• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhao Yifan, Kong Bo, Cheng Xuetong, Li Liang, Ling Aoyu, Li Zhiqun, Kang Xiangyang, Zhang Pingdong. Pollen chromosome doubling induced by gibberellin spraying treatment and its effect on microtubule cytoskeleton in Populus bolleana[J]. Journal of Beijing Forestry University, 2023, 45(1): 40-50. DOI: 10.12171/j.1000-1522.20210449
Citation: Zhao Yifan, Kong Bo, Cheng Xuetong, Li Liang, Ling Aoyu, Li Zhiqun, Kang Xiangyang, Zhang Pingdong. Pollen chromosome doubling induced by gibberellin spraying treatment and its effect on microtubule cytoskeleton in Populus bolleana[J]. Journal of Beijing Forestry University, 2023, 45(1): 40-50. DOI: 10.12171/j.1000-1522.20210449

Pollen chromosome doubling induced by gibberellin spraying treatment and its effect on microtubule cytoskeleton in Populus bolleana

More Information
  • Received Date: November 08, 2021
  • Revised Date: January 03, 2022
  • Accepted Date: December 21, 2022
  • Available Online: December 23, 2022
  • Published Date: January 24, 2023
  •   Objective  This work was to discuss the feasibility of produce 2n pollen by inducing 2n pollen production via gibberellins (GA3) and investigating the effects on meiotic microtubule cytoskeleton of pollen mother cells (PMCs) in Populus bolleana, leading to developing a more effective and cheaper chemical mutagen and establishing an effective system of polyploidy breeding for forest tree.
      Method  The observation of the meiotic process of PMCs, the production of 2n pollen induced by GA3 spraying treatment and its effects on the organization of microtubule were conducted by aceto-carmine (2%) staining and indirect immunofluorescence microscopy using male flower branches as experimental material in P. bolleana.
      Result  It took about 4 days to complete the meisois of PMCs, and the meiotic process within different buds was asynchronous. The meiotic stage, spray time, the interaction of meiotic stage × spay time and spay time × concentration of GA3 had significant effects on the induction rates of 2n pollen. The optimal treatment combination for inducing pollen chromosome doubling by 50 μmol/L GA3 solution was given 7 time spraying when PMCs were at meiosis Ⅱ. The highest induction rate was (8.83 ± 3.10) %. Compared with the control group, the radial microtubular structures between two neighboring nuclei were under the optimal conditions, lacked in some treated PMCs, leading to the failure of cytokinesis, nuclear restitution and the formation of triad and consequently a haploid gamete and a 2n gamete.
      Conclusion  Spraying gibberellin could induce chromosome doubling of P. bolleana pollen and obtain 2n pollen in a certain proportion. After PMCs being treated with GA3, the partial absence of radial microtubular structure between two neighboring daughter nuclei in some PMCs at telophase Ⅱ is found to be responsible for 2n pollen production.
  • [1]
    Soltis D E, Albert V A, Leebens-Mack J, et al. Polyploidy and angiosperm diversification[J]. American Journal of Botany, 2009, 96(1): 336−348. doi: 10.3732/ajb.0800079
    [2]
    李云, 朱之悌, 田砚亭, 等. 秋水仙碱处理白杨雌花芽培育三倍体植株的研究[J]. 林业科学, 2001, 37(5): 68−74. doi: 10.3321/j.issn:1001-7488.2001.05.012

    Li Y, Zhu Z T, Tian Y T, et al. Studies on obtaining triploids by colchicine treating female flower buds of white poplar[J]. Scientia Silvae Sinicae, 2001, 37(5): 68−74. doi: 10.3321/j.issn:1001-7488.2001.05.012
    [3]
    李艳华. 白杨雌配子染色体加倍技术研究[D]. 北京: 北京林业大学, 2007.

