Citation: | Zong Xuezheng, Tian Xiaorui, Ma Shuai, Liu Chang. Quantitative assessment for forest fire risk based on fire simulation: taking the Subtropical Forest Experimental Center of Chinese Academy of Forestry as an example[J]. Journal of Beijing Forestry University, 2022, 44(9): 83-90. DOI: 10.12171/j.1000-1522.20210328 |
[1] |
Chuvieco E, Aguado I, Yebra M, et al. Development of a framework for fire risk assessment using remote sensing and geographic information system technologies[J]. Ecological Modelling, 2010, 221(1): 46−58. doi: 10.1016/j.ecolmodel.2008.11.017
|
[2] |
Johnston L M, Wang X, Erni S, et al. Wildland fire risk research in Canada[J]. Environmental Reviews, 2020, 28(2): 1−23.
|
[3] |
郑忠, 高阳华, 杨庆媛, 等. 西南山地区域森林火险综合预报模型研究: 以重庆市为例[J]. 自然灾害学报, 2020, 29(1): 152−161.
Zheng Z, Gao Y H, Yang Q Y, et al. Research on the construction of composite risk prediction model for forest fire in the mountainous area of southwestern China: taking Chongqing City as an example[J]. Journal of Natural Disasters, 2020, 29(1): 152−161.
|
[4] |
United Nations Office for Disaster Risk Reduction. Words into action guidelines: national disaster risk assessment hazard specific risk assessment[R]. New York: United Nations Office for Disaster Risk Reduction, 2017.
|
[5] |
Calkin D E, Cohen J D, Finney M A, et al. How risk management can prevent future wildfire disasters in the wildland-urban interface[J]. Proceedings of the National Academy of Sciences, 2014, 111(2): 746−751. doi: 10.1073/pnas.1315088111
|
[6] |
Chuvieco E, Aguado I, Jurdao S, et al. Integrating geospatial information into fire risk assessment[J]. International Journal of Wildland Fire, 2014, 23(5): 606−619. doi: 10.1071/WF12052
|
[7] |
田晓瑞, 代玄, 王明玉, 等. 多气候情景下中国森林火灾风险评估[J]. 应用生态学报, 2016, 27(3): 769−776.
Tian X R, Dai X, Wang M Y, et al. Forest fire risk assessment for China under different climate scenarios[J]. Chinese Journal of Applied Ecology, 2016, 27(3): 769−776.
|
[8] |
Woo H, Chung W, Graham J M, et al. Forest fire risk assessment using point process modelling of fire occurrence and Monte Carlo fire simulation[J]. International Journal of Wildland Fire, 2017, 26(9): 789−805. doi: 10.1071/WF17021
|
[9] |
Molaudzi O D, Adelabu S A. Review of the use of remote sensing for monitoring wildfire risk conditions to support fire risk assessment in protected areas[J]. South African Journal of Geomatics, 2019, 7(3): 222−242. doi: 10.4314/sajg.v7i3.2
|
[10] |
颜峻, 左哲. 自然灾害风险评估指标体系及方法研究[J]. 中国安全科学学报, 2010, 20(11): 61−65. doi: 10.3969/j.issn.1003-3033.2010.11.011
Yan J, Zuo Z. Research on natural disaster risk assessment index system and method[J]. China Safety Science Journal, 2010, 20(11): 61−65. doi: 10.3969/j.issn.1003-3033.2010.11.011
|
[11] |
You W, Lin L, Wu L, et al. Geographical information system-based forest fire risk assessment integrating national forest inventory data and analysis of its spatiotemporal variability[J]. Ecological Indicators, 2017, 77: 176−184. doi: 10.1016/j.ecolind.2017.01.042
|
[12] |
Thompson M P, Calkin D E, Finney M A, et al. A risk-based approach to wildland fire budgetary planning[J]. Forest Science, 2013, 59(1): 63−77. doi: 10.5849/forsci.09-124
|
[13] |
Alcasena F J, Salis M, Ager A A, et al. Assessing landscape scale wildfire exposure for highly valued resources in a Mediterranean area[J]. Environmental Management, 2015, 55(5): 1200−1216. doi: 10.1007/s00267-015-0448-6
|
[14] |
Xi D D Z, Taylor S W, Woolford D G, et al. Statistical models of key components of wildfire risk[J]. Annual Review of Statistics and Its Application, 2017, 6(1): 1−26.
