Citation: | Zhou Hangyu, Fu Qiyao, Liang Wanting, Song Zhaopeng, Hou Jihua. Changing patterns of nitrogen and phosphorus contents in leaf-branch-root of natural Pinus tabuliformis with precipitation and temperature[J]. Journal of Beijing Forestry University, 2024, 46(1): 44-54. DOI: 10.12171/j.1000-1522.20210275 |
Studying the response of nitrogen and phosphorus contents in leaf-root of Pinus tabuliformis to hydrothermal changes can enhance our understanding of the strategies for forest community plants in warm temperate regions of China to confront the challenges posed by climatic shifts.
Seven representative sample locations were selected in the main distribution areas of natural P. tabuliformis forests in China, and the nitrogen (N) and phosphorus (P) contents in the leaves, branches, and roots of P. tabuliformis were meticulously assessed according to the theory of ecological stoichiometry.
(1) Differences in nitrogen (N) and phosphorus (P) contents among various plant organs of leaves, branches, and roots were evident. Notably, concentrations of N and P in leaves surpassed those in branches and roots. Additionally, both current leaves and branches exhibited higher N and P levels compared with their perennial counterparts, while absorbed roots displayed elevated N and P contents compared with secondary roots. The N∶P ratios in current leaves and branches were lower than those in perennial leaves and in perennial branches, whereas secondary roots demonstrated a higher N∶P ratio than absorbed roots. (2) Variability in nitrogen (N) and phosphorus (P) content differed among leaves, branches, and roots, as indicated by the overall coefficient of variation ranging from 12.3% to 44.4%. Notably, the highest variability was observed in absorbed roots, contrasting with the lowest variability observed in perennial leaves. (3) The adaptive responses of nitrogen (N) and phosphorus (P) stoichiometry within distinct organs of P. tabuliformis to environmental shifts exhibited notable variations. Specifically, the N content in perennial leaves, perennial branches, and current branches, along with the P content in perennial branches and both current branches and leaves, experienced significant decreases with escalating precipitation. Conversely, a significant uptrend in P content was observed in perennial leaves, perennial branches, current leaves, and current branches as the temperature increased. Simultaneously, the N∶P ratio in perennial leaves, perennial branches, and both current leaves and branches demonstrated substantial declines with rising temperatures. Notably, the P content in secondary roots displayed a marked increase with elevated temperature, whereas the N∶P ratio in secondary roots exhibited a notable decrease.
Both precipitation and temperature exert significant impacts on the nitrogen (N) and phosphorus (P) stoichiometry in the leaves, branches, and roots of P. tabuliformis. The diverse response trends and adaptation mechanisms of distinct organs to these two environmental factors exhibite marked variations.
[1] |
Yu Q, Chen Q S, Elser J J, et al. Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability[J]. Ecology Letters, 2010, 13(11): 1390−1399. doi: 10.1111/j.1461-0248.2010.01532.x
|
[2] |
Song Z L, Liu H Y, Zhao F J, et al. Ecological stoichiometry of N∶P: Si in China’s grasslands[J]. Plant and Soil, 2014, 380(1/2): 165−179.
|
[3] |
Roscher C, Thein S, Schmid B, et al. Complementary nitrogen use among potentially dominant species in a biodiversity experiment varies between two years[J]. Journal of Ecology, 2008, 96(3): 477−488. doi: 10.1111/j.1365-2745.2008.01353.x
|
[4] |
Han W X, Fang J Y, Guo D L, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytologist, 2005, 168(2): 377−385. doi: 10.1111/j.1469-8137.2005.01530.x
|
[5] |
杨明飞. 我国北方干旱至半湿润区分布的植物叶碳氮磷化学计量特征研究[D]. 兰州: 兰州大学, 2017.
Yang M F. Leaf carbon, nitrogen and phosphorus stoichiometry across plant species in the arid to semi-humid regions, North China[D]. Lanzhou: Lanzhou University, 2017.
|
[6] |
赵广帅, 刘珉, 石培礼, 等. 羌塘高原降水梯度植物叶片、根系性状变异和生态适应对策[J]. 生态学报, 2020, 40(1): 295−309.