    Li Y H. Chromosome doubling of female gamates in white poplars[D]. Beijing: Beijing Forestry University, 2007.
    [4]
    康向阳, 张平冬, 高鹏, 等. 秋水仙碱诱导白杨三倍体新途径的发现[J]. 北京林业大学学报, 2004, 26(1): 1−4. doi: 10.3321/j.issn:1000-1522.2004.01.001

    Kang X Y, Zhang P D, Gao P, et al. Discovery of a new way of poplar triploids induced with colchicine after pollination[J]. Journal of Beijing Forestry University, 2004, 26(1): 1−4. doi: 10.3321/j.issn:1000-1522.2004.01.001
    [5]
    Li D L, Kang X Y, Chen H W, et al. Induction of diploid eggs with colchicine during embryo sac development in Populus[J]. Silvae Genetica, 2010, 59(1−6): 40−48. doi: 10.1515/sg-2010-0005
    [6]
    王君, 康向阳, 石乐, 等. 理化处理诱导合子染色体加倍选育青杨派杂种四倍体[J]. 北京林业大学学报, 2010, 32(5): 63−66. doi: 10.13332/j.1000-1522.2010.05.020

    Wang J, Kang X Y, Shi L, et al. Tetraploid induction of Populus hybrid in section Tacamahaca through zygotic chromosome doubling with physical and chemical treatments[J]. Journal of Beijing Forestry University, 2010, 32(5): 63−66. doi: 10.13332/j.1000-1522.2010.05.020
    [7]
    Cai X, Kang X Y. In vitro tetraploid induction from leaf explants of Populus pseudo-simonii Kitag[J]. Plant Cell Reports, 2011, 30(9): 1771−1778. doi: 10.1007/s00299-011-1085-z
    [8]
    Xu C P, Huang Z, Liao T, et al. In vitro tetraploid plants regeneration from leaf explants of multiple genotypes in Populus[J]. Plant Cell Tissue and Organ Culture, 2016, 125(1): 1−9. doi: 10.1007/s11240-015-0922-0
    [9]
    Ewald D, Ulrich K, Naujoks G, et al. Induction of tetraploid poplar and black locust plants using colchicine: chloroplast number as an early marker for selecting polyploids in vitro[J]. Plant Cell Tissue and Organ Culture, 2009, 99(3): 353−357. doi: 10.1007/s11240-009-9601-3
    [10]
    张焕玲, 李俊红, 李周歧. 秋水仙素处理杜仲种子诱导多倍体的研究[J]. 西北林学院学报, 2008, 23(1): 78−81.

    Zhang H L, Li J H, Li Z Q. Studies on polyploid induction in vitro of Eucommia ulmoides Oliv.[J]. Journal of Northwest Forestry University, 2008, 23(1): 78−81.
    [11]
    Yang J, Wang J, Liu Z, et al. Megaspore chromosome doubling in Eucalyptus urophylla S. T. Blake induced by colchicine treatmentto produce triploids[J]. Forests, 2018, 9(11): 728. doi: 10.3390/f9110728
    [12]
    Zhao C G, Tian M D, Li Y, et al. Slow-growing pollen-tube of colchicine-induced 2n pollen responsible for low triploid production rate in Populus[J]. Euphytica, 2017, 213(4): 94. doi: 10.1007/s10681-017-1881-9
    [13]
    Tian M D, Zhang Y, Liu Y, et al. High temperature exposure did not affect induced 2n pollen viability in Populus[J]. Plant Cell & Environment, 2018, 41(6): 1383−1393.
    [14]
    高鹏. 杜仲配子与合子染色体加倍技术研究[D]. 北京: 北京林业大学, 2006.

    Gao P. Gamete and zygote chromosome doubling of Eucommia ulmoides Oliv.[D]. Beijing: Beijing Forestry University, 2006.
    [15]
    Yang J, Yao P Q, Li Y, et al. Induction of 2n pollen with colchicine during microsporogenesis in Eucalyptus[J]. Euphytica, 2016, 210(1): 69−78. doi: 10.1007/s10681-016-1699-x
    [16]
    耿喜宁, 任勇谕, 韩志强, 等. 高温诱导大孢子染色体加倍选育毛白杨杂种三倍体[J]. 北京林业大学学报, 2018, 40(11): 12−18. doi: 10.13332/j.1000-1522.20180215