|
[15] |
Kanga S, Sharma L K, Pandey P C, et al. Forest fire modeling to evaluate potential hazard to tourism sites using geospatial approach[J]. Journal of Geomatics, 2013, 7(1): 93−99.
|
[16] |
Ajin R S, Ciobotaru A, Vinod P G, et al. Forest and wildland fire risk assessment using geospatial techniques: a case study of Nemmara forest division, Kerala, India[J]. Journal of Wetlands Biodiversity, 2015, 5: 29−37.
|
[17] |
Thompson M P, Freeborn P, Rieck J D, et al. Quantifying the influence of previously burned areas on suppression effectiveness and avoided exposure: a case study of the Las Conchas Fire[J]. International Journal of Wildland Fire, 2016, 25(2): 167−181. doi: 10.1071/WF14216
|
[18] |
Ager A A, Preisler H K, Arca B, et al. Wildfire risk estimation in the Mediterranean area[J]. Environmetrics, 2014, 25(6): 384−396. doi: 10.1002/env.2269
|
[19] |
Mitsopoulos I, Trapatsas P, Xanthopoulos G. SYPYDA: a software tool for fire management in Mediterranean pine forests of Greece[J]. Computers and Electronics in Agriculture, 2016, 121: 195−199. doi: 10.1016/j.compag.2015.12.011
|
[20] |
Noonan-Wright E K, Opperman T S, Finney M A, et al. Developing the US wildland fire decision support system[J]. Journal of Combustion, 2011, 2011: 1−14.
|
[21] |
Massada A B, Radeloff V C, Stewart S I, et al. Wildfire risk in the wildland-urban interface: a simulation study in northwestern Wisconsin[J]. Forest Ecology and Management, 2009, 258(9): 1990−1999. doi: 10.1016/j.foreco.2009.07.051
|
[22] |
Beverly J L, Mcloughlin N. Burn probability simulation and subsequent wildland fire activity in Alberta, Canada: implications for risk assessment and strategic planning: reply to Parisien et al. [J/OL]. Forest Ecology and Management, 2020, 460: 117819[2021−05−19]. https://doi.org/10.1016/j.foreco.2019.117819.
|
[23] |
Carmel Y, Paz S, Jahashan F, et al. Assessing fire risk using Monte Carlo simulations of fire spread[J]. Forest Ecology and Management, 2009, 257(1): 370−377. doi: 10.1016/j.foreco.2008.09.039
|
[24] |
Oban H O, Erdin C. Forest fire risk assessment using GIS and AHP integration in Bucak forest enterprise, Turkey[J]. Applied Ecology and Environmental Research, 2020, 18(1): 1567−1583. doi: 10.15666/aeer/1801_15671583
|
[25] |
Mhawej M, Faour G, Abdallah C, et al. Towards an establishment of a wildfire risk system in a Mediterranean country[J]. Ecological Informatics, 2016, 32: 167−184. doi: 10.1016/j.ecoinf.2016.02.003
|
[26] |
Parisien M A, Dawe D A, Miller C, et al. Applications of simulation-based burn probability modelling: a review[J]. International Journal of Wildland Fire, 2020, 28(12): 913−926.
|
[27] |
宗学政, 田晓瑞, 田恒, 等. 计划火烧对区域森林燃烧性的影响[J]. 林业科学研究, 2020, 33(3): 19−27.
Zong X Z, Tian X R, Tian H, et al. Influences of prescribed burning on regional forest burning probability[J]. Forest Research, 2020, 33(3): 19−27.
|
[28] |
苗庆林, 田晓瑞. 多气候情景下大兴安岭森林燃烧性评估[J]. 林业科学, 2020, 33(3): 19−27.