Zhao G S, Liu M, Shi P L, et al. Variation of leaf and root traits and ecological adaptive strategies along a precipitation gradient on Changtang Plateau[J]. Acta Ecologica Sinica, 2020, 40(1): 295−309.
|
[7] |
宗宁, 石培礼, 赵广帅, 等. 降水量变化对藏北高寒草地养分限制的影响[J]. 植物生态学报, 2021, 45(5): 444−455. doi: 10.17521/cjpe.2020.0135
Zong N, Shi P L, Zhao G S, et al. Variations of nitrogen and phosphorus limitation along the environmental gradient in alpine grasslands on the Northern Xizang Plateau[J]. Chinese Journal of Plant Ecology, 2021, 45(5): 444−455. doi: 10.17521/cjpe.2020.0135
|
[8] |
Lü X T, Kong D L, Pan Q M, et al. Nitrogen and water availability interact to affect leaf stoichiometry in a semi-arid grassland[J]. Oecologia, 2012, 168(2): 301−310. doi: 10.1007/s00442-011-2097-7
|
[9] |
Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proceedings of the National Academy of Sciences, 2004, 101(30): 11001−11006. doi: 10.1073/pnas.0403588101
|
[10] |
Tjoelker M G, Reich P B, Oleksyn J. Changes in leaf nitrogen and carbohydrates underlie temperature and CO2 acclimation of dark respiration in five boreal tree species[J]. Plant, Cell & Environment, 1999, 22(7): 767−778.
|
[11] |
Han W X, Fang J Y, Reich P B, et al. Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China[J]. Ecology Letters, 2011, 14(8): 788−796. doi: 10.1111/j.1461-0248.2011.01641.x
|
[12] |
赵姗宇, 黎锦涛, 孙学凯, 等. 樟子松人工林原产地与不同自然降水梯度引种地土壤和植物叶片生态化学计量特征[J]. 生态学报, 2018, 38(20): 7189−7197.
Zhao S Y, Li J T, Sun X K, et al. Responses of soil and plant stoichiometric characteristics along rainfall gradients in Mongolian pine plantations in native and introduced regions[J]. Acta Ecologica Sinica, 2018, 38(20): 7189−7197.
|
[13] |
Chen Y H, Han W X, Tang L Y, et al. Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth form[J]. Ecography, 2013, 36(2): 178−184. doi: 10.1111/j.1600-0587.2011.06833.x
|
[14] |
王凯, 张大鹏, 宋立宁, 等. 氮沉降和降水增加对榆树幼苗不同器官碳氮磷分配格局的影响[J]. 林业科学, 2020, 56(3): 172−183.
Wang K, Zang D P, Song L N, et al. Effects of icreasing nitrogen peposition and precipitation on carbon, nitrogen, and phosphorus allocation in different organs of Ulmus pumila seedlings[J]. Scientia Silvae Sinicae, 2020, 56(3): 172−183.
|
[15] |
李俊慧, 彭国全, 杨冬梅. 常绿和落叶阔叶物种当年生小枝茎长度和茎纤细率对展叶效率的影响[J]. 植物生态学报, 2017, 41(6): 650−660. doi: 10.17521/cjpe.2016.0376
Li J H, Peng G Q, Yang D M. Effect of stem length to stem slender ratio of current-year twigs on the leaf display efficiency in evergreen and deciduous broadleaved trees[J]. Chinese Journal of Plant Ecology, 2017, 41(6): 650−660. doi: 10.17521/cjpe.2016.0376
|
[16] |
Yao F Y, Chen Y H, Yan Z B, et al. Biogeographic patterns of structural traits and C∶N∶P stoichiometry of tree twigs in China’s forests[J/OL]. PLoS One, 2015, 10(2): e0116391. https://orcid.org/0000-0001-8678-7147.
|
[17] |
邹丽梅. 亚热带6个树种细根形态比较与根序分级构型研究 [D]. 长沙: 中南林业科技大学, 2015.
Zou L M. Root identification and varitation in architecture of fine roots of subtropical tree species in southern China[D]. Changsha: Central South University of Forestry and Technology, 2015.
|
[18] |
Guo D L, Xia M X, Wei X, et al. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species[J]. New Phytologist, 2008, 180(3): 673−683. doi: 10.1111/j.1469-8137.2008.02573.x
|
[19] |
Freschet G T, Valverde-Barrantes O J, Tucker C M, et al. Climate, soil and plant functional types as drivers of global fine-root trait variation[J]. Journal of Ecology, 2017, 105(5): 1182−1196. doi: 10.1111/1365-2745.12769
|
[20] |
Hong J T, Wang X D, Wu J B. Stoichiometry of root and leaf nitrogen and phosphorus in a dry alpine steppe on the Northern Tibetan Plateau[J]. PLoS One, 2018, 9(10): e109052. doi: 10.1371/journal.pone.0109052
|
[21] |
张赟, 赵亚洲, 张春雨, 等. 北京松山油松种群结构及空间分布格局[J]. 应用与环境生物学报, 2009, 15(2): 175−179.
