Citation: | Xue Li, Liu Xiaoxia, Wang Chenhe, Zhang Jianguo, Rao Guodong. Evolution and expression analysis of the class Ⅲ peroxidase family in olive[J]. Journal of Beijing Forestry University, 2023, 45(4): 36-49. DOI: 10.12171/j.1000-1522.20210291 |
[1] |
Unver T, Wu Z, Sterck L, et al. Genome of wild olive and the evolution of oil biosynthesis[J/OL]. Proceedings of the National Academy of Sciencesof the United States of America, 2017 [2017−10−09]. DOI: 10.1073/pnas.170862111.
|
[2] |
Rao G, Zhang J, Liu X, et al. De novo assembly of a new Olea europaea genome accession using nanopore sequencing[J/OL]. Horticulture Research, 2021 [2021−04−01]. DOI: 10.1038/s41438-021-00498-y.
|
[3] |
Mathé C, Barre A, Jourda C, et al. Evolution and expression of class Ⅲ peroxidases[J]. Archives of Biochemistry and Biophysics, 2010, 500(1): 58−65. doi: 10.1016/j.abb.2010.04.007
|
[4] |
Passardi F, Bakalovic N, Teixeira F K, et al. Prokaryotic origins of the non-animal peroxidase superfamily and organelle-mediated transmission to eukaryotes[J]. Genomics, 2007, 89(5): 567−579. doi: 10.1016/j.ygeno.2007.01.006
|
[5] |
Shigeoka S, Ishikawa T, Tamoi M, et al. Regulation and function of ascorbate peroxidase isoenzymes[J]. Journal of Experimental Botany, 2002, 53(372): 1305−1319. doi: 10.1093/jexbot/53.372.1305
|
[6] |
Skulachev V P. Cytochrome c in the apoptotic and antioxidant cascades[J]. FEBS Letters, 1998, 423(3): 275−280. doi: 10.1016/S0014-5793(98)00061-1
|
[7] |
Ruiz-Dueñas F J, Camarero S, Pérez-Boada M, et al. A new versatile peroxidase from Pleurotus[J]. Biochemical Society Transactions, 2001, 29(Pt2): 116−122.
|
[8] |
Passardi F, Cosio C, Penel C, et al. Peroxidases have more functions than a Swiss army knife[J]. Plant Cell Reports, 2005, 24(5): 255−265. doi: 10.1007/s00299-005-0972-6
|
[9] |
Passardi F, Penel C, Dunand C. Performing the paradoxical: how plant peroxidases modify the cell wall[J]. Trends in Plant Science, 2004, 9(11): 534−540. doi: 10.1016/j.tplants.2004.09.002
|
[10] |
Allison S D, Schultz J C. Differential activity of peroxidase isozymes in response to wounding, gypsy moth, and plant hormones in northern red oak (Quercus rubra L.)[J]. Journal of Chemical Ecology, 2004, 30(7): 1363−1379. doi: 10.1023/B:JOEC.0000037745.66972.3e
|
[11] |
Gazaryan I G, Lagrimini L M, Ashby G A, et al. Mechanism of indole-3-acetic acid oxidation by plant peroxidases: anaerobic stopped-flow spectrophotometric studies on horseradish and tobacco peroxidases[J]. The Biochemical Journal, 1996, 313(Pt3): 841−847.
|
[12] |
Almagro L, Gómez Ros L V, Belchi-Navarro S, et al. Class Ⅲ peroxidases in plant defence reactions[J]. Journal of Experimental Botany, 2008, 60(2): 377−390.
|
[13] |
Tognolli M, Penel C, Greppin H, et al. Analysis and expression of the class Ⅲ peroxidase large gene family in Arabidopsis thaliana[J]. Gene, 2002, 288(1): 129−138.
