖南林业科技. 2023(04): 45-50 .
![]() | |
55. |
陈科屹,林田苗,王建军,何友均,张立文. 天保工程20年对黑龙江大兴安岭国有林区森林碳库的影响. 生态环境学报. 2023(06): 1016-1025 .
![]() | |
56. |
刘建霞,杨文静,肖宇胜,徐舟,张利,邹胜,刘千里. 阿坝州实现碳达峰碳中和现状分析及发展建议. 四川农业科技. 2023(09): 95-97 .
![]() | |
57. |
王韦韦,吕茂奎,胥超,陈光水. 亚热带常绿阔叶林和杉木人工林有机碳流失动态特征对降雨的响应. 生态学报. 2023(18): 7474-7484 .
![]() | |
58. |
佘生斌,李小华,李海俊,张义伟. 双碳经济下林业发展探讨. 现代农业科技. 2023(20): 90-93 .
![]() | |
59. |
黄占兵. 做好“四篇文章”提升内蒙古林业碳汇能力. 北方经济. 2023(09): 14-16 .
![]() | |
60. |
王岩,管子隆,李菲,刘园. 秦岭北麓(西安段)碳排放和碳汇分析与预测研究. 西北水电. 2023(05): 15-20+25 .
![]() | |
61. |
韩雪莲,张加龙,刘灵,廖易,唐金灏,韩东阳. 基于遥感特征变量的高山松碳储量抽样估算. 西南林业大学学报(自然科学). 2023(06): 117-124 .
![]() | |
62. |
韩艺,张峰. 北京市不同功能分区的乔木林储碳功能对比研究. 林业调查规划. 2023(05): 26-31 .
![]() | |
63. |
马浩然. 公益林生态效益补偿单位采用蓄积及其增量的探索. 浙江农林大学学报. 2023(06): 1273-1281 .
![]() | |
64. |
胡景心,沙青娥,刘慧琳,张雪驰,郑君瑜. 珠江三角洲二氧化碳源汇演变特征及驱动因素. 环境科学. 2023(12): 6643-6652 .
![]() | |
65. |
田晓霞,包庆丰. 森林碳汇发展潜力时空演变与障碍因子诊断——基于31个省份. 中国林业经济. 2023(06): 111-117 .
![]() | |
66. |
张雅薇,王允磊,韩启峰,石晓龙. 碳达峰碳中和背景下提升新疆森林碳汇功能的思考. 温带林业研究. 2023(04): 78-80 .
![]() | |
67. |
曹先磊,许骞骞,吴伟光. 碳交易框架下我国林业增汇潜力及对区域碳减排成本的影响研究. 农业技术经济. 2023(12): 96-110 .
![]() | |
68. |
赵桐,蒙吉军. 基于土地利用变化的成都平原经济区碳储量时空演变与情景模拟. 山地学报. 2023(05): 648-661 .
![]() | |
69. |
蔡宇泽. 林业碳汇服务信托应用于林业企业融资的研究. 林业经济问题. 2023(06): 578-585 .
![]() | |
70. |
易昌民,付伟,赵春艳. 基于CiteSpace的中国林业碳汇研究进展与趋势分析. 林草政策研究. 2023(03): 89-96 .
![]() | |
71. |
Zheng-Meng Hou,Ying Xiong,Jia-Shun Luo,Yan-Li Fang,Muhammad Haris,Qian-Jun Chen,Ye Yue,Lin Wu,Qi-Chen Wang,Liang-Chao Huang,Yi-Lin Guo,Ya-Chen Xie. International experience of carbon neutrality and prospects of key technologies: Lessons for China. Petroleum Science. 2023(02): 893-909 .
![]() |
|
72. |
杨礼旦. 适应气候变化的人工林多目标经营与管理对策. 温带林业研究. 2022(01): 12-17 .
![]() | |
73. |
洪李斌,卿蕴贤,田佳赫,康洁敏,卢伟. 基于混合效应模型的塞罕坝华北落叶松人工林单木去皮胸径生长预测. 林业与生态科学. 2022(02): 127-133 .
![]() | |
74. |
张桂莲,仲启铖,张浪. 面向碳中和的城市园林绿化碳汇能力建设研究. 风景园林. 2022(05): 12-16 .
![]() | |
75. |
杨鑫,高雯雯,李莎,李冠衡. 基于遥感影像估算的北京中心城区碳储量与气候环境关联性研究. 风景园林. 2022(05): 31-37 .
![]() | |
76. |
张颖,易爱军. 承德市森林碳汇价值核算及其相关问题研究. 创新科技. 2022(05): 83-92 .