Zhang Y, Zhao Y Z, Zhang C Y, et al. Structure and spatial distribution of Pinus tabulaeformis population in the Songshan Nature Reserve, Beijing, China[J]. Chinese Journal of Applied and Environmental Biology, 2009, 15(2): 175−179.
|
[22] |
刘思文, 艾也博, 刘艳红. 北京松山油松叶功能性状沿海拔梯度的变化及其环境解释[J]. 北京林业大学学报, 2021, 43(4): 47−55.
Liu S W, Ai Y B, Liu Y H. Variations in leaf functional traits along the altitude gradient of Pinus tabuliformis and its environmental explanations in Beijing Songshan Mountain[J]. Journal of Beijing Forestry University, 2021, 43(4): 47−55.
|
[23] |
田岳梨, 杨航, 王芳玲, 等. 秦岭中段山脊油松叶功能性状差异及其对海拔梯度的响应[J]. 西北植物学报, 2021, 41(2): 300−309. doi: 10.7606/j.issn.1000-4025.2021.02.0300
Tian Y L, Yang H, Wang F L, et al. Difference of leaf functional traits of Pinus tabuliformis and its response to altitude gradient in the middle of Qinling mountains[J]. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(2): 300−309. doi: 10.7606/j.issn.1000-4025.2021.02.0300
|
[24] |
张凯, 侯继华, 梁冬. 降水梯度对油松天然林内主要植物叶功能性状的影响[J]. 中南林业科技大学学报, 2016, 36(7): 48−54.
Zhang K, Hou J H, Liang D. Effect of precipitation gradients on leaf functional traits of main plant in Pinus tabulaeformis forest[J]. Journal of Central South University of Forestry and Technology, 2016, 36(7): 48−54.
|
[25] |
姜沛沛, 曹扬, 陈云明, 等. 不同林龄油松(Pinus tabulaeformis)人工林植物、凋落物与土壤C、N、P化学计量特征[J]. 生态学报, 2016, 36(19): 6188−6197.
Jiang P P, Cao Y, Chen Y M, et al. Variation of C, N, and P stoichiometry in plant tissue, litter, and soil during stand development in Pinus tabulaeformis plantation[J]. Acta Ecologica Sinica, 2016, 36(19): 6188−6196.
|
[26] |
黄萍, 刘艳红. 北京松山油松林林分结构和地形对幼苗更新的影响[J]. 生态学杂志, 2018, 37(4): 1003−1009.
Huang P, Liu Y H. Effects of stand structure and terrain factors on seedling regeneration of Pinus tabuliformis forest in the Songshan National Nature Reserve, Beijing[J]. Chinese Journal of Ecology, 2018, 37(4): 1003−1009.
|
[27] |
欧晓岚, 刘艳红. 不同坡向及径级油松异龄叶的功能性状[J]. 南京林业大学学报(自然科学版), 2017, 41(4): 80−88.
Ou X L, Liu Y H. Effect of age, slope aspects and diameter classes on leaf functional traits of Pinus tabulaeformis in Songshan, Beijing[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2017, 41(4): 80−88.
|
[28] |
张凯. 油松各器官功能性状及其对环境因子响应的研究[D]. 北京: 北京林业大学, 2016.
Zhang K. The functional traits of different organs of Pinus tabulaeformis and their response to the environment[D]. Beijing: Beijing Forestry University, 2016.
|
[29] |
鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000.
Bao S D. Soil agrochemical analysis[M]. Beijing: China Agriculture Press, 2000.
