• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Yang Jiaming, Hu Jian, Pan Junxiao, Peng Yifei, Wei Chunxue, Wang Jinsong, Tian Dashuan, Zhou Qingping. Effects of nitrogen addition on soil aggregate distribution and carbon and nitrogen contents in alpine meadow[J]. Journal of Beijing Forestry University, 2022, 44(12): 102-110. DOI: 10.12171/j.1000-1522.20210439
Citation: Yang Jiaming, Hu Jian, Pan Junxiao, Peng Yifei, Wei Chunxue, Wang Jinsong, Tian Dashuan, Zhou Qingping. Effects of nitrogen addition on soil aggregate distribution and carbon and nitrogen contents in alpine meadow[J]. Journal of Beijing Forestry University, 2022, 44(12): 102-110. DOI: 10.12171/j.1000-1522.20210439

Effects of nitrogen addition on soil aggregate distribution and carbon and nitrogen contents in alpine meadow

More Information
  • Received Date: November 03, 2021
  • Revised Date: March 05, 2022
  • Accepted Date: May 06, 2022
  • Available Online: May 06, 2022
  • Published Date: December 24, 2023
  •   Objective  This study aims to investigate the response characteristics of soil aggregate distribution and carbon (C) and nitrogen (N) contents under different N addition conditions in order to provide data support for soil C sequestration mechanism in alpine meadow under the background of N deposition.
      Method  In 2014, a long-term N addition platform was established in an alpine meadow on the Qinghai-Tibet Plateau of western China. A completely randomized block design was used to simulate N deposition with six N addition levels: 0 g/(m2·year) (N0, control), 2 g/(m2·year) (N2), 4 g/(m2·year) (N4), 8 g/(m2·year) (N8), 16 g/(m2·year) (N16), 32 g/(m2·year) (N32). Macroaggregates (0.25−2 mm), microaggregates (0.053−0.25 mm), silt and clay (< 0.053 mm) were obtained by wet sieving method, and the organic C and total N contents of soil aggregates were determined.
      Result  The mass proportion of macroaggregates (79%) was significantly higher than that of silt and clay (13%) and microaggregates (8%) (P < 0.05). There was no significant difference in the distribution of soil aggregates under different N addition gradients (P > 0.05), whereas the mean mass diameter of soil aggregates did not change with N addition (P > 0.05), which could attribute to the trade off between the positive effect of N addition on root biomass and the decreased microbial activity. Moreover, N addition decreased the organic C content of macroaggregates and microaggregates, but increased the organic C content of silt and clay (P > 0.05). Compared with the control, nitrogen addition reduced the total nitrogen content of microaggregates and clay particles by 2% and 12%, respectively (P > 0.05). The C/N ratio of all aggregates significantly decreased under N addition (P < 0.05).
      Conclusion  The C/N ratios of different size of soil aggregate decreased, indicating the acceleration of SOC mineralization in alpine meadow under increased N deposition.
  • [1]
    Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions[J]. Science, 2008, 320: 889−892. doi: 10.1126/science.1136674
    [2]
    Davidson E A. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860[J]. Nature Geoscience, 2009, 2(9): 659−662. doi: 10.1038/ngeo608
    [3]
    LeBauer D S, Treseder K K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed[J]. Ecology, 2008, 89(2): 371−379. doi: 10.1890/06-2057.1
    [4]
    Janssens I A, Luyssaert S. Nitrogen’s carbon bonus[J]. Nature Geoscience, 2009, 2(5): 318−319. doi: 10.1038/ngeo505
    [5]
    Jobbágy E G, Jackson R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation[J]. Ecological Applications, 2000, 10(2): 423−436. doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
    [6]
    Janssens I A, Dieleman W, Luyssaert S, et al. Reduction of forest soil respiration in response to nitrogen deposition[J]. Nature Geoscience, 2010, 3(5): 315−322. doi: 10.1038/ngeo844
    [7]
    Wilson G W T, Rice C W, Rillig M C, et al. Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments[J]. Ecology Letters, 2009, 12(5): 452−461. doi: 10.1111/j.1461-0248.2009.01303.x
    [8]
    Wang R, Filley T R, Xu Z, et al. Coupled response of soil carbon and nitrogen pools and enzyme activities to nitrogen and water addition in a semi-arid grassland of Inner Mongolia[J]. Plant and Soil, 2014, 381(1): 323−336.
    [9]
    陈红, 马文明, 周青平, 等. 高寒草地灌丛化对土壤团聚体稳定性及其铁铝氧化物分异的研究[J]. 草业学报, 2020, 29(9): 73−84. doi: 10.11686/cyxb2020065

