Citation: | Mei Shiyi, Li Yu, Li Shishuai, Zhu Yining, He Jinchun, Meng Xinmiao, Gao Ying. Field study of the hygrothermal performance of multi-storey light wood-framed walls in cold zones[J]. Journal of Beijing Forestry University, 2022, 44(6): 135-145. DOI: 10.12171/j.1000-1522.20210407 |
[1] |
杨秀, 张声远, 齐晔, 等. 建筑节能设计标准与节能量估算[J]. 城市发展研究, 2011, 18(10): 7−13. doi: 10.3969/j.issn.1006-3862.2011.10.002
Yang X, Zhang S Y, Qi Y, et al. China’s design standards for energy efficiency and estimation of building energy savings[J]. Urban Development Studies, 2011, 18(10): 7−13. doi: 10.3969/j.issn.1006-3862.2011.10.002
|
[2] |
于水, 王伟, 郑淑, 等. 严寒地区居民建筑室内微生物滋生状况研究分析[J]. 沈阳建筑大学学报(自然科学版), 2017, 33(4): 751−758.
Yu S, Wang W, Zheng S, et al. Experimental analysis based on the mold harming in northeast residential building[J]. Journal of Shenyang Jianzhu University (Natural Science), 2017, 33(4): 751−758.
|
[3] |
Wang L, Ge H. Effect of air leakage on the hygrothermal performance of highly insulated wood frame walls: comparison of air leakage modelling methods[J]. Building and Environment, 2017, 123: 363−377. doi: 10.1016/j.buildenv.2017.07.012
|
[4] |
Wang L, Ge H. Effect of rain leakage on hygrothermal performance of highly insulated wood-framed walls: a stochastic approach[J]. Canadian Journal of Civil Engineering, 2019, 46(11): 979−989. doi: 10.1139/cjce-2019-0223
|
[5] |
胡家航, 姬晓迪, 李凤龙, 等. 井干式木结构墙体产品物化环境影响评价[J]. 北京林业大学学报, 2017, 39(6): 116−122.
Hu J H, Ji X D, Li F L, et al. Assessment of embodied environmental impact on log wooden wall member[J]. Journal of Beijing Forestry University, 2017, 39(6): 116−122.
|
[6] |
张时聪, 杨芯岩, 徐伟. 现代木结构建筑全寿命期碳排放计算研究[J]. 建设科技, 2019(18): 45−48.
Zhang S C, Yang X Y, Xu W. Study on life cycle carbon emission of modern wood building[J]. Construction Science and Technology, 2019(18): 45−48.
|
[7] |
何敏娟, 何桂荣, 梁峰, 等. 中国木结构近20年发展历程[J]. 建筑结构, 2019, 49(19): 83−90.
He M J, He G R, Liang F, et al. Development of timber structures in China during recent twenty years[J]. Building Structure, 2019, 49(19): 83−90.
|
[8] |
Kočí V, Jerman M, Pavlík Z, et al. Interior thermal insulation systems based on wood fiberboards: experimental analysis and computational assessment of hygrothermal and energy performance in the Central European climate[J]. Energy and Buildings, 2020, 222: 110093. doi: 10.1016/j.enbuild.2020.110093
|
[9] |
Huang Z, Sun Y. Hygrothermal performance comparison study on bamboo and timber construction in Asia-Pacific bamboo areas[J]. Construction and Building Materials, 2021, 271: 121602. doi: 10.1016/j.conbuildmat.2020.121602
|
[10] |
Zhan Q, Xiao Y, Musso F, et al. Assessing the hygrothermal performance of typical lightweight steel-framed wall assemblies in hot-humid climate regions by monitoring and numerical analysis[J]. Building and Environment, 2021, 188: 107512. doi: 10.1016/j.buildenv.2020.107512
|
[11] |
何金春, 高颖, 袁廷阁, 等. 墙骨柱对轻型木结构墙体保温性能的影响[J]. 中国科技论文, 2020, 15(8): 881−884. doi: 10.3969/j.issn.2095-2783.2020.08.006
He J C, Gao Y, Yuan T G, et al. Effect of studs on the thermal insulation performance of light-weight wooden structure wall[J]. China Sciencepaper, 2020, 15(8): 881−884. doi: 10.3969/j.issn.2095-2783.2020.08.006
|
[12] |
Wang L, Ge H. Stochastic modelling of hygrothermal performance of highly insulated wood framed walls[J]. Building and Environment, 2018, 146: 12−28. doi: 10.1016/j.buildenv.2018.09.032
|
[13] |
饶鑫, 杨静, 王正, 等. 2组轻型木结构建筑外墙热湿耦合性能模拟分析[J]. 西南林业大学学报(自然科学), 2021, 41(4): 119−128.