|
[30] |
杨蕾, 孙晗, 樊艳文, 等. 长白山木本植物叶片氮磷含量的海拔梯度格局及影响因子[J]. 植物生态学报, 2017, 41(12): 1228−1238. doi: 10.17521/cjpe.2017.0115
Yang L, Sun H, Fan Y W, et al. Changes in leaf nitrogen and phosphorus stoichiometry of woody plants along an altitudinal gradient in Changbai Mountain, China[J]. Chinese Journal of Plant Ecology, 2017, 41(12): 1228−1238. doi: 10.17521/cjpe.2017.0115
|
[31] |
He J S, Wang X P, Flynn D F B, et al. Taxonomic, phylogenetic, and environmental trade-offs between leaf productivity and persistence[J]. Ecology, 2009, 90(10): 2779−2791. doi: 10.1890/08-1126.1
|
[32] |
Yuan Z Y, Chen H Y, Reich P B. Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus[J]. Nature Communications, 2011, 2: 344. doi: 10.1038/ncomms1346
|
[33] |
Wang Z Q, Gong H Y, Sardans J, et al. Divergent nitrogen and phosphorus allocation strategies in terrestrial plant leaves and fine roots: a global meta-analysis[J]. Journal of Ecology, 2022, 110: 2745−2758. doi: 10.1111/1365-2745.13985
|
[34] |
Reich P B, Tjoelker M G, Pregitzer K S, et al. Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants[J]. Ecology Letters, 2008, 11(8): 793−801. doi: 10.1111/j.1461-0248.2008.01185.x
|
[35] |
周红艳, 吴琴, 陈明月, 等. 鄱阳湖沙山单叶蔓荆不同器官碳、氮、磷化学计量特征[J]. 植物生态学报, 2017, 41(4): 461−470. doi: 10.17521/cjpe.2016.0231
Zhou H Y, Wu Q, Chen M Y, et al. C, N and P stoichiometry in different organs of Vitex rotundifolia in a Poyang Lake desertification hill[J]. Chinese Journal of Plant Ecology, 2017, 41(4): 461−470. doi: 10.17521/cjpe.2016.0231
|
[36] |
Pregitzer K S, de Forest J L, Burton A J, et al. Fine root architecture of nine north American trees[J]. Ecological Monographs, 2002, 72(2): 293−309. doi: 10.1890/0012-9615(2002)072[0293:FRAONN]2.0.CO;2
|
[37] |
Li A, Guo D L, Wang Z Q, et al. Nitrogen and phosphorus allocation in leaves, twigs, and fine roots across 49 temperate, subtropical and tropical tree species: a hierarchical pattern[J]. Functional Ecology, 2010, 24(1): 224−232. doi: 10.1111/j.1365-2435.2009.01603.x
|
[38] |
Bo H J, Wen C Y, Song L J, et al. Fine-root responses of Populus tomentosa forests to stand density[J]. Forests, 2018, 9(9): 562. doi: 10.3390/f9090562
|
[39] |
Hishi T. Heterogeneity of individual roots within the fine root architecture: causal links between physiological and ecosystem functions[J]. Journal of Forest Research, 2007, 12(2): 126−133. doi: 10.1007/s10310-006-0260-5
|
[40] |
Zadworny M, Eissenstat D M. Contrasting the morphology, anatomy and fungal colonization of new pioneer and fibrous roots[J]. New Phytologist, 2011, 190(1): 213−221. doi: 10.1111/j.1469-8137.2010.03598.x
|
[41] |
Williams K, Percival F, Merino J, et al. Estimation of tissue construction cost from heat of combustion and organic nitrogen content[J]. Plant, Cell & Environment, 1987, 10(9): 725−734.
|
[42] |
Kerkhoff A J, Fagan W F, Elser J J, et al. Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants[J]. The American Naturalist, 2006, 168(4): E103−E122. doi: 10.1086/507879
|
[43] |
Sims D A, Pearcy R W. Response of leaf anatomy and photosynthetic capacity in Alocasia macrorrhiza (Araceae) to a transfer from low to high light[J]. American Journal of Botany, 1992, 79(4): 449−455. doi: 10.1002/j.1537-2197.1992.tb14573.x
|
[44] |
Bleecker A B. The evolutionary basis of leaf senescence: method to the madness?[J]. Current Opinion in Plant Biology, 1998, 1(1): 73−78. doi: 10.1016/S1369-5266(98)80131-3
|
[45] |
Field C, Mooney H A. Leaf age and seasonal effects on light, water, and nitrogen use efficiency in a California shrub[J]. Oecologia, 1983, 56(2-3): 348−355. doi: 10.1007/BF00379711
|
[46] |
刘万德, 苏建荣, 李帅锋, 等. 云南普洱季风常绿阔叶林优势物种不同生长阶段叶片碳、氮、磷化学计量特征[J]. 植物生态学报, 2015, 39(1): 52−62. doi: 10.17521/cjpe.2015.0006
Liu W D, Su J R, Li S F, et al. Leaf carbon, nitrogen and phosphorus stoichiometry at different growth stages in dominant tree species of a monsoon broad-leaved evergreen forest in Pu’er, Yunnan Province, China[J]. Chinese Journal of Plant ecology, 2015, 39(1): 52−62. doi: 10.17521/cjpe.2015.0006
|
[47] |
汪涛, 杨元合, 马文红. 中国土壤磷库的大小、分布及其影响因素[J]. 北京大学学报(自然科学版), 2008, 44(6): 945−952.