|
[14] |
Passardi F, Longet D, Penel C, et al. The class Ⅲ peroxidase multigenic family in rice and its evolution in land plants[J]. Phytochemistry, 2004, 65(13): 1879−1893. doi: 10.1016/j.phytochem.2004.06.023
|
[15] |
Wang Y, Wang Q, Zhao Y, et al. Systematic analysis of maize class Ⅲ peroxidase gene family reveals a conserved subfamily involved in abiotic stress response[J]. Gene, 2015, 566(1): 95−108. doi: 10.1016/j.gene.2015.04.041
|
[16] |
Ren L L, Liu Y J, Liu H J, et al. Subcellular relocalization and positive selection play key roles in the retention of duplicate genes of Populus class Ⅲ peroxidase family[J]. The Plant Cell, 2014, 26(6): 2404−2419. doi: 10.1105/tpc.114.124750
|
[17] |
Cao Y, Han Y, Meng D, et al. Structural, evolutionary, and functional analysis of the class Ⅲ peroxidase gene family in chinese pear (Pyrus bretschneideri)[J/OL]. Frontier in Plant Science, 2016 [2016−12−09]. DOI: 10.3389/fpls.2016.01874.
|
[18] |
Xiao H, Wang C, Khan N, et al. Genome-wide identification of the class Ⅲ POD gene family and their expression profiling in grapevine (Vitis vinifera L.)[J/OL]. BMC Genomics, 2020.[2020−06−29]. DOI: 10.1186/s12864-020-06828-z.
|
[19] |
Wu C, Ding X, Ding Z, et al. The class Ⅲ peroxidase (POD) gene family in cassava: identification, phylogeny, duplication, and expression[J/OL]. International Journey of Molecular Sciences, 2019 [2019−06−03]. DOI: 10.3390/ijms20112730.
|
[20] |
Yan J, Su P, Li W, et al. Genome-wide and evolutionary analysis of the class Ⅲ peroxidase gene family in wheat and Aegilops tauschii reveals that some members are involved in stress responses[J/OL]. BMC Genomics, 2019 [2019−08−22]. DOI: 10.1186/s12864-019-6006-5.
|
[21] |
Fernández-Pérez F, Pomar F, Pedreño M A, et al. The suppression of AtPrx52 affects fibers but not xylem lignification in Arabidopsis by altering the proportion of syringyl units[J]. Physiologia Plantarum, 2015, 154(3): 395−406. doi: 10.1111/ppl.12310
|
[22] |
Fernández-Pérez F, Vivar T, Pomar F, et al. Peroxidase 4 is involved in syringyl lignin formation in Arabidopsis thaliana[J]. Journal of Plant Physiology, 2015, 175(1): 86−94.
|
[23] |
Herrero J, Fernández-Pérez F, Yebra T, et al. Bioinformatic and functional characterization of the basic peroxidase 72 from Arabidopsis thaliana involved in lignin biosynthesis[J]. Planta, 2013, 237(6): 1599−1612. doi: 10.1007/s00425-013-1865-5
|
[24] |
Wu Y, Yang Z, How J, et al. Overexpression of a peroxidase gene (AtPrx64) of Arabidopsis thaliana in tobacco improves plant’s tolerance to aluminum stress[J]. Plant Molecular Biology, 2017, 95(1): 157−168.
|
[25] |
Kidwai M, Dhar Y V, Gautam N, et al. Oryza sativa class Ⅲ peroxidase (OsPRX38) overexpression in Arabidopsis thaliana reduces arsenic accumulation due to apoplastic lignification[J]. Journal of Hazardous Materials, 2019, 362(15): 383−393.
|
[26] |
Ramírez-Tejero J A, Jiménez-Ruiz J, Leyva-Pérez M d l O, et al. Gene expression pattern in olive tree organs (Olea europaea L.)[J/OL]. Genes, 2020 [2020−05−12]. DOI: 10.3390/genes11050544.
