Citation: | Gao Mengjiao, Wang Linxia, Luo Zhi, Zhao Ruoyu, Liu Zhiguo, Liu Ping, Liu Mengjun, Wang Lixin. Molecular characteristics of CML genes in Chinese jujube and their expression patterns in resistance to cold stress[J]. Journal of Beijing Forestry University, 2023, 45(3): 58-67. DOI: 10.12171/j.1000-1522.20210334 |
[1] |
Sun Q G, Yu S H, Guo Z F. Calmodulin-like (CML) gene family in Medicago truncatula: genome-wide identification, characterization and expression analysis[J]. International Journal of Molecular Sciences, 2020, 21(19): 7142. doi: 10.3390/ijms21197142
|
[2] |
Wang L X, Sadeghnezhad E, Nick P. Upstream of gene expression: what is the role of microtubules in cold signalling?[J]. Journal of Experimental Botany, 2019, 71(1): 36−48.
|
[3] |
Mohanta T K, Kumar P, Bae H. Genomics and evolutionary aspect of calcium signaling event in calmodulin and calmodulin-like proteins in plants[J]. BMC Plant Biology, 2017, 17(1): 38. doi: 10.1186/s12870-017-0989-3
|
[4] |
曹绍玉, 王艳芳, 苏婉玉, 等. 类钙调蛋白在植物生长发育及逆境胁迫中的功能研究进展[J]. 植物生理学报, 2018, 54(10): 1517−1526.
Cao S Y, Wang Y F, Su W Y, et al. Advances in the function of calmodulin-like proteins in plant growth and development and under stress[J]. Journal of Plant Physiology, 2018, 54(10): 1517−1526.
|
[5] |
Andrews C, Xu Y T, Kirberger M, et al. Structural aspects and prediction of calmodulin-binding proteins[J]. International Journal of Molecular Sciences, 2020, 22(1): 308. doi: 10.3390/ijms22010308
|
[6] |
王艳, 尹静, 马泓思, 等. 钙离子在介导SA诱导白桦悬浮细胞三萜合成途径中的作用[J]. 北京林业大学学报, 2014, 36(2): 51−58.
Wang Y, Yin J, Ma H S, et al. Role of calcium ion in mediating the triterpenoid synthesis induced by SA in suspension cells of Betula platyphylla[J]. Journal of Beijing Forestry University, 2014, 36(2): 51−58.
|
[7] |
McCormack M, Tsai Y C, Braam J. Handling calcium signaling: Arabidopsis CaMs and CMLs[J]. Trends in Plant Science, 2005, 10(8): 383−389. doi: 10.1016/j.tplants.2005.07.001
|
[8] |
杨俊. OsCaM1-1和OsCML16调控水稻耐逆性机制的研究[D]. 武汉: 华中农业大学, 2018.
Yang J. Studies on the mechanisms of OsCAM1-1 and OSCML16 in regulation of stress tolerance in rice[D]. Wuhan: Huazhong Agricultural University, 2018.
|
[9] |
Munir S, Khan M R G, Song J, et al. Genome-wide identification, characterization and expression analysis of calmodulin-like (CML) proteins in tomato (Solanum lycopersicum)[J]. Plant Physiology & Biochemistry, 2016, 102: 167−179.
|
[10] |
陈超, 端木慧子, 朱丹, 等. 大豆CML家族基因的生物信息学分析[J]. 大豆科学, 2015, 34(6): 957−963.
Chen C, Duan M H Z, Zhu D, et al. Bioinformatics analysis of CML family genes in soybean [J]. Soybean Science, 2015, 34(6): 957−963.
|
[11] |
Nie S S, Zhang M J, Zhang L G. Genome-wide identification and expression analysis of calmodulin-like (CML) genes in Chinese cabbage (Brassica rapa L. ssp. pekinensis)[J]. BMC Genomics, 2017, 18(1): 842. doi: 10.1186/s12864-017-4240-2
|
[12] |
杨前宇, 王涛, 梁立雄, 等. 两种兰科植物CaM及CML基因家族全基因组分析[J]. 林业科学研究, 2018, 31(6): 18−28.
Yang Q Y, Wang T, Liang L X, et al. Genome-wide analysis of CaM /CML gene family in two orchidaceae species[J]. Forest Research, 2018, 31(6): 18−28.
|
[13] |
罗澜, 司修洋, 孙蕾, 等. 甜瓜CML基因家族的鉴定与表达特性分析[J]. 分子植物育种, 2021, 19(24): 8081-8094.