    Geng X N, Ren Y Y, Han Z Q, et al. Production of hybrid triploids via inducing chromosome doubling of megaspore with high temperature treatment in Leuce poplar[J]. Journal of Beijing Forestry University, 2018, 40(11): 12−18. doi: 10.13332/j.1000-1522.20180215
    [17]
    康宁, 白凤莹, 张平冬, 等. 高温诱导胚囊染色体加倍获得毛白杨杂种三倍体[J]. 北京林业大学学报, 2015, 37(2): 79−86. doi: 10.13332/j.cnki.jbfu.2015.02.021

    Kang N, Bai F Y, Zhang P D, et al. Inducing chromosome doubling of embryo sac in Populus tomentosa with high temperature exposure for hybrid triploids[J]. Journal of Beijing Forestry University, 2015, 37(2): 79−86. doi: 10.13332/j.cnki.jbfu.2015.02.021
    [18]
    王君. 青杨派树种多倍体诱导技术研究[D]. 北京: 北京林业大学, 2009.

    Wang J. Techniques of polyploid induction in Populus spp. (Section Tacamahaca)[D]. Beijing: Beijing Forestry University, 2009.
    [19]
    李云, 朱之悌, 田砚亭, 等. 极端温度处理白杨雌花芽培育三倍体植株的研究[J]. 北京林业大学学报, 2000, 22(5): 7−12. doi: 10.3321/j.issn:1000-1522.2000.05.002

    Li Y, Zhu Z T, Tian Y T, et al. Obtaining triploids by high and low temperature treating female flower buds of white poplar[J]. Journal of Beijing Forestry University, 2000, 22(5): 7−12. doi: 10.3321/j.issn:1000-1522.2000.05.002
    [20]
    Li Y. Wang Y, Wang P Q, et al. Induction of unreduced megaspores in Eucommia ulmoides by high temperature treatment during megasporogenesis[J]. Euphytica, 2016, 212(3): 515−524. doi: 10.1007/s10681-016-1781-4
    [21]
    杨珺. 桉树生殖生物学基础与染色体加倍技术研究[D]. 北京: 北京林业大学, 2015.

    Yang J. Reproductive biology and techniques of chromosome doubling in Eucalyptus[D]. Beijing: Beijing Forestry University, 2015.
    [22]
    康向阳, 朱之悌, 张志毅. 高温诱导白杨2n花粉有效处理时期的研究[J]. 北京林业大学学报, 2000, 22(3): 1−4. doi: 10.3321/j.issn:1000-1522.2000.03.001

    Kang X Y, Zhu Z T, Zhang Z Y. Suitable period of high temperature treatment for 2n pollen of Populus tomentosa × P. bolleana[J]. Journal of Beijing Forestry University, 2000, 22(3): 1−4. doi: 10.3321/j.issn:1000-1522.2000.03.001
    [23]
    鲁敏. 响叶杨三倍体和四倍体诱导技术研究[D]. 北京: 北京林业大学, 2013.

    Lu M. Techniques of triploid and teraploid induction in Populus adenopoda Maxim.[D]. Beijing: Beijing Forestry University, 2013.
    [24]
    张磊, 王君, 索玉静, 等. 高温诱导银白杨花粉染色体加倍研究[J]. 核农学报, 2010, 24(6): 1158−1165. doi: 10.11869/hnxb.2010.06.1158

    Zhang L, Wang J, Suo Y J, et al. Pollen chromosome doubling under high temperature in Populus alba L.[J]. Journal of Nuclear Agricultural Sciences, 2010, 24(6): 1158−1165. doi: 10.11869/hnxb.2010.06.1158
    [25]
    田梦迪, 李燕杰, 张平冬, 等. 高温诱导银灰杨花粉染色体加倍创制杂种三倍体[J]. 林业科学, 2018, 54(3): 39−47.

    Tian M D, Li Y J, Zhang P D, et al. Pollen chromosome doubling induced by high temperature exposure to produce hybrid triploids in Populus canescens[J]. Scientia Silvae Sinicae, 2018, 54(3): 39−47.
    [26]
    李燕杰. 高温诱导银灰杨产生2n花粉的细胞及分子机制[D]. 北京: 北京林业大学, 2017.

