• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Cen Lumei, Lin Jian. Compression deformation fixation and properties of Chinese fir pretreated with citric acid[J]. Journal of Beijing Forestry University, 2022, 44(4): 157-164. DOI: 10.12171/j.1000-1522.20210467
Citation: Cen Lumei, Lin Jian. Compression deformation fixation and properties of Chinese fir pretreated with citric acid[J]. Journal of Beijing Forestry University, 2022, 44(4): 157-164. DOI: 10.12171/j.1000-1522.20210467

Compression deformation fixation and properties of Chinese fir pretreated with citric acid

More Information
  • Received Date: November 14, 2021
  • Revised Date: March 03, 2022
  • Available Online: March 07, 2022
  • Published Date: April 24, 2022
  •   Objective  In order to improve the use value of fast-growing wood Chinese fir, this study investigated the effects of citric acid pretreatment and thermal compression treatment on the compression set of Chinese fir, so as to improve its shortcomings such as low density, poor dimensional stability and poor mechanical properties.
      Method  In this study, Chinese fir pretreated with an aqueous solution of citric acid with varying mass fractions was evaluated at different hot-pressing temperature, then the set-recovery for water absorption and the set-recovery for moisture absorption of Chinese fir compressed wood were measured. Stress relaxation and Fourier infrared spectroscopy were used to investigate the deformation and fixation mechanism of Chinese fir compressed wood pretreated with citric acid, and physical and mechanical properties of Chinese fir compressed wood were characterized.
      Result  The set-recovery for water absorption of Chinese fir compressed wood decreased with the citric acid mass fractions and then increased slightly, while decreased with the hot-pressing temperature. The lowest set-recovery for water absorption and moisture absorption was 10.78% and 1.38%, respectively. This could be attributed to the fact that some components of wood were degraded by citric acid, inducing partial cleavage of connections among Chinese fir components, therefore the internal stress of Chinese fir compressed wood was released. In addition, citric acid may react with a small amount of hydroxyl of Chinese fir to form a cross-linked network. The polymer formed by the esterification of citric acid filled in the intercellular space of cell wall during the process of compression. At higher temperature, the polymer was soft and flexible, which promoted the release of the internal stress and the fixation of Chinese fir compressed wood. The density of Chinese fir compressed wood increased with the compression ratios, and reached a maximum value of 0.717 g/cm3 when the compression ratio was 50%. Compared with the control, its density, bending strength, flexural elastic modulus and the hardness of compressed wood increased by 94.8%, 70.6%, 278.2% and 52.5%, respectively.
      Conclusion  The deformation of Chinese fir compressed wood is fixed effectively by citric acid pretreatment, and the physical and mechanical properties of Chinese fir compressed wood are improved significantly. The results of this study provide theoretical support and technical reference for adding high-value to application of fast-growing wood.
  • [1]
    Navi P, Heger F. Combined densification and thermo-hydro-mechanical processing of wood[J]. Mrs Bulletin, 2004, 29(5): 332−336. doi: 10.1557/mrs2004.100
    [2]
    王洁瑛, 赵广杰, 杨琴玲, 等. 饱水和气干状态杉木的压缩成型及其热处理永久固定[J]. 北京林业大学学报, 2000, 22(1): 72−75. doi: 10.3321/j.issn:1000-1522.2000.01.015

    Wang J Y, Zhao G J, Yang Q L, et al. Compression and permanent fixation with heat treatment of China fir under water-saturated condition and air-dried condition[J]. Journal of Beijing Forestry University, 2000, 22(1): 72−75. doi: 10.3321/j.issn:1000-1522.2000.01.015
    [3]
    刘丹丹, 关惠元, 黄琼涛. 热处理对表面密实材变形固定及性能影响[J]. 北京林业大学学报, 2018, 40(7): 121−128.

    Liu D D, Guan H Y, Huang Q T. Effects of thermal treatment on deformation fixation and properties of surface densified wood[J]. Journal of Beijing Forestry University, 2018, 40(7): 121−128.
    [4]
    战剑锋, 曹军, 顾继友, 等. 臭冷杉表面密实化及后期高温热处理工艺[J]. 南京林业大学学报(自然科学版), 2015, 39(3): 119−124.

    Zhan J F, Cao J, Gu J Y, et al. Surface densification and high temperature hydrothermal post treatment of the Abies nephrolepis lumber[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2015, 39(3): 119−124.
    [5]
    Inoue M, Norimoto M, Tanahashi M, et al. Steam or heat fixation of compressed wood[J]. Wood and Fiber Science, 1993, 25(3): 224−235.
    [6]
    柴宇博, 刘君良, 王飞. 两种预处理方法对杨木压缩变形的固定作用及性能影响[J]. 木材加工机械, 2016, 27(5): 16−19.