Miao Q L, Tian X R. Assessment of burn probability assessment in Daxing’anling under multi-climatic scenarios[J]. Scientia Silvae Sinicae, 2020, 33(3): 19−27.
|
[29] |
陈宏伟, 胡远满, 常禹, 等. 呼中林区不同森林采伐方式对林火的长期影响模拟[J]. 北京林业大学学报, 2011, 33(5): 13−19.
Chen H W, Hu Y M, Chang Y, ET al. Simulating long-term effects of different harvesting modes on forest fire in Huzhong Forest Region, northeastern China[J]. Journal of Beijing Forestry University, 2011, 33(5): 13−19.
|
[30] |
Liu Z, Yang J, He H S. Studying the effects of fuel treatment based on burn probability on a boreal forest landscape[J]. Journal of Environmental Management, 2013, 115: 42−52.
|
[31] |
Reimer J, Thompson D K, Povak N. Measuring initial attack suppression effectiveness through burn probability[J]. Fire, 2019, 2(4): 60. doi: 10.3390/fire2040060
|
[32] |
刘兴朋, 张继权, 范久波. 基于历史资料的中国北方草原火灾风险评价[J]. 自然灾害学报, 2007, 1: 61−65. doi: 10.3969/j.issn.1004-4574.2007.04.010
Liu X P, Zhang J Q, Fan J B. Historical data-based risk assessment of fire in grassland of northen China[J]. Journal of Natural Disasters, 2007, 1: 61−65. doi: 10.3969/j.issn.1004-4574.2007.04.010
|
[33] |
周雪, 张颖. 中国森林火灾风险统计分析[J]. 统计与信息论坛, 2014, 29(1): 34−39. doi: 10.3969/j.issn.1007-3116.2014.01.006
Zhou X, Zhang Y. Statistical analysis of forest fire risk in China[J]. Statistics & Information Forum, 2014, 29(1): 34−39. doi: 10.3969/j.issn.1007-3116.2014.01.006
|
[34] |
田晓瑞, 舒立福, 赵凤君, 等. 中国主要生态地理区的林火动态特征分析[J]. 林业科学, 2015, 51(9): 71−77.
Tian X R, Shu L F, Zhao F J, et al. Dynamic characteristics of forest fires in the main ecological geographic districts of China[J]. Scientia Silvae Sinicae, 2015, 51(9): 71−77.
|
[35] |
宋庆丰, 王兵, 牛香, 等. 江西大岗山低海拔常绿阔叶林物种组成与群落结构特征[J]. 生态学杂志, 2020, 39(2): 384−393.
Song Q F, Wang B, Niu X, et al. The characteristic of species composition and community structure of low-altitude evergreen broad-leaved forest in Dagang Mountain, Jiangxi Province[J]. Chinese Journal of Ecology, 2020, 39(2): 384−393.
|
[36] |
Wang X, Wotton B M, Cantin A S, et al. Cffdrs: an R package for the Canadian forest fire danger rating system[J]. Ecological Processes, 2017, 6(1): 5. doi: 10.1186/s13717-017-0070-z
|
[37] |
Hirsch K G. Canadian forest fire behavior prediction (FBP) system: user’s guide [M]. Edmonton: Northern Forestry Centre, 1996.