    Li Y J. Cytological and molecular mechanism of 2n pollen production induced by high temperature in Populus canescens[D]. Beijing: Beijing Forestry University, 2017.
    [27]
    Claeys H, de Bodt S, Inzé D. Gibberellins and DELLAs: central nodes in growth regulatory networks[J]. Trends in Plant Science, 2014, 19: 231−239. doi: 10.1016/j.tplants.2013.10.001
    [28]
    Davière J M, Achard P. A pivotal role of DELLAs in regulating multiple hormone signals[J]. Molecular Plant, 2016, 9: 10−20. doi: 10.1016/j.molp.2015.09.011
    [29]
    Debeaujon I, Koornneef M. Gibberellin requirement for Arabidopsis seed germination is determined both by testa characteristics and embryonic abscisic acid[J]. Plant Physiology, 2000, 122: 415−424. doi: 10.1104/pp.122.2.415
    [30]
    Xia X C, Hu Q Q, Li W, et al. Cotton (Gossypium hirsutum) JAZ3 and SLR1 function in jasmonate and gibberellin mediated epidermal cell differentiation and elongation[J]. Plant Cell, Tissue and Organ Culture, 2018, 133: 249−262. doi: 10.1007/s11240-018-1378-9
    [31]
    Sakata T, Oda S, Tsunaga Y, et al. Reduction of gibberellin by low temperature disrupts pollen development in rice[J]. Plant Physiology, 2014, 164: 2011−2019. doi: 10.1104/pp.113.234401
    [32]
    Plackett A R, Ferguson A C, Powers S J, et al. DELLA activity is required for successful pollen development in the Columbia ecotype of Arabidopsis[J]. New Phytologist, 2014, 201: 825−836. doi: 10.1111/nph.12571
    [33]
    Liu B, de Storme N, Geelen D. Gibberellin induces diploid pollen formation by interfering with meiotic cytokinesis[J]. Plant Physiology, 2017, 173: 338−353. doi: 10.1104/pp.16.00480
    [34]
    Shamina N V. Formation of division spindles in higher plant meiosis[J]. Cell Biology International, 2005, 29(4): 307−318. doi: 10.1016/j.cellbi.2004.12.012
    [35]
    Brown R C, Lemmon B E. The cytoskeleton and polarization during pollen development in Carex blanda (Cyperaceae)[J]. American Journal of Botany, 2000, 87: 1−11.
    [36]
    Brown R C, Lemmon B E. Microtubules associated with simultaneous cytokinesis of coenocytic microsporocytes[J]. American Journal of Botany, 1988, 75(12): 1848−1856. doi: 10.1002/j.1537-2197.1988.tb11265.x
    [37]
    Zhang Z H, Kang X Y. Cytological characteristics of numerically unreduced pollen production in Populus tomentosa Carr.[J]. Euphytica, 2010, 173: 151−159. doi: 10.1007/s10681-009-0051-0
    [38]
    Bajer A. Cine-micrographic studies on dicentric chromosomes[J]. Chromosoma, 1965, 15(5): 630−651.
    [39]
    Orjeda G, Freyre R, Iwanaga M. Production of 2n pollen in diploid Ipomoea trifida, a putative wild ancestor of sweet potato[J]. Journal of Heredity, 1990, 81(6): 462−467. doi: 10.1093/oxfordjournals.jhered.a111026
    [40]
    Brown R C, Lemmon B E. Control of division plane in normal and griseofulvin-treated microsporocytes of Magnolia[J]. Journal of Cell Science, 1992, 103: 1031−1038. doi: 10.1242/jcs.103.4.1031
    [41]
    盛承发, 李为争, 宣维健. 昆虫学百分率差异显著性统计分析的简易计算方法[J]. 昆虫知识, 2006, 43(4): 574−576.