    Chen H, Ma W M, Zhou Q P, et al. Shrub encroachment effects on the stablitiy of soil aggregates and the differentiation of Fe and Al oxides in Qing-hai-Tibet alpine grassland[J]. Acta Prataculturae Sinica, 2020, 29(9): 73−84. doi: 10.11686/cyxb2020065
    [10]
    刘中良, 宇万太. 土壤团聚体中有机碳研究进展[J]. 中国生态农业学报, 2011, 19(2): 447−455. doi: 10.3724/SP.J.1011.2011.00447

    Liu Z L, Yu W T. Review of researches on soil aggregate and soil organic carbon[J]. Chinese Journal of Eco-Agriculture, 2011, 19(2): 447−455. doi: 10.3724/SP.J.1011.2011.00447
    [11]
    王清奎, 汪思龙. 土壤团聚体形成与稳定机制及影响因素[J]. 土壤通报, 2005, 36(3): 415−421. doi: 10.3321/j.issn:0564-3945.2005.03.031

    Wang Q K, Wang S L. Forming and stable mechanism of soil aggregate and influencing factors[J]. Chinese Journal of Soil Science, 2005, 36(3): 415−421. doi: 10.3321/j.issn:0564-3945.2005.03.031
    [12]
    Banger K, Kukal S S, Toor G, et al. Impact of long-term additions of chemical fertilizers and farm yard manure on carbon and nitrogen sequestration under rice-cowpea cropping system in semi-arid tropics[J]. Plant and Soil, 2009, 318(1): 27−35.
    [13]
    Bhattacharyya R, Prakash V, Kundu S, et al. Long term effects of fertilization on carbon and nitrogen sequestration and aggregate associated carbon and nitrogen in the Indian Sub-Himalayas[J]. Nutrient Cycling in Agroecosystems, 2010, 86(1): 1−16. doi: 10.1007/s10705-009-9270-y
    [14]
    Fonte S J, Yeboah E, Ofori P, et al. Fertilizer and residue quality effects on organic matter stabilization in soil aggregates[J]. Soil Science Society of America Journal, 2009, 73(3): 961−966. doi: 10.2136/sssaj2008.0204
    [15]
    Sarkar S, Singh S R, Singh R P. The effect of organic and inorganic fertilizers on soil physical condition and the productivity of a rice-lentil cropping sequence in India[J]. The Journal of Agricultural Science, 2003, 140(4): 419−425. doi: 10.1017/S0021859603003186
    [16]
    Ayuke F O, Brussaard L, Vanlauwe B, et al. Soil fertility management: impacts on soil macrofauna, soil aggregation and soil organic matter allocation[J]. Applied Soil Ecology, 2011, 48(1): 53−62. doi: 10.1016/j.apsoil.2011.02.001
    [17]
    Huang S, Peng X, Huang Q, et al. Soil aggregation and organic carbon fractions affected by long-term fertilization in a red soil of subtropical China[J]. Geoderma, 2010, 154(3−4): 364−369. doi: 10.1016/j.geoderma.2009.11.009
    [18]
    Bai T, Wang P, Ye C, et al. Form of nitrogen input dominates N effects on root growth and soil aggregation: a meta-analysis[J]. Soil Biology and Biochemistry, 2021, 157: 108251. doi: 10.1016/j.soilbio.2021.108251
    [19]
    Jastrow J D, Amonette J E, Bailey V L. Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration[J]. Climatic Change, 2007, 80(1): 5−23.
    [20]
    Lu X, Hou E, Guo J, et al. Nitrogen addition stimulates soil aggregation and enhances carbon storage in terrestrial ecosystems of China: a meta-analysis[J]. Global Change Biology, 2021, 27(12): 2780−2792. doi: 10.1111/gcb.15604
    [21]
    张欣, 任海燕, 韩国栋. 增温和施氮对内蒙古荒漠草原土壤团聚体稳定性及碳含量的影响[J]. 草原与草业, 2020, 32(2): 22−26. doi: 10.3969/j.issn.2095-5952.2020.02.010