|
[27] |
Tsamir-Rimon M, Ben-Dor S, Feldmesser E, et al. Rapid starch degradation in the wood of olive trees under heat and drought is permitted by three stress-specific beta amylases[J]. New Phytologist, 2021, 229(3): 1398−1414. doi: 10.1111/nph.16907
|
[28] |
Dastkar E, Soleimani A, Jafary H, et al. Differential expression of genes in olive leaves and buds of ON- versus OFF-crop trees[J]. Scientific Reports, 2020, 10(1): 1−13. doi: 10.1038/s41598-019-56847-4
|
[29] |
Li H, Poulos T L. Structural variation in heme enzymes: a comparative analysis of peroxidase and P450 crystal structures[J]. Structure, 1994, 2(6): 461−464. doi: 10.1016/S0969-2126(00)00046-0
|
[30] |
Lu S, Wang J, Chitsaz F, et al. CDD/SPARCLE: the conserved domain database in 2020[J]. Nucleic Acids Research, 2019, 48(D1): D265−D268.
|
[31] |
Oliveira R A d C, de Andrade A S, Imparato D O, et al. Analysis of Arabidopsis thaliana redox gene network indicates evolutionary expansion of class Ⅲ peroxidase in plants[J/OL]. Scientific Reports, 2019 [2019−10−31]. DOI: 10.1038/s41598-019-52299-y.
|
[32] |
Tuskan G A, DiFazio S, Jansson S, et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray)[J]. Science, 2006, 313: 1596−1604. doi: 10.1126/science.1128691
|
[33] |
芮伟康. 钙与过氧化物酶在梨石细胞合成中的关系[D]. 南京: 南京农业大学, 2017.
Rui W K. Effects of calcium and peroxidase involved in stone cells formation in pear fruit[D]. Nanjing: Nanjing Agricultural Unversity, 2017.
|
[34] |
薛亚莉. 水稻Ⅲ类过氧化物酶基因OsPER2和OsPER4在细胞壁合成中的功能分析[D]. 武汉: 华中农业大学, 2021.
Xue Y L. Functional analysis of rice class Ⅲ peroxdases genes OsPER2 and OsPER4 in cell wall synthesis[D]. Wuhan: Huazhong Agricultural University, 2021.
|
[35] |
Teufel A I, Johnson M M, Laurent J M, et al. The many nuanced evolutionary consequences of duplicated genes[J]. Molecular Biology and Evolution, 2018, 36(2): 304−314.
|
[36] |
Shigeto J, Tsutsumi Y. Diverse functions and reactions of class Ⅲ peroxidases[J]. New Phytologist, 2016, 209(4): 1395−1402. doi: 10.1111/nph.13738
|
[37] |
Xu S, Chong K. Remembering winter through vernalisation[J]. Nature Plants, 2018, 4(12): 997−1009. doi: 10.1038/s41477-018-0301-z
|
[38] |
Passardi F, Tognolli M, de Meyer M, et al. Two cell wall associated peroxidases from Arabidopsis influence root elongation[J]. Planta, 2006, 223(5): 965−974. doi: 10.1007/s00425-005-0153-4
|
[39] |
Kim Y H, Kim C Y, Song W K, et al. Overexpression of sweetpotato swpa4 peroxidase results in increased hydrogen peroxide production and enhances stress tolerance in tobacco[J]. Planta, 2008, 227(4): 867−881. doi: 10.1007/s00425-007-0663-3
|
[40] |
Kim B H, Kim S Y, Nam K H. Genes encoding plant-specific class Ⅲ peroxidases are responsible for increased cold tolerance of the brassinosteroid-insensitive 1 mutant[J]. Molecules and Cells, 2012, 34(6): 539−548. doi: 10.1007/s10059-012-0230-z
|
[41] |
Kumar S, Jaggi M, Sinha A K. Ectopic overexpression of vacuolar and apoplastic Catharanthus roseus peroxidases confers differential tolerance to salt and dehydration stress in transgenic tobacco[J]. Protoplasma, 2012, 249(2): 423−432. doi: 10.1007/s00709-011-0294-1
|
[42] |
Choi H W, Kim Y J, Lee S C, et al. Hydrogen peroxide generation by the pepper extracellular peroxidase CaPO2 activates local and systemic cell death and defense response to bacterial pathogens[J]. Plant Physiology, 2007, 145(3): 890−904. doi: 10.1104/pp.107.103325
|
[43] |
Daudi A, Cheng Z, O’Brien J A, et al. The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity[J]. The Plant Cell, 2012, 24(1): 275−287. doi: 10.1105/tpc.111.093039
|
[44] |
Wu S, Han B, Jiao Y. Genetic contribution of paleopolyploidy to adaptive evolution in angiosperms[J]. Molecular Plant, 2020, 13(1): 59−71. doi: 10.1016/j.molp.2019.10.012
|
1. |
吕坤,班以琛,坝仕宏,刘洋,文剑. 基于抚育整枝目标的毛白杨枝条冲击切割性能适应性分析. 北京林业大学学报. 2024(04): 158-166 .