    Sheng C F, Li W Z, Xuan W J. A method of statistical tests of differences between percentages in entomological reseaches[J]. Journal of Applied Entomology, 2006, 43(4): 574−576.
    [42]
    康向阳, 朱之悌, 张志毅. 毛白杨花粉母细胞减数分裂及其进程的研究[J]. 北京林业大学学报, 2000, 22(6): 5−7. doi: 10.3321/j.issn:1000-1522.2000.06.002

    Kang X Y, Zhu Z T, Zhang Z Y. Meiosis and its stages of pollen mother cells in Chinese white poplar[J]. Journal of Beijing Forestry University, 2000, 22(6): 5−7. doi: 10.3321/j.issn:1000-1522.2000.06.002
    [43]
    王君, 康向阳, 李代丽, 等. 通辽杨花粉母细胞减数分裂及其染色体行为研究[J]. 西北植物学报, 2006, 26(11): 2231−2238. doi: 10.3321/j.issn:1000-4025.2006.11.007

    Wang J, Kang X Y, Li D L, et al. Meiosis and chromosome behavior of pollen mother cell in Populus simon Carr. × P. nigra L. ‘Tongliao’[J]. Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(11): 2231−2238. doi: 10.3321/j.issn:1000-4025.2006.11.007
    [44]
    鲁敏, 王君, 王旭军, 等. 响叶杨小孢子母细胞减数分裂及染色体行为的研究[J]. 植物科学学报, 2011, 29(2): 171−177.

    Lu M, Wang J, Wang X J, et al. Meiosis and chromosome behavior of microsporocytes in Populus adenopoda Maxim.[J]. Plant Science Journal, 2011, 29(2): 171−177.
    [45]
    辛昊阳, 刘帅, 刘光欣, 等. 美洲黑杨小孢子母细胞减数分裂进程与花芽及花药外部形态相关性研究[J]. 南京林业大学学报(自然科学版), 2016, 40(2): 48−52.

    Xin H Y, Liu S, Liu G X, et al. Relationship between the meiosis processes of microsporocytes and morphology of male flower buds and anthers in Populus deltoides March[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2016, 40(2): 48−52.
    [46]
    Zhang P D, Kang X Y. Occurrence and cytological mechanism of numerically unreduced pollen in diploid Populus euphratica[J]. Silvae Genetica, 2013, 62(6): 285−291.
    [47]
    Harder L D, Thomson J D. Evolutionary options for maximizing pollen dispersal of animal pollinated plants[J]. The American Naturalist, 1989, 133(3): 323−344. doi: 10.1086/284922
    [48]
    李赟, 郭倩, 王君, 等. 秋水仙碱诱导银白杨花粉染色体加倍及其细胞学效应研究[J]. 核农学报, 2014, 28(5): 1749−1756. doi: 10.11869/j.issn.100-8551.2014.05.0749

    Li Y, Guo Q, Wang J, et al. Colchicine-induced pollen chromosome doubling and its cytological effects in Populus alba L.[J]. Journal of Nuclear Agricultural Sciences, 2014, 28(5): 1749−1756. doi: 10.11869/j.issn.100-8551.2014.05.0749
    [49]
    Zhou Q, Wu J, Sang Y R, et al. Effects of colchicine on Populus canescens ectexine structure and 2n pollen production[J]. Frontiers in Plant Science, 2020, 11: 295. doi: 10.3389/fpls.2020.00295
    [50]
    张平冬, 康向阳. 胡杨小孢子发生及微管骨架变化与异常研究[J]. 西北植物学报, 2013, 33(11): 2166−2171. doi: 10.7606/j.issn.1000-4025.2013.11.2166

    Zhang P D, Kang X Y. Organization of microtubule and its abnormities during microsporogenesis in Populus euphratica[J]. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(11): 2166−2171. doi: 10.7606/j.issn.1000-4025.2013.11.2166
  • Related Articles