    Zhang X, Ren H Y, Han G D. Effects of warming and nitrogen application on soil aggregate stability and carbon content in the desert grassland of Inner Mongolia[J]. Grassland and Prataculture, 2020, 32(2): 22−26. doi: 10.3969/j.issn.2095-5952.2020.02.010
    [22]
    Shen D, Ye C, Hu Z, et al. Increased chemical stability but decreased physical protection of soil organic carbon in response to nutrient amendment in a Tibetan Alpine Meadow[J]. Soil Biology and Biochemistry, 2018, 126: 11−21. doi: 10.1016/j.soilbio.2018.08.008
    [23]
    张镱锂, 李炳元, 郑度. 论青藏高原范围与面积[J]. 地理研究, 2002, 21(1): 128−136.

    Zhang Y L, Li B Y, Zheng D. A discussion on the boundary and area of the Tibetan Plateau in China[J]. Geographical Research, 2002, 21(1): 128−136.
    [24]
    杨元合, 朴世龙. 青藏高原草地植被覆盖变化及其与气候因子的关系[J]. 植物生态学报, 2006, 30(1): 1−8. doi: 10.3321/j.issn:1005-264X.2006.01.001

    Yang Y H, Piao S L. Variations in grassland vegetation cover in relation to climatic factors on the Tibetan Plateau[J]. Chinese Journal of Plant Ecology, 2006, 30(1): 1−8. doi: 10.3321/j.issn:1005-264X.2006.01.001
    [25]
    Yang Y, Fang J, Tang Y, et al. Storage, patterns and controls of soil organic carbon in the Tibetan grasslands[J]. Global Change Biology, 2008, 14(7): 1592−1599. doi: 10.1111/j.1365-2486.2008.01591.x
    [26]
    Lü C, Tian H. Spatial and temporal patterns of nitrogen deposition in China: synthesis of observational data[J/OL]. Journal of Geophysical Research: Atmospheres, 2007, 112(D22) [2021−05−19]. https://doi.org/10.1029/2006JD007990.
    [27]
    朱天鸿, 程淑兰, 方华军, 等. 青藏高原高寒草甸土壤CO2排放对模拟氮沉降的早期响应[J]. 生态学报, 2011, 31(10): 2687−2696.

    Zhu T H, Cheng S L, Fang H J, et al. Early responses of soil CO2 emission to simulating atmospheric nitrogen deposition in an alpine meadow on the Qinghai Tibetan Plateau[J]. Acta Ecologica Sinica, 2011, 31(10): 2687−2696.
    [28]
    刘晓东, 尹国丽, 武均, 等. 青藏高原东部高寒草甸草地土壤物理性状对氮元素添加的响应[J]. 草业学报, 2015, 24(10): 12−21. doi: 10.11686/cyxb2015154

    Liu X D, Yin G L, Wu J, et al. Effects of nitrogen addition on the physical properties of soil in an alpine meadow on the eastern Qinghai-Tibetan Plateau[J]. Acta Prataculturae Sinica, 2015, 24(10): 12−21. doi: 10.11686/cyxb2015154
    [29]
    Wang D, Chi Z, Yue B, et al. Effects of mowing and nitrogen addition on the ecosystem C and N pools in a temperate steppe: a case study from northern China[J]. Catena, 2020, 185: 104332. doi: 10.1016/j.catena.2019.104332
    [30]
    Song B, Sun J, Zhou Q, et al. Initial shifts in nitrogen impact on ecosystem carbon fluxes in an alpine meadow: patterns and causes[J]. Biogeosciences, 2017, 14(17): 3947−3956. doi: 10.5194/bg-14-3947-2017
    [31]
    Six J, Conant R T, Paul E A, et al. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils[J]. Plant and Soil, 2002, 241(2): 155−176. doi: 10.1023/A:1016125726789
    [32]
    贺佩, 李悦, 江明兢, 等. 连续氮添加14年对温带典型草原土壤碳氮组分及物理结构的影响[J]. 生态学报, 2021, 41(5): 1808−1823.

    He P, Li Y, Jiang M J, et al. Efcts of 14-year continuous nitrogen adition on soil carbon and nitrogen composition andphysical structure at different depths in a typical temperate steppe[J]. Acta Ecologica Sinica, 2021, 41(5): 1808−1823.
    [33]
    曾全超, 李鑫, 董扬红, 等. 黄土高原不同乔木林土壤微生物量碳氮和溶解性碳氮的特征[J]. 生态学报, 2015, 35(11): 3598−3605.