Luo L, Si X Y, Sun L, et al. Identification and expression characteristic analysis of CML gene family of Melon[J]. Molecular Plant Breeding, 2021, 19(24): 8081−8094.
|
[14] |
Wu X M, Qiao Z, Liu H P, et al. CML20, an Arabidopsis calmodulin-like protein, negatively regulates guard cell ABA signaling and drought stress tolerance[J]. Frontiers in Plant Science, 2017, 8: 824. doi: 10.3389/fpls.2017.00824
|
[15] |
Magnan F, Ranty B, Charpenteau M, et al. Mutations in AtCML9, a calmodulin-like protein from Arabidopsis thaliana, alter plant responses to abiotic stress and abscisic acid[J]. The Plant Journal: For Cell and Molecular Biology, 2008, 56(4): 575−589. doi: 10.1111/j.1365-313X.2008.03622.x
|
[16] |
Delk N A, Johnson K A, Chowdhury N I, et al. CML24, regulated in expression by diverse stimuli, encodes a potential Ca2 + sensor that functions in responses to abscisic acid, daylength, and ion stress[J]. Plant Physiology, 2005, 139(1): 240−253. doi: 10.1104/pp.105.062612
|
[17] |
Yang J, Liu S, Ji L X, et al. Identification of novel OsCML16 target proteins and differential expression analysis under abiotic stresses in rice[J]. Journal of Plant Physiology, 2020, 249: 153165. doi: 10.1016/j.jplph.2020.153165
|
[18] |
Ma Q Q, Zhou Q Q, Chen C M, et al. Isolation and expression analysis of CsCML genes in response to abiotic stresses in the tea plant (Camellia sinensis)[J]. Scientific Reports, 2019, 9(1): 1−9. doi: 10.1038/s41598-018-37186-2
|
[19] |
Aleynova O A, Kiselev K V, Ogneva Z V, et al. The grapevine Calmodulin-like protein gene CML21 is regulated by alternative splicing and involved in abiotic stress response[J]. International Journal of Molecular Sciences, 2020, 21(21): 7939. doi: 10.3390/ijms21217939
|
[20] |
曲泽洲, 王永蕙. 中国果树志·枣卷[M]. 北京: 中国林业出版社, 1993.
Qu Z Z, Wang Y H. Chinese fruit and jujube rolls [M]. Beijing: China Forestry Publishing House, 1993.
|
[21] |
董梦怡, 杨植, 王振磊, 等. 应用灰色关联度法综合评价8个枣品种抗寒性[J]. 塔里木大学学报, 2021, 33(1): 28−37.
Dong M Y, Yang Z, Wang Z L, et al. Comprehensive evaluation of cold resistance of 8 jujube varieties by grey correlation method[J]. Journal of Tarim University, 2021, 33(1): 28−37.
|
[22] |
Wang L H, Luo Z, Wang L L, et al. Morphological, cytological and nutritional changes of autotetraploid compared to its diploid counterpart in Chinese jujube (Ziziphus jujuba Mill.)[J]. Scientia Horticulturae, 2019, 249: 263−270. doi: 10.1016/j.scienta.2019.01.063
|
[23] |
吕义品, 梁楠松, 宋婷婷, 等. 水曲柳FmPIF基因家族克隆及表达模式分析[J]. 北京林业大学学报, 2022, 44(1): 58−68.
Lü Y P, Liang N S, Song T T, et al. Cloning and expression pattern analysis of FmPIF gene family in Fraxinus mandshurica[J]. Journal of Beijing Forestry University, 2022, 44(1): 58−68.
|
[24] |
Chen C J, Chen H, Zhang Y, et al. Tbtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 702.
|
[25] |
王雪怡, 顾咏梅, 张雪梅, 等. 杨树HSF家族基因生物信息学与胁迫应答表达分析[J]. 北京林业大学学报, 2021, 43(2): 34−45.
Wang X Y, Gu Y M, Zhang X M, et al. Bioinformatics and stress response expression analysis of poplar HSF family genes[J]. Journal of Beijing Forestry University, 2021, 43(2): 34−45.
|
[26] |
Gao M J, Wang L H, Li M, et al. Physiological and transcriptome analysis accentuates microtubules and calcium signaling in Ziziphus jujuba Mill ‘Dongzao’ autotetraploids with sensitive cold tolerance[J]. Scientia Horticulturae, 2021, 285: 110183.
|
[27] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-DDCt method[J]. Methods, 2001, 25(4): 402−408. doi: 10.1006/meth.2001.1262
|
[28] |
Alistair M H, Colin B. The generation of Ca2+ signals in plants[J]. Annual Review of Plant Biology, 2004, 55: 401−427.