    [1]He Xuegao, Liu Huan, Zhang Jing, Cheng Wei, Ding Peng, Jia Fengming, Li Qing, Liu Chao. Predicting potential suitable distribution areas for Juniperus przewalskii in Qinghai Province of northwestern China based on the optimized MaxEnt model[J]. Journal of Beijing Forestry University, 2023, 45(12): 19-31. DOI: 10.12171/j.1000-1522.20220515
    [2]Zhang Hanyue, Feng Zhongke, Huang Guosheng, Yang Xueqing, Feng Zemin. Research on the growth rate model of Populus spp. considering environmental factors[J]. Journal of Beijing Forestry University, 2022, 44(11): 50-59. DOI: 10.12171/j.1000-1522.20210201
    [3]Zhou Zhenghu, Liu Lin, Hou Lei. Soil organic carbon stabilization and formation: mechanism and model[J]. Journal of Beijing Forestry University, 2022, 44(10): 11-22. DOI: 10.12171/j.1000-1522.20220183
    [4]Wang Peng, Shang Shuaishuai, Guo Fan, Qiu Jingcong, Wang Xinqing, Wang Shiqi, Wang Chunmei. Analyzing the effects of freeze-thaw on dissolved organic matter in alpine peat wetland soil based on EEM-PARAFAC[J]. Journal of Beijing Forestry University, 2021, 43(11): 99-108. DOI: 10.12171/j.1000-1522.20210096
    [5]Ge Huishuo, Song Yuepeng, Su Xuehui, Zhang Deqiang, Zhang Xiaoyu. Optimal growth model of Populus simonii seedling combination based on Logistic and Gompertz models[J]. Journal of Beijing Forestry University, 2020, 42(5): 59-70. DOI: 10.12171/j.1000-1522.20190296
    [6]Cao Meng, Pan Ping, Ouyang Xunzhi, Zang Hao, Wu Zirong, Yang Yang, Zhan Changyan. Growth model of DBH and tree height for individual tree of natural secondary Phoebe bournei forest based on dummy variable[J]. Journal of Beijing Forestry University, 2019, 41(5): 88-96. DOI: 10.13332/j.1000-1522.20190026
    [7]ZHENG Dong-mei, ZENG Wei-sheng.. Using dummy variable approach to construct segmented aboveground biomass models for larch and oak in northeastern China.[J]. Journal of Beijing Forestry University, 2013, 35(6): 23-27.
    [8]WANG Lei-hong, YANG Jun-xian, ZHENG Yu-hong, TANG Geng-guo. Modelling the geographic distribution of Malus baccata[J]. Journal of Beijing Forestry University, 2011, 33(3): 70-74.
    [9]WANG Dan, WANG Bing, DAI Wei, LI Ping. Sensitivity analysis of variables correlated to soil organic matter in Chinese fir plantations[J]. Journal of Beijing Forestry University, 2011, 33(1): 78-83.
    [10]YU Yun-shui, HE Wei-li, LI Li-jun, ZHAO Ren-jie. Optimal design of the mechanical properties of bamboo plywood form based on response surface model.[J]. Journal of Beijing Forestry University, 2009, 31(6): 103-107.
  • Cited by

    Periodical cited type(7)

    1. 张高玲,谢红霞,盛浩,周清,段良霞,吴燕语. 亚热带山区红壤可蚀性对土地利用变化的响应. 长江科学院院报. 2022(02): 63-69 .
    2. 孙文泰,马明,牛军强,尹晓宁,董铁,刘兴禄. 陇东雨养苹果覆膜对土壤团聚体结构稳定性与细根分布的影响. 生态学报. 2022(04): 1582-1593 .
    3. 崔芯蕊,张嘉良,王云琦,王玉杰,王鑫皓. 甘肃小陇山林区不同林分对土壤团聚体稳定性的影响. 水土保持学报. 2021(04): 275-281 .
    4. 赵庆营. 河道格宾生态护岸结构选择方案设计与质量控制研究. 地下水. 2021(05): 246-248 .
    5. 蔡保国. 北方地区格宾生态护岸结构形式选择及质量控制. 水利规划与设计. 2020(01): 113-116 .
    6. 吴军虎,刘侠,邵凡凡,李玉晨,王泽祥. 天然沸石对土壤水分运动特性及水稳性团聚体的影响. 灌溉排水学报. 2020(04): 34-41 .
    7. 白录顺,范茂攀,王自林,王婷,邓超,李永梅. 间作模式下玉米/大豆的根系特征及其与团聚体稳定性的关系. 水土保持研究. 2019(01): 124-129 .

    Other cited types(7)

Catalog

    Article views PDF downloads Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return