    Chai Y B, Liu J L, Wang F. Effects of different modification methods on the fixation of compression and properties of plantation poplar wood[J]. Wood Processing Machinery, 2016, 27(5): 16−19.
    [7]
    Wu J, Fan Q, Wang Q, et al. Improved performance of poplar wood by an environmentally-friendly process combining surface impregnation of a reactive waterborne acrylic resin and unilateral surface densification[J]. Journal of Cleaner Production, 2020, 261: 121022. doi: 10.1016/j.jclepro.2020.121022
    [8]
    Yasuda R, Minato K. Chemical modification of wood by non-formaldehyde cross-linking reagents[J]. Wood Science and Technology, 1995, 29: 243−251.
    [9]
    方桂珍, 崔永志, 常德龙. 多元羧酸类化合物对木材大压缩量变形的固定作用[J]. 木材工业, 1998, 12(2): 16−19.

    Fang G Z, Cui Y Z, Chang D L. Fixation of heavy compression deformation of wood treated with polycarboxylic acids[J]. China Wood Industry, 1998, 12(2): 16−19.
    [10]
    Vukusic S, Katovic D, Schramm C, et al. Polycarboxylic acids as non-formaldehyde anti-swelling agents for wood[J]. Holzforschung, 2006, 60: 439−444. doi: 10.1515/HF.2006.069
    [11]
    Despot R, Hasan M, Jug M, et al. Biological durability of wood modified by citric acid[J]. Drvna Industrija, 2008, 59(2): 55−59.
    [12]
    L’Hostis C, Thévenon M, Fredon E, et al. Improvement of beech wood properties by in situ formation of polyesters of citric and tartaric acid in combination with glycerol[J]. Holzforschung, 2017, 72(4): 291−299.
    [13]
    Guo W, Xiao Z, Wentzel M, et al. Modification of scots pine with activated glucose and citric acid: physical and mechanical properties[J]. BioResources, 2019, 14(2): 3445−3458.
    [14]
    Mubarok M, Militz H, Stéphane D, et al. Beech wood modification based on in situ esterification with sorbitol and citric acid[J]. Wood Science and Technology, 2020, 54: 479−502. doi: 10.1007/s00226-020-01172-7
    [15]
    Choowang R, Suklueng M. Influence of pre-treatment in citric acid solution on physical and mechanical properties of thermally compressed oil palm board[J]. Journal of Forestry Research, 2019, 30(5): 429−434.
    [16]
    Yang C Q. FT-IR spectroscopy study of the ester crosslinking mechanism of cotton cellulose[J]. Textile Research Journal, 1991, 61(8): 433−440. doi: 10.1177/004051759106100801
    [17]
    Yan L, Cao J Z, Zhou X Y, et al. Interaction between glycerin and wood at various temperatures from stress relaxation approach[J]. Wood Science and Technology, 2011, 45(2): 215−222. doi: 10.1007/s00226-010-0322-x
    [18]
    Marchessault R H. Application of infra-red spectroscopy to cellulose and wood polysaccharides[J]. Pure and Applied Chemistry, 1962, 5(1−2): 107−130. doi: 10.1351/pac196205010107
    [19]
    Boonstra M J, Tjeerdsma B. Chemical analysis of heat treated softwoods[J]. Holzals Rohund Werkstoff, 2006, 64(3): 204−211. doi: 10.1007/s00107-005-0078-4
    [20]
    Dwianto W, Morooka T, Norimoto M. The compressive stress relaxation of albizia (Paraserienthes falcata Becker) wood during heat treatment[J]. Mokuzai Gakkaishi, 1998, 44(6): 403−409.
    [21]
    Kuerová V, Lagaňa R, Hroová T. Changes in chemical and optical properties of silver fir (Abiesalba L.) wood due to thermal treatment[J]. Journal of Wood Science, 2019, 65(1): 21−31. doi: 10.1186/s10086-019-1800-x
    [22]
    Dong Y M, Liu X Y, Liu J J, et al. Evaluation of anti-mold, termite resistance and physical-mechanical properties of bamboo cross-linking modified by polycarboxylic acids[J]. Construction and Building Materials, 2021, 272(3): 121953.
    [23]
    Bao M Z, Huang X N, Jiang M L, et al. Effect of thermo-hydro-mechanical densification on microstructure and properties of poplar wood (Populus tomentosa)[J]. Journal of Wood Science, 2017, 63(6): 591−605. doi: 10.1007/s10086-017-1661-0
  • Related Articles