Wang T, Yang Y H, Ma W H. The size, distribution and influencing factors of soil phosphorus pools in China storage, patterns and environmental controls of soil phosphorus in China[J]. Acta Scientiarum Naturalium Universitae Pekinensis (Natural Sciences Edition), 2008, 44(6): 945−952.
|
[48] |
Smeck N E. Phosphorus dynamics in soils and landscapes[J]. Geoderma, 1985, 36(3−4): 185−199. doi: 10.1016/0016-7061(85)90001-1
|
[49] |
宁志英, 李玉霖, 杨红玲, 等. 科尔沁沙地主要植物细根和叶片碳、氮、磷化学计量特征[J]. 植物生态学报, 2017, 41(10): 1069−1080. doi: 10.17521/cjpe.2017.0048
Ning Z Y, Li Y L, Yang H L, et al. Carbon, nitrogen and phosphorus stoichiometry in leaves and fine roots of dominant plants in Horqin Sandy Land[J]. Chinese Journal of Plant Ecology, 2017, 41(10): 1069−1080. doi: 10.17521/cjpe.2017.0048
|
[50] |
高德新, 张伟, 任成杰, 等. 黄土高原典型植被恢复过程土壤与叶片生态化学计量特征[J]. 生态学报, 2019, 39(10): 3622−3630.
Gao D X, Zhang W, Ren C J, et al. Ecological stoichiometry characteristics of soil and leaves during the recovery process of typical vegetation on the Loess Plateau[J]. Acta Ecologica Sinica, 2019, 39(10): 3622−3630.
|
[51] |
姜沛沛, 曹扬, 陈云明, 等. 陕西省3种主要树种叶片、凋落物和土壤N、P化学计量特征[J]. 生态学报, 2017, 37(2): 443−454.
Jiang P P, Cao Y, Chen Y M, et al. N and P stoichiometric characteristics of leaves, litter, and soil for three dominant tree species in the Shaanxi Province[J]. Acta Ecologica Sinica, 2017, 37(2): 443−454.
|
[52] |
He J S, Fang J Y, Wang Z H, et al. Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China[J]. Oecologia, 2006, 149(1): 115−122. doi: 10.1007/s00442-006-0425-0
|
[53] |
张慧, 郭卫红, 杨秀清, 等. 麻栎种源林叶片碳、氮、磷化学计量特征的变异[J]. 应用生态学报, 2016, 27(7): 2225−2230.
Zhang H, Guo W H, Yang X Q, et al. Variations in leaf C, N, P stoichiometry of Quercus acutissima provenance forests[J]. Chinese Journal of Applied Ecology, 2016, 27(7): 2225−2230.
|
[54] |
Dijkstra F A, Blumenthal D, Morgan J A, et al. Contrasting effects of elevated CO2 and warming on nitrogen cycling in a semiarid grassland[J]. New Phytologist, 2010, 187(2): 426−437. doi: 10.1111/j.1469-8137.2010.03293.x
|
[55] |
Liu G F, Freschet G T, Pan X, et al. Coordinated variation in leaf and root traits across multiple spatial scales in Chinese semiarid and arid ecosystems[J]. New Phytologist, 2010, 188(2): 543−553. doi: 10.1111/j.1469-8137.2010.03388.x
|
[56] |
Mcgroddy M, Daufresne T, Hedin L. Scaling of C∶N∶P stoichiometry in forests worldwide: implications of terrestrial redfield type rations[J]. Ecology, 2004, 85(9): 2390−2401. doi: 10.1890/03-0351
|
[57] |
Lovelock C E, Feller I C, Ball M C, et al. Testing the growth rate vs. geochemical hypothesis for latitudinal variation in plant nutrients[J]. Ecology Letters, 2007, 10(12): 1154−1163. doi: 10.1111/j.1461-0248.2007.01112.x
|
[58] |
任书杰, 于贵瑞, 陶波, 等. 中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究[J]. 环境科学, 2007, (12): 2665−2673. doi: 10.3321/j.issn:0250-3301.2007.12.001
Ren S J, Yu G R, Tao B, et al. Leaf nitrogen and phosphorus stoichiometry across 654 terrestrial plant species in NSTEC[J]. Environmental Science, 2007, (12): 2665−2673. doi: 10.3321/j.issn:0250-3301.2007.12.001
|