![]() | |
77. |
Menghong HU,Jiying LI,Man SUN. Strong Seedlings of Improved Varieties and High-efficiency Cultivation of Artificial Forests Promotes the Early Realization of "Carbon Neutrality". Agricultural Biotechnology. 2022(04): 136-141 .
![]() |
|
78. |
曾丽,吕寻,胡勐鸿. 良种是加速实现“碳中和”的有效保障措施——以甘肃省地方良种为例. 林业科技通讯. 2022(08): 35-39 .
![]() | |
79. |
林荣华. 森林经营管理对碳汇的影响及提高对策. 乡村科技. 2022(14): 120-123 .
![]() | |
80. |
沈德才,刘婷,莫罗坚,周海琪. 东莞市森林生态系统土壤有机碳含量的地统计学分析. 热带林业. 2022(03): 45-49 .
![]() | |
81. |
张俊飚,何可. “双碳”目标下的农业低碳发展研究:现状、误区与前瞻. 农业经济问题. 2022(09): 35-46 .
![]() | |
82. |
朱海,王立国. 江西省旅游业碳达峰与碳中和研究. 中国生态旅游. 2022(04): 617-631 .
![]() | |
83. |
薛春泉,陈振雄,杨加志,曾伟生,林丽平,刘紫薇,张红爱,苏志尧. 省市县一体化森林碳储量估测技术体系——以广东省为例. 林业资源管理. 2022(04): 157-163 .
![]() | |
84. |
曾莹,王雪萌,唐昊,廖笳妤,田蒙奎. 碳达峰碳中和战略科学内涵、实现路径及挑战. 现代化工. 2022(10): 1-4+10 .
![]() | |
85. |
张吉统,麦强盛. 云南省森林碳汇经济价值评估研究. 绿色科技. 2022(17): 264-268 .
![]() | |
86. |
原作强,王星,毛子昆,蔺菲,叶吉,房帅,王绪高,郝占庆. 典型温带树种固碳速率研究. 北京林业大学学报. 2022(10): 43-51 .
![]() | |
87. |
范春楠,刘强,郑金萍,郭忠玲,张文涛,刘英龙,谢遵俊,任增君. 采伐强度对阔叶红松林生态系统碳密度恢复的影响. 北京林业大学学报. 2022(10): 33-42 .
![]() | |
88. |
张颖,孟娜,姜逸菲. 中国森林碳汇与林业经济发展耦合及长期变化特征分析. 北京林业大学学报. 2022(10): 129-141 .
![]() | |
89. |
王志恒,李仲堃,王融,孔杉,陈晓峰. 基于双重耦合模型的森林固碳综合价值评估. 广西林业科学. 2022(05): 617-625 .
![]() | |
90. |
陈科屹,王建军,何友均,张立文. 黑龙江大兴安岭重点国有林区森林碳储量及固碳潜力评估. 生态环境学报. 2022(09): 1725-1734 .
![]() | |
91. |
廖杨文科,张佩瑶,张清越,李孝刚. 盐碱地林木耐盐机制及造林技术研究进展. 南京林业大学学报(自然科学版). 2022(06): 96-104 .
![]() | |
92. |
荀文会. “碳中和”视角下的沈阳市国土空间规划路径. 规划师. 2022(10): 88-92 .
![]() | |
93. |
许骞骞,曹先磊,孙婷,朱颖,吴伟光. 中国森林碳汇潜力与增汇成本评估——基于Meta分析方法. 自然资源学报. 2022(12): 3217-3233 .
![]() | |
94. |
董战峰,毕粉粉,冀云卿. 中国陆地生态系统碳汇发展的现状、问题及建议. 科技导报. 2022(19): 15-24 .
![]() | |
95. |
肖军,雷蕾,曾立雄,李肇晨,马成功,肖文发. 不同经营模式对华北油松人工林碳储量的影响. 生态环境学报. 2022(11): 2134-2142 .
![]() | |
96. |
向晋含,余彬,陶志先,张利,刘顺. “碳中和”背景下国家储备林培育的优化路径. 林业科技通讯. 2022(12): 3-9 .
![]() | |
97. |
章敏,王健,韩天一,欧阳勋志,潘萍,刘冬冬. 基于CBM-CFS3模型的马尾松林碳密度特征及其影响因素. 林业资源管理. 2022(06): 44-53 .
![]() | |
98. |
赵哲,冯星,王佳音. 辽宁省林下产业富民的实践探索及发展策略. 中南林业科技大学学报(社会科学版). 2022(06): 64-70 .
![]() | |
99. |
刘海. 闽北典型森林类型植被层碳储量及分配特征. 林业勘察设计. 2022(03): 84-88 .
![]() |