• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Xue Li, Liu Xiaoxia, Wang Chenhe, Zhang Jianguo, Rao Guodong. Evolution and expression analysis of the class Ⅲ peroxidase family in olive[J]. Journal of Beijing Forestry University, 2023, 45(4): 36-49. DOI: 10.12171/j.1000-1522.20210291
Citation: Xue Li, Liu Xiaoxia, Wang Chenhe, Zhang Jianguo, Rao Guodong. Evolution and expression analysis of the class Ⅲ peroxidase family in olive[J]. Journal of Beijing Forestry University, 2023, 45(4): 36-49. DOI: 10.12171/j.1000-1522.20210291

Evolution and expression analysis of the class Ⅲ peroxidase family in olive

More Information
  • Received Date: August 02, 2021
  • Revised Date: September 16, 2021
  • Accepted Date: October 27, 2022
  • Available Online: October 31, 2022
  • Published Date: April 24, 2023
  •   Objective  The class Ⅲ peroxidase is a group of plant-specific oxidoreductases, and plays an important role in plant development and stress response. This paper presents a detailed overview of evolution and expression of olive class Ⅲ PRX gene family, aiming to provide a reference for olive molecular breeding in the future.
      Method  With some bioinformatic tools, we finished the identification of the olive class Ⅲ PRX genes, completed the analyses of phylogenetic relationship, gene mapping on the chromosomes, pairs of duplicates, motifs, gene structure, cis-acting elements and gene expression in different tissues or biotic stresses, and did a verification of RNA-seq by RT-qPCR.
      Result  (1) 106 OePRX genes were obtained, and classified into 14 groups based on the phylogeny with AtPRX and PtPRX. (2) OePRX genes were unevenly located on 23 chromosomes, and ragment replication was the main driving force for the expansion of gene family. Compared with AtPRX, OePRX had a closer relationship with PtPRX. (3) The characterization of pI, MW, motifs, gene structure, signal peptide, and expression in different tissues had the expected group-conserved patterns. The promoters of OePRX contained a variety of development and harmone elements; 38% of OePRX genes was differentially expressed in heat, drought and waterlogged stress.
      Conclusion  The differential expansion and differential expression patterns may imply flexibility in neofunctionalization of duplicated class Ⅲ peroxidase genes, which is of adaptive significance to the strong resistance of olive to a diversity of conditions, hence contributing to the importance of olive as a Mediterranean Basin staple food.
  • [1]
    Unver T, Wu Z, Sterck L, et al. Genome of wild olive and the evolution of oil biosynthesis[J/OL]. Proceedings of the National Academy of Sciencesof the United States of America, 2017 [2017−10−09]. DOI: 10.1073/pnas.170862111.
    [2]
    Rao G, Zhang J, Liu X, et al. De novo assembly of a new Olea europaea genome accession using nanopore sequencing[J/OL]. Horticulture Research, 2021 [2021−04−01]. DOI: 10.1038/s41438-021-00498-y.
    [3]
    Mathé C, Barre A, Jourda C, et al. Evolution and expression of class Ⅲ peroxidases[J]. Archives of Biochemistry and Biophysics, 2010, 500(1): 58−65. doi: 10.1016/j.abb.2010.04.007
    [4]
    Passardi F, Bakalovic N, Teixeira F K, et al. Prokaryotic origins of the non-animal peroxidase superfamily and organelle-mediated transmission to eukaryotes[J]. Genomics, 2007, 89(5): 567−579. doi: 10.1016/j.ygeno.2007.01.006
    [5]
    Shigeoka S, Ishikawa T, Tamoi M, et al. Regulation and function of ascorbate peroxidase isoenzymes[J]. Journal of Experimental Botany, 2002, 53(372): 1305−1319. doi: 10.1093/jexbot/53.372.1305
    [6]
    Skulachev V P. Cytochrome c in the apoptotic and antioxidant cascades[J]. FEBS Letters, 1998, 423(3): 275−280. doi: 10.1016/S0014-5793(98)00061-1
    [7]
    Ruiz-Dueñas F J, Camarero S, Pérez-Boada M, et al. A new versatile peroxidase from Pleurotus[J]. Biochemical Society Transactions, 2001, 29(Pt2): 116−122.
    [8]
    Passardi F, Cosio C, Penel C, et al. Peroxidases have more functions than a Swiss army knife[J]. Plant Cell Reports, 2005, 24(5): 255−265. doi: 10.1007/s00299-005-0972-6
    [9]
    Passardi F, Penel C, Dunand C. Performing the paradoxical: how plant peroxidases modify the cell wall[J]. Trends in Plant Science, 2004, 9(11): 534−540. doi: 10.1016/j.tplants.2004.09.002
    [10]
    Allison S D, Schultz J C. Differential activity of peroxidase isozymes in response to wounding, gypsy moth, and plant hormones in northern red oak (Quercus rubra L.)[J]. Journal of Chemical Ecology, 2004, 30(7): 1363−1379. doi: 10.1023/B:JOEC.0000037745.66972.3e
    [11]
    Gazaryan I G, Lagrimini L M, Ashby G A, et al. Mechanism of indole-3-acetic acid oxidation by plant peroxidases: anaerobic stopped-flow spectrophotometric studies on horseradish and tobacco peroxidases[J]. The Biochemical Journal, 1996, 313(Pt3): 841−847.