Rao X, Yang J, Wang Z, et al. Simulation analysis of thermal and humidity coupling performance of 2 groups of timber-framed structure buildings[J]. Journal of Southwest Forestry University (Natural Sciences), 2021, 41(4): 119−128.
|
[14] |
Lee J, Wi S, Chang S J, et al. Prediction evaluating of moisture problems in light-weight wood structure: perspectives on regional climates and building materials[J]. Building and Environment, 2020, 168: 106521. doi: 10.1016/j.buildenv.2019.106521
|
[15] |
中华人民共和国住房和城乡建设部, 木结构设计标准: GB 50005—2017 [S]. 北京: 中国建筑工业出版社, 2017.
Ministry of Housing and Urban-Rural Development. Standard for design of timber structures: GB 5005−2017 [S]. Beijing: China Architecture and Building Press, 2017.
|
[16] |
林伟奇, 肖羽柏, 陈莉. 广州地区木材平衡含水率及吸湿滞后的研究[J]. 林业科学, 1993, 29(2): 139−144.
Lin W Q, Xiao Y B, Chen L. Studies on the equilibrium moisture content and moisture absorption hysteresis of wood in Guangzhou region[J]. Scientia Silvae Sinicae, 1993, 29(2): 139−144.
|
[17] |
王立雄, 党睿. 建筑节能[M]. 北京: 中国建筑工业出版社, 2015.
Wang L X, Dang R. Building energy efficiency[M]. Beijing: China Architecture and Building Press, 2015.
|
[18] |
Fedorik F, Malaska M, Hannila R, et al. Improving the thermal performance of concrete-sandwich envelopes in relation to the moisture behaviour of building structures in boreal conditions[J]. Energy and Buildings, 2015, 107: 226−233. doi: 10.1016/j.enbuild.2015.08.020
|
1. |
高荧荧,王雯琦,符昌昊,许秀英. 基于UAV平台的农作物数据采集与处理方法研究. 现代化农业. 2025(02): 52-54 .
![]() | |
2. |
陈树新,刘炳杰,王海熠,苏勇,艾遒一,田昕. 结合可见光植被指数和分水岭算法的单木树冠信息提取. 遥感技术与应用. 2024(01): 34-44 .
![]() | |
3. |
钟磊,苏杰. 三维激光扫描技术在建筑物立面测绘中的精度分析. 科学技术创新. 2024(15): 131-134 .
![]() | |
4. |
赵亚凯,邓青春. 反距离加权插值参数对细沟DEM精度的影响. 西华师范大学学报(自然科学版). 2023(05): 496-504 .
![]() | |
5. |
莫嬃,易烜,边更战,陈书杭. 基于第一着枝角度的罗田垂枝杉树冠表面积预估模型研究. 湖南林业科技. 2023(06): 37-43+50 .
![]() | |
6. |
王玉堂,王佳,牛利伟,常书萍,孙露. 基于无人机倾斜摄影测量的树冠体积及表面积提取算法对比分析. 林业工程学报. 2022(03): 166-173 .
![]() | |
7. |
王补 ,谭伟 ,王贵林 ,蒲秀青 . 基于无人机多光谱影像的松材线虫病单木尺度监测. 林业资源管理. 2022(05): 107-117 .
![]() | |
8. |
杜意鸿,尹田,周雪梅,张晓丽. 倾斜摄影测量技术提取油松单木信息. 北京林业大学学报. 2021(04): 77-86 .
![]() | |
9. |
宋晓鹏,张岩,王志强,邓家勇,王佳希. 无人机摄影测量提取黄土高原切沟参数精度分析. 北京师范大学学报(自然科学版). 2021(05): 606-612 .
![]() | |
10. |
杨全月,董泽宇,马振宇,吴悠,崔琪,卢昊. 基于SfM的针叶林无人机影像树冠分割算法. 农业机械学报. 2020(06): 181-190 .
![]() | |
11. |
冯正茂,陈桃红,苏玉峰,伍浩如. 倾斜摄影测量技术在纸浆厂木片资产管理中的应用. 中国造纸. 2020(06): 64-68 .
![]() |