|
[38] |
田晓瑞, 舒立福, 阎海平, 等. 华北地区防火树种筛选[J]. 火灾科学, 2002, 11(1): 43−48. doi: 10.3969/j.issn.1004-5309.2002.01.007
Tian X R, Shu L F, Yan H P, et al. Selecting fire-resistance tree species in northern China[J]. Fire Safety Science, 2002, 11(1): 43−48. doi: 10.3969/j.issn.1004-5309.2002.01.007
|
[39] |
Parisien M A, Miller C, Ager A A, et al. Use of artificial landscapes to isolate controls on burn probability[J]. Landscape Ecology, 2010, 25(1): 79−93. doi: 10.1007/s10980-009-9398-9
|
[40] |
Wagenbrenner N S, Forthofer J, Lamb B, et al. Downscaling surface wind predictions from numerical weather prediction models in complex terrain with WindNinja[J]. Atmospheric Chemistry and Physics, 2016, 16(8): 5229−5241. doi: 10.5194/acp-16-5229-2016
|
[41] |
Wang X, Parisien M, Taylor S W, et al. Future burn probability in south-central British Columbia[J]. International Journal of Wildland Fire, 2016, 25(2): 200−212. doi: 10.1071/WF15091
|
[42] |
Pan J, Wang W, Li J. Building probabilistic models of fire occurrence and fire risk zoning using logistic regression in Shanxi Province, China[J]. Natural Hazards, 2016, 81(3): 1879−1899. doi: 10.1007/s11069-016-2160-0
|
[43] |
马振宇, 陈博伟, 庞勇, 等. 基于林火特征分类模型的森林火情等级制图[J]. 国土资源感, 2020, 32(1): 43−50.
Ma Z Y, Chen B W, Pang Y, et al. Forest fire potential forecast based on FCCS model[J]. Remote Sensing for Land & Resources, 2020, 32(1): 43−50.
|
[44] |
Zong X, Tian X, Wang X. An optimal firebreak design for the boreal forest of China [J/OL]. Science of the Total Environment, 2021, 781: 146822 [2021−12−29]. https://www.sciencedirect.com/science/article/pii/S0048969721018921.
|
1. |
施云凤,李文秀,贺军军,罗萍,张华林,张凤英. 甲基磺酸乙酯诱变对阳春砂仁出苗的影响. 热带农业科学. 2024(10): 47-51 .
![]() | |
2. |
崔晓彤,刘婉婷,张恒月,段乌拉,王君. 杨树派间远缘杂种小胡杨(Populus simonii×P.euphratica)组培快繁体系的构建. 分子植物育种. 2023(07): 2337-2343 .
![]() | |
3. |
王欢,曾琪瑶,王春胜,郭俊杰,曾杰. 油榄仁种胚高质量组培快繁体系. 中南林业科技大学学报. 2023(09): 53-61+88 .
![]() | |
4. |
李春兰. 毛白杨良种繁殖技术研究进展. 安徽农业科学. 2022(10): 22-24+45 .
![]() | |
5. |
王雷,李百和,赵培霞,韩鹏. 蒙古莸(Caryopteris mongholica)组培快繁体系的建立和优化. 分子植物育种. 2022(14): 4745-4754 .
![]() | |
6. |
陈耀兵,罗凯,李美东,黄秀芳,刘汉蓁,王水清,陈圣林. “鄂选1号”山桐子组培繁育体系构建. 北京林业大学学报. 2022(12): 23-31 .
![]() | |
7. |
屈超,叶冬梅,郭欣,崔雁敏,朝勒蒙. 互叶醉鱼草茎段组织培养技术研究. 江苏林业科技. 2022(06): 15-19 .
![]() | |
8. |
马秋月,李倩中,李淑顺,朱璐,颜坤元,李淑娴,张斌,闻婧. 元宝枫组织培养及快速繁殖技术研究. 南京林业大学学报(自然科学版). 2021(02): 220-224 .
![]() | |
9. |
石进朝,陈博,陈兰芬,李彦侠. 阳光毛白杨带芽茎段再生体系的构建. 江苏农业科学. 2021(14): 50-55 .
![]() | |
10. |
梁艳,赵雪莹,白雪,刘德强,张妍,潘朋. PVP处理对黑皮油松外植体酚类物质形成及酶活性的影响. 林业科学. 2021(10): 166-174 .
![]() | |
11. |
王建新,吴志茹,冯光惠. 榆林沙区引种波尔卡树莓的组织培养与快速繁殖. 山西农业科学. 2019(12): 2078-2082 .
![]() |