    [12]
    Almagro L, Gómez Ros L V, Belchi-Navarro S, et al. Class Ⅲ peroxidases in plant defence reactions[J]. Journal of Experimental Botany, 2008, 60(2): 377−390.
    [13]
    Tognolli M, Penel C, Greppin H, et al. Analysis and expression of the class Ⅲ peroxidase large gene family in Arabidopsis thaliana[J]. Gene, 2002, 288(1): 129−138.
    [14]
    Passardi F, Longet D, Penel C, et al. The class Ⅲ peroxidase multigenic family in rice and its evolution in land plants[J]. Phytochemistry, 2004, 65(13): 1879−1893. doi: 10.1016/j.phytochem.2004.06.023
    [15]
    Wang Y, Wang Q, Zhao Y, et al. Systematic analysis of maize class Ⅲ peroxidase gene family reveals a conserved subfamily involved in abiotic stress response[J]. Gene, 2015, 566(1): 95−108. doi: 10.1016/j.gene.2015.04.041
    [16]
    Ren L L, Liu Y J, Liu H J, et al. Subcellular relocalization and positive selection play key roles in the retention of duplicate genes of Populus class Ⅲ peroxidase family[J]. The Plant Cell, 2014, 26(6): 2404−2419. doi: 10.1105/tpc.114.124750
    [17]
    Cao Y, Han Y, Meng D, et al. Structural, evolutionary, and functional analysis of the class Ⅲ peroxidase gene family in chinese pear (Pyrus bretschneideri)[J/OL]. Frontier in Plant Science, 2016 [2016−12−09]. DOI: 10.3389/fpls.2016.01874.
    [18]
    Xiao H, Wang C, Khan N, et al. Genome-wide identification of the class Ⅲ POD gene family and their expression profiling in grapevine (Vitis vinifera L.)[J/OL]. BMC Genomics, 2020.[2020−06−29]. DOI: 10.1186/s12864-020-06828-z.
    [19]
    Wu C, Ding X, Ding Z, et al. The class Ⅲ peroxidase (POD) gene family in cassava: identification, phylogeny, duplication, and expression[J/OL]. International Journey of Molecular Sciences, 2019 [2019−06−03]. DOI: 10.3390/ijms20112730.
    [20]
    Yan J, Su P, Li W, et al. Genome-wide and evolutionary analysis of the class Ⅲ peroxidase gene family in wheat and Aegilops tauschii reveals that some members are involved in stress responses[J/OL]. BMC Genomics, 2019 [2019−08−22]. DOI: 10.1186/s12864-019-6006-5.
    [21]
    Fernández-Pérez F, Pomar F, Pedreño M A, et al. The suppression of AtPrx52 affects fibers but not xylem lignification in Arabidopsis by altering the proportion of syringyl units[J]. Physiologia Plantarum, 2015, 154(3): 395−406. doi: 10.1111/ppl.12310
    [22]
    Fernández-Pérez F, Vivar T, Pomar F, et al. Peroxidase 4 is involved in syringyl lignin formation in Arabidopsis thaliana[J]. Journal of Plant Physiology, 2015, 175(1): 86−94.
    [23]
    Herrero J, Fernández-Pérez F, Yebra T, et al. Bioinformatic and functional characterization of the basic peroxidase 72 from Arabidopsis thaliana involved in lignin biosynthesis[J]. Planta, 2013, 237(6): 1599−1612. doi: 10.1007/s00425-013-1865-5
    [24]
    Wu Y, Yang Z, How J, et al. Overexpression of a peroxidase gene (AtPrx64) of Arabidopsis thaliana in tobacco improves plant’s tolerance to aluminum stress[J]. Plant Molecular Biology, 2017, 95(1): 157−168.
    [25]
    Kidwai M, Dhar Y V, Gautam N, et al. Oryza sativa class Ⅲ peroxidase (OsPRX38) overexpression in Arabidopsis thaliana reduces arsenic accumulation due to apoplastic lignification[J]. Journal of Hazardous Materials, 2019, 362(15): 383−393.
    [26]
    Ramírez-Tejero J A, Jiménez-Ruiz J, Leyva-Pérez M d l O, et al. Gene expression pattern in olive tree organs (Olea europaea L.)[J/OL]. Genes, 2020 [2020−05−12]. DOI: 10.3390/genes11050544.
    [27]
    Tsamir-Rimon M, Ben-Dor S, Feldmesser E, et al. Rapid starch degradation in the wood of olive trees under heat and drought is permitted by three stress-specific beta amylases[J]. New Phytologist, 2021, 229(3): 1398−1414. doi: 10.1111/nph.16907
    [28]
    Dastkar E, Soleimani A, Jafary H, et al. Differential expression of genes in olive leaves and buds of ON- versus OFF-crop trees[J]. Scientific Reports, 2020, 10(1): 1−13. doi: 10.1038/s41598-019-56847-4
    [29]
    Li H, Poulos T L. Structural variation in heme enzymes: a comparative analysis of peroxidase and P450 crystal structures[J]. Structure, 1994, 2(6): 461−464. doi: 10.1016/S0969-2126(00)00046-0
    [30]
    Lu S, Wang J, Chitsaz F, et al. CDD/SPARCLE: the conserved domain database in 2020[J]. Nucleic Acids Research, 2019, 48(D1): D265−D268.
    [31]
    Oliveira R A d C, de Andrade A S, Imparato D O, et al. Analysis of Arabidopsis thaliana redox gene network indicates evolutionary expansion of class Ⅲ peroxidase in plants[J/OL]. Scientific Reports, 2019 [2019−10−31]. DOI: 10.1038/s41598-019-52299-y.
    [32]
    Tuskan G A, DiFazio S, Jansson S, et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray)[J]. Science, 2006, 313: 1596−1604. doi: 10.1126/science.1128691
    [33]
    芮伟康. 钙与过氧化物酶在梨石细胞合成中的关系[D]. 南京: 南京农业大学, 2017.