    [1]Jin Zhi, Chen Qian, Dai Linxin, Ma Jianfeng. Research progress in macromolecular orientation of lignocellulosic cell wall[J]. Journal of Beijing Forestry University, 2022, 44(12): 153-160. DOI: 10.12171/j.1000-1522.20220215
    [2]Li Yunke, Li Zhenxin, Zhang Yutong, Yi Qirui, Ma Erni. Water-induced effects of matrix in wood cell wall on cellulose crystalline structure[J]. Journal of Beijing Forestry University, 2022, 44(12): 121-131. DOI: 10.12171/j.1000-1522.20220150
    [3]Lin Shiwei, Zhou Yangyan, Zhang Yue, Li Zheng, Liu Chao, Yin Weilun, Xia Xinli. Function of PdKNAT7 gene in poplar regulating the thickness of secondary cell wall in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2022, 44(11): 1-9. DOI: 10.12171/j.1000-1522.20210083
    [4]Liu Wenjuan, Wang Tao, Zhao Fuze, Lin Jian. Variability of cell composition, morphology and cell wall structure in Chimonobambusa utilis[J]. Journal of Beijing Forestry University, 2022, 44(9): 146-157. DOI: 10.12171/j.1000-1522.20220197
    [5]Li Jianlong, Chen Sheng, Li Haichao, Zhang Xun, Xu Duxin, Shi Menghua, Xu Feng. Relationship between cell wall ultrastructure and mechanical properties of balsa wood[J]. Journal of Beijing Forestry University, 2022, 44(2): 115-122. DOI: 10.12171/j.1000-1522.20210410
    [6]LIN Lan-ying, FU Feng. Nanoindentation test and analysis of cell wall of strengthened composite wood.[J]. Journal of Beijing Forestry University, 2012, 34(5): 139-143.
    [7]CHENG Xiao-qiao, LI Ke, CHEN Xue-mei, JIANG Xiang-ning, GAI Ying. Comparison of pectin structural monosaccharides in cell wall of dicotyledon and monocotyledon.[J]. Journal of Beijing Forestry University, 2012, 34(5): 44-49.
    [8]WANG Chuan-gui, JIANG Ze-hui, FEI Ben-hua, YU Yan, ZHANG Shuang-yan. Effects of chemical components on longitudinal MOE and hardness of wood cell wall[J]. Journal of Beijing Forestry University, 2012, 34(3): 107-110.
    [9]Lv Wei-jun, XUE Chong-yun, CAO Chun-yu, ZHANG Yong. Lignin distribution in wood cell wall and its testing methods[J]. Journal of Beijing Forestry University, 2010, 32(1): 136-141.
    [10]YU Yan, FEI Ben-hua, ZHANG Bo, WANG Ge. Longitudinal MOE and hardness of different cell wall layers of softwood tracheids[J]. Journal of Beijing Forestry University, 2006, 28(5): 114-118.
  • Cited by

    Periodical cited type(15)

    1. 冯旭环,周璐,熊伟,宗桦. 大渡河干热河谷区本土优势灌草植物根系的抗拉力学特性及其影响因素研究. 干旱区资源与环境. 2023(07): 159-169 .
    2. 李宏斌,张旭,姚晨,杜峰. 陕北黄土区不同植物根系抗拉力学特性研究. 水土保持研究. 2023(04): 122-129 .
    3. 李金波,伍红燕,赵斌,陈济丁,宋桂龙. 模拟边坡条件下常见护坡植物苗期根系构型特征. 生态学报. 2023(24): 10131-10141 .
    4. 赵佳愉,伍红燕,史蔚林,宋桂龙. 聚丙烯酰胺添加浓度对种基盘特性的影响. 草原与草坪. 2021(05): 16-21 .
    5. 黄炎和,李思诗,岳辉,彭绍云,谢炎敏,林根根,周曼,吴俣,蔡学智. 崩岗区四种草本植物根系抗拉特性及其与化学成分的关系. 亚热带水土保持. 2021(04): 9-15 .
    6. 李义强,伍红燕,宋桂龙,赵斌,李一为,夏宇,孙盛年,梁燕宁. 岩石边坡坡度对胡枝子和紫穗槐根系形态特征影响. 草原与草坪. 2020(02): 23-29 .
    7. 曹磊,马海天才. 不同草本植物根系力动力学及抗压力特征研究. 干旱区资源与环境. 2019(01): 164-170 .
    8. 李淑霞,刘亚斌,余冬梅,胡夏嵩,祁兆鑫. 寒旱环境盐胁迫条件下两种草本植物的根系力学特性研究. 盐湖研究. 2019(01): 116-131 .
    9. 李瑞燊,刘静,王博,张欣,胡晶华,苏慧敏,白潞翼,王多民. 反复施加拉剪组合力对小叶锦鸡儿直根材料力学特性的影响. 水土保持学报. 2019(05): 121-125 .
    10. 马海天才. 不同草本植物根系的抗压动力学特征. 北方园艺. 2018(19): 71-77 .
    11. 王博,刘静,王晨嘉,张欣,刘嘉伟,李强,张强. 半干旱矿区3种灌木侧根分支处折力损伤后的自修复特性. 应用生态学报. 2018(11): 3541-3549 .
    12. 韦杰,李进林,史炳林. 紫色土耕地埂坎2种典型根——土复合体抗剪强度特征. 应用基础与工程科学学报. 2018(03): 483-492 .
    13. 刘昌义,胡夏嵩,赵玉娇,窦增宁. 寒旱环境草本与灌木植物单根拉伸试验强度特征研究. 工程地质学报. 2017(01): 1-10 .
    14. 谷利茶,王国梁. 氮添加对油松幼苗不同径级细根碳水化合物含量的影响. 生态学杂志. 2017(08): 2184-2190 .
    15. 杨闻达,王桂尧,常婧美,张永杰. 主直根系拉拔力的室内试验研究. 中国水土保持科学. 2017(04): 111-116 .

    Other cited types(25)

Catalog

    Article views (1154) PDF downloads (75) Cited by(40)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return