|
[29] |
McCormack E, Braam J. Calmodulins and related potential calcium sensors of Arabidopsis[J]. New Phytologist, 2003, 159(3): 585−598.
|
[30] |
Wang L X, Li M, Liu Z G, et al. Genome-wide identification of CNGC genes in Chinese jujube (Ziziphus jujuba Mill. ) and ZjCNGC2 mediated signalling cascades in response to cold stress[J]. BMC Genomics, 2020, 21(1): 191. doi: 10.1186/s12864-020-6601-5
|
[31] |
王超楠, 朱强龙, 崔浩楠, 等. 西瓜CDPK基因家族鉴定与特征分析[J]. 北方园艺, 2018(17): 1−6.
Wang C N, Zhu Q L, Cui H N, et al. Identifcation and characteristic analysis of CDPK gene family[J]. Northern Horticulture, 2018(17): 1−6.
|
[32] |
Ali G S, Reddy V S, Lindgren P B, et al. Differential expression of genes encoding calmodulin-binding proteins in response to bacterial pathogens and inducers of defense responses[J]. Plant Molecular Biology, 2003, 51(6): 803−815. doi: 10.1023/A:1023001403794
|
[33] |
Liu H T, Li B, Shang Z L, et al. Calmodulin is involved in heat shock signal transduction in wheat[J]. Plant Physiology, 2003, 132(3): 1186−1195. doi: 10.1104/pp.102.018564
|
[34] |
Perochon A, Aldon D, Galaud J P, et al. Calmodulin and calmodulin-like proteins in plant calcium signaling[J]. Biochimie, 2011, 93(12): 2048−2053. doi: 10.1016/j.biochi.2011.07.012
|
[35] |
Shi J Y, Du X G. Identification, characterization and expression analysis of calmodulin and calmodulin-like proteins in Solanum pennellii[J]. Scientific Reports, 2020, 10(1): 7474. doi: 10.1038/s41598-020-64178-y
|
[36] |
Chu M X, Li J J, Zhang J Y, et al. AtCaM4 interacts with a Sec14-like protein, PATL1, to regulate freezing tolerance in Arabidopsis in a CBF-independent manner[J]. Journal of Experimental Botany, 2018, 68(21): 5241−5253.
|
[37] |
李利兰. 外源5-氨基乙酰丙酸和CaCl2对辣椒耐低温弱光能力的影响[D]. 重庆: 西南大学, 2013.
Li L L. Effect on enhancing anti-chilling and low light stress of ALA and CaCl2 on papper seedlings [D]. Chongqing: Southwest University, 2013.
|
[38] |
王斌, 林芳柯, 李丹, 等. 印度梨形孢和CaCl2对香蕉抗寒性的影响[J]. 福建农林大学学报(自然科学版), 2021, 50(6): 753−758.
Wang B, Lin F K, Li D, et al. Effects of Piriformospora indica and CaCl2 treatments on cold resistance of banana[J]. Journal of Fujian Agriculture and Forestry University (Nature Science Edition), 2021, 50(6): 753−758.
|
[39] |
Wang Y, Guo D D, Wang J C, et al. Exogenous melatonin alleviates NO2 damage in tobacco leaves by promoting antioxidant defense, modulating redox homeostasis, and signal transduction[J]. Journal of Hazardous Materials, 2022, 424: 127265.1−127265.16. doi: 10.1016/j.jhazmat.2021.127265
|
[40] |
张俊康, 马丽, 吴姝青, 等. 外源褪黑素对软枣猕猴桃低温伤害的缓解效应[J]. 植物生理学报, 2020, 56(5): 1081−1087.
Zhang J K, Ma L, Wu S Q, et al. Alleviation effect of exogenous melatonin on low temperature injury of Actinidia arguta[J]. Plant Physiology Journal, 2020, 56(5): 1081−1087.
|
[41] |
杨秀, 许艳超, 杨芳芳, 等. 棉花CML基因家族成员鉴定与功能分析[J]. 棉花学报, 2019, 31(4): 307−318.
Yang X, Xu Y C, Yang F F, et al. Identification and functional analysis of CML gene family in cotton[J]. Cotton Science, 2019, 31(4): 307−318.
|
1. |
吴军平,付全娟,郭远鹏,侯森,孙玉刚,魏国芹. 甜樱桃类钙调蛋白基因家族的生物信息学分析. 落叶果树. 2024(02): 32-39 .
![]() | |
2. |
朱高浦. 枣分子育种研究进展. 中南林业科技大学学报. 2023(10): 1-10 .
![]() |