    Rui W K. Effects of calcium and peroxidase involved in stone cells formation in pear fruit[D]. Nanjing: Nanjing Agricultural Unversity, 2017.
    [34]
    薛亚莉. 水稻Ⅲ类过氧化物酶基因OsPER2和OsPER4在细胞壁合成中的功能分析[D]. 武汉: 华中农业大学, 2021.

    Xue Y L. Functional analysis of rice class Ⅲ peroxdases genes OsPER2 and OsPER4 in cell wall synthesis[D]. Wuhan: Huazhong Agricultural University, 2021.
    [35]
    Teufel A I, Johnson M M, Laurent J M, et al. The many nuanced evolutionary consequences of duplicated genes[J]. Molecular Biology and Evolution, 2018, 36(2): 304−314.
    [36]
    Shigeto J, Tsutsumi Y. Diverse functions and reactions of class Ⅲ peroxidases[J]. New Phytologist, 2016, 209(4): 1395−1402. doi: 10.1111/nph.13738
    [37]
    Xu S, Chong K. Remembering winter through vernalisation[J]. Nature Plants, 2018, 4(12): 997−1009. doi: 10.1038/s41477-018-0301-z
    [38]
    Passardi F, Tognolli M, de Meyer M, et al. Two cell wall associated peroxidases from Arabidopsis influence root elongation[J]. Planta, 2006, 223(5): 965−974. doi: 10.1007/s00425-005-0153-4
    [39]
    Kim Y H, Kim C Y, Song W K, et al. Overexpression of sweetpotato swpa4 peroxidase results in increased hydrogen peroxide production and enhances stress tolerance in tobacco[J]. Planta, 2008, 227(4): 867−881. doi: 10.1007/s00425-007-0663-3
    [40]
    Kim B H, Kim S Y, Nam K H. Genes encoding plant-specific class Ⅲ peroxidases are responsible for increased cold tolerance of the brassinosteroid-insensitive 1 mutant[J]. Molecules and Cells, 2012, 34(6): 539−548. doi: 10.1007/s10059-012-0230-z
    [41]
    Kumar S, Jaggi M, Sinha A K. Ectopic overexpression of vacuolar and apoplastic Catharanthus roseus peroxidases confers differential tolerance to salt and dehydration stress in transgenic tobacco[J]. Protoplasma, 2012, 249(2): 423−432. doi: 10.1007/s00709-011-0294-1
    [42]
    Choi H W, Kim Y J, Lee S C, et al. Hydrogen peroxide generation by the pepper extracellular peroxidase CaPO2 activates local and systemic cell death and defense response to bacterial pathogens[J]. Plant Physiology, 2007, 145(3): 890−904. doi: 10.1104/pp.107.103325
    [43]
    Daudi A, Cheng Z, O’Brien J A, et al. The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity[J]. The Plant Cell, 2012, 24(1): 275−287. doi: 10.1105/tpc.111.093039
    [44]
    Wu S, Han B, Jiao Y. Genetic contribution of paleopolyploidy to adaptive evolution in angiosperms[J]. Molecular Plant, 2020, 13(1): 59−71. doi: 10.1016/j.molp.2019.10.012
  • Cited by