![]() | |
2. |
阮颖超,苏比·热西塔洪,林熙,李明,范少辉,冯随起,陈志云,马祥庆,何宗明. 修枝强度对杉木人工林无节材形成及质量的影响. 林业科学. 2024(06): 50-59 .
![]() | |
3. |
陈明旭,吴雅琳,刘雨晖,李明,吴鹏飞,马祥庆. 修枝对杉木节子发育和无节材比例的影响. 森林与环境学报. 2024(05): 449-456 .
![]() | |
4. |
谭长强,杨丽萍,梁星星,彭玉华,莫雅芳,何峰,申文辉,钟瑜. 不同修枝强度及配方施肥对红锥幼林生长的影响. 广西林业科学. 2023(02): 167-172 .
![]() | |
5. |
卢翠香,李桂兰,任世奇,刘媛,蒋小波,黄明军,韦振道. 人工修枝对尾巨桉胶合板性能的影响. 广西林业科学. 2023(04): 522-527 .
![]() | |
6. |
张士韬,欧阳林男,陈少雄,杨嘉麒. 间伐与修枝对人工林木材质量影响的研究进展. 广西林业科学. 2023(06): 803-811 .
![]() | |
7. |
谢耀坚. 科技创新引领中国桉树研究和产业迅猛发展. 桉树科技. 2022(01): 35-42 .
![]() | |
8. |
白卫国,黎世鑫,李蔷薇,熊涛,赵佳宁,任世奇. 不同种植密度与修枝强度对幼龄尾巨桉生长量的影响. 桉树科技. 2022(02): 20-24 .
![]() | |
9. |
苏福聪,李书玲,黄慧敏,刘杰钊,罗克展,梁志诚,刘媛,任世奇. 修枝对尾巨桉生长量的影响. 桉树科技. 2021(01): 31-35 .
![]() | |
10. |
刘罗新,罗建中,王楚彪,卢万鸿,林彦,邢晓文. 桉树旋切单板用材质量研究现状. 桉树科技. 2021(03): 63-68 .
![]() | |
11. |
莫柳园,李秋荔,周鑫,温晓毅,刘资华,任世奇. 施肥和修枝对巨尾桉幼林生长的影响. 桉树科技. 2021(03): 44-46 .
![]() | |
12. |
李国新,黎颖锋,邓炳权,龚益广,杨锦昌. 广东郁南尾巨桉人工林密度效应. 林业与环境科学. 2017(04): 9-13 .
![]() | |
13. |
任世奇,卢翠香,邓紫宇,郭东强,伍琪. 修枝对大花序桉幼林生长和木材密度的影响. 西南大学学报(自然科学版). 2017(11): 45-50 .
![]() | |
14. |
王杰,钟志兴. 修枝对巨尾桉生长动态及单板质量的影响. 花卉. 2015(17): 102-103 .
![]() |