    Zeng Q C, Li X, Dong Y H, et al. Soil microbial biomass nitrogen and carbon, water soluble nitrogen and carbon under different arbors forests on the Loess Plateau[J]. Acta Ecologica Sinica, 2015, 35(11): 3598−3605.
    [34]
    史奕, 陈欣, 沈善敏. 有机胶结形成土壤团聚体的机理及理论模型[J]. 应用生态学报, 2002, 13(11): 1495−1498. doi: 10.3321/j.issn:1001-9332.2002.11.033

    Shi Y, Chen X, Shen S M. Mechanisms of organic cementing soil aggregate formation and its theoretical models[J]. Chinese Journal of Applied Ecology, 2002, 13(11): 1495−1498. doi: 10.3321/j.issn:1001-9332.2002.11.033
    [35]
    Bai T, Wang P, Hall S J, et al. Interactive global change factors mitigate soil aggregation and carbon change in a semi-arid grassland[J]. Global Change Biology, 2020, 26(9): 5320−5332. doi: 10.1111/gcb.15220
    [36]
    Kool D M, Chung H, Tate K R, et al. Hierarchical saturation of soil carbon pools near a natural CO2 spring[J]. Global Change Biology, 2007, 13(6): 1282−1293. doi: 10.1111/j.1365-2486.2007.01362.x
    [37]
    Ma F, Zhang F, Quan Q, et al. Alleviation of light limitation increases plant diversity and ecosystem carbon sequestration under nitrogen enrichment in an alpine meadow[J]. Agricultural and Forest Meteorology, 2021, 298: 108269.
    [38]
    张方月. 高寒草甸生态系统碳循环对降雨梯度的响应及机理研究[D]. 北京: 中国科学院大学, 2018.

    Zhang F Y. Responses of ecosystem carbon cycle to precipitation gradient in an alpine meadow[D]. Beijing: University of Chinese Academy of Sciences, 2018.
    [39]
    Tisdall J M, Oades J M. Organic matter and water-stable aggregates in soils[J]. Journal of Soil Science, 1982, 33(2): 141−163. doi: 10.1111/j.1365-2389.1982.tb01755.x
    [40]
    Wang R, Dungait J A J, Creamer C A, et al. Carbon and nitrogen dynamics in soil aggregates under long-term nitrogen and water addition in a temperate steppe[J]. Soil Science Society of America Journal, 2015, 79(2): 527−535. doi: 10.2136/sssaj2014.09.0351
    [41]
    Wang Y, Wang Z L, Zhang Q, et al. Long-term effects of nitrogen fertilization on aggregation and localization of carbon, nitrogen and microbial activities in soil[J]. Science of the Total Environment, 2018, 624: 1131−1139. doi: 10.1016/j.scitotenv.2017.12.113
    [42]
    李玮, 郑子成, 李廷轩, 等. 不同植茶年限土壤团聚体及其有机碳分布特征[J]. 生态学报, 2014, 34(21): 6326−6336.

    Li W, Zheng Z C, Li T X, et al. Distribution characteristics of soil aggregates and its organic carbon in different tea plantation age[J]. Acta Ecologica Sinica, 2014, 34(21): 6326−6336.
    [43]
    窦森, 李凯, 关松. 土壤团聚体中有机质研究进展[J]. 土壤学报, 2011, 48(2): 412−418. doi: 10.11766/trxb200911220527

    Dou S, Li K, Guan S. A review on organic matter in soil aggregates[J]. Acta Pedologica Sinica, 2011, 48(2): 412−418. doi: 10.11766/trxb200911220527
  • Cited by

    Periodical cited type(3)

    1. 具琳静,欧阳勋志,潘萍,刘军,周巧晴,叶青龙. 2000—2019年赣南森林净初级生产力时空变化及其与气候因子的关系. 东北林业大学学报. 2022(12): 37-44 .
    2. 宋经纬,徐子然,陈家鑫,徐庆华. 新疆额尔齐斯河流域杨树天然林的养分含量分析. 干旱区研究. 2021(05): 1429-1435 .
    3. 冯继广,朱彪. 氮磷添加对树木生长和森林生产力影响的研究进展. 植物生态学报. 2020(06): 583-597 .

    Other cited types(0)

Catalog

    Article views (1217) PDF downloads (196) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return