    Periodical cited type(14)

    1. 吕坤,班以琛,坝仕宏,刘洋,文剑. 基于抚育整枝目标的毛白杨枝条冲击切割性能适应性分析. 北京林业大学学报. 2024(04): 158-166 . 本站查看
    2. 阮颖超,苏比·热西塔洪,林熙,李明,范少辉,冯随起,陈志云,马祥庆,何宗明. 修枝强度对杉木人工林无节材形成及质量的影响. 林业科学. 2024(06): 50-59 .
    3. 陈明旭,吴雅琳,刘雨晖,李明,吴鹏飞,马祥庆. 修枝对杉木节子发育和无节材比例的影响. 森林与环境学报. 2024(05): 449-456 .
    4. 谭长强,杨丽萍,梁星星,彭玉华,莫雅芳,何峰,申文辉,钟瑜. 不同修枝强度及配方施肥对红锥幼林生长的影响. 广西林业科学. 2023(02): 167-172 .
    5. 卢翠香,李桂兰,任世奇,刘媛,蒋小波,黄明军,韦振道. 人工修枝对尾巨桉胶合板性能的影响. 广西林业科学. 2023(04): 522-527 .
    6. 张士韬,欧阳林男,陈少雄,杨嘉麒. 间伐与修枝对人工林木材质量影响的研究进展. 广西林业科学. 2023(06): 803-811 .
    7. 谢耀坚. 科技创新引领中国桉树研究和产业迅猛发展. 桉树科技. 2022(01): 35-42 .
    8. 白卫国,黎世鑫,李蔷薇,熊涛,赵佳宁,任世奇. 不同种植密度与修枝强度对幼龄尾巨桉生长量的影响. 桉树科技. 2022(02): 20-24 .
    9. 苏福聪,李书玲,黄慧敏,刘杰钊,罗克展,梁志诚,刘媛,任世奇. 修枝对尾巨桉生长量的影响. 桉树科技. 2021(01): 31-35 .
    10. 刘罗新,罗建中,王楚彪,卢万鸿,林彦,邢晓文. 桉树旋切单板用材质量研究现状. 桉树科技. 2021(03): 63-68 .
    11. 莫柳园,李秋荔,周鑫,温晓毅,刘资华,任世奇. 施肥和修枝对巨尾桉幼林生长的影响. 桉树科技. 2021(03): 44-46 .
    12. 李国新,黎颖锋,邓炳权,龚益广,杨锦昌. 广东郁南尾巨桉人工林密度效应. 林业与环境科学. 2017(04): 9-13 .
    13. 任世奇,卢翠香,邓紫宇,郭东强,伍琪. 修枝对大花序桉幼林生长和木材密度的影响. 西南大学学报(自然科学版). 2017(11): 45-50 .
    14. 王杰,钟志兴. 修枝对巨尾桉生长动态及单板质量的影响. 花卉. 2015(17): 102-103 .

    Other cited types(4)

Catalog

    Article views (785) PDF downloads (115) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return