Citation: | Cen Lumei, Lin Jian. Compression deformation fixation and properties of Chinese fir pretreated with citric acid[J]. Journal of Beijing Forestry University, 2022, 44(4): 157-164. DOI: 10.12171/j.1000-1522.20210467 |
[1] |
Navi P, Heger F. Combined densification and thermo-hydro-mechanical processing of wood[J]. Mrs Bulletin, 2004, 29(5): 332−336. doi: 10.1557/mrs2004.100
|
[2] |
王洁瑛, 赵广杰, 杨琴玲, 等. 饱水和气干状态杉木的压缩成型及其热处理永久固定[J]. 北京林业大学学报, 2000, 22(1): 72−75. doi: 10.3321/j.issn:1000-1522.2000.01.015
Wang J Y, Zhao G J, Yang Q L, et al. Compression and permanent fixation with heat treatment of China fir under water-saturated condition and air-dried condition[J]. Journal of Beijing Forestry University, 2000, 22(1): 72−75. doi: 10.3321/j.issn:1000-1522.2000.01.015
|
[3] |
刘丹丹, 关惠元, 黄琼涛. 热处理对表面密实材变形固定及性能影响[J]. 北京林业大学学报, 2018, 40(7): 121−128.
Liu D D, Guan H Y, Huang Q T. Effects of thermal treatment on deformation fixation and properties of surface densified wood[J]. Journal of Beijing Forestry University, 2018, 40(7): 121−128.
|
[4] |
战剑锋, 曹军, 顾继友, 等. 臭冷杉表面密实化及后期高温热处理工艺[J]. 南京林业大学学报(自然科学版), 2015, 39(3): 119−124.
Zhan J F, Cao J, Gu J Y, et al. Surface densification and high temperature hydrothermal post treatment of the Abies nephrolepis lumber[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2015, 39(3): 119−124.
|
[5] |
Inoue M, Norimoto M, Tanahashi M, et al. Steam or heat fixation of compressed wood[J]. Wood and Fiber Science, 1993, 25(3): 224−235.
|
[6] |
柴宇博, 刘君良, 王飞. 两种预处理方法对杨木压缩变形的固定作用及性能影响[J]. 木材加工机械, 2016, 27(5): 16−19.
Chai Y B, Liu J L, Wang F. Effects of different modification methods on the fixation of compression and properties of plantation poplar wood[J]. Wood Processing Machinery, 2016, 27(5): 16−19.
|
[7] |
Wu J, Fan Q, Wang Q, et al. Improved performance of poplar wood by an environmentally-friendly process combining surface impregnation of a reactive waterborne acrylic resin and unilateral surface densification[J]. Journal of Cleaner Production, 2020, 261: 121022. doi: 10.1016/j.jclepro.2020.121022
|
[8] |
Yasuda R, Minato K. Chemical modification of wood by non-formaldehyde cross-linking reagents[J]. Wood Science and Technology, 1995, 29: 243−251.
|
[9] |
方桂珍, 崔永志, 常德龙. 多元羧酸类化合物对木材大压缩量变形的固定作用[J]. 木材工业, 1998, 12(2): 16−19.
Fang G Z, Cui Y Z, Chang D L. Fixation of heavy compression deformation of wood treated with polycarboxylic acids[J]. China Wood Industry, 1998, 12(2): 16−19.
|
[10] |
Vukusic S, Katovic D, Schramm C, et al. Polycarboxylic acids as non-formaldehyde anti-swelling agents for wood[J]. Holzforschung, 2006, 60: 439−444. doi: 10.1515/HF.2006.069
|
[11] |
Despot R, Hasan M, Jug M, et al. Biological durability of wood modified by citric acid[J]. Drvna Industrija, 2008, 59(2): 55−59.
|
[12] |
L’Hostis C, Thévenon M, Fredon E, et al. Improvement of beech wood properties by in situ formation of polyesters of citric and tartaric acid in combination with glycerol[J]. Holzforschung, 2017, 72(4): 291−299.
|
[13] |
Guo W, Xiao Z, Wentzel M, et al. Modification of scots pine with activated glucose and citric acid: physical and mechanical properties[J]. BioResources, 2019, 14(2): 3445−3458.
|
[14] |
Mubarok M, Militz H, Stéphane D, et al. Beech wood modification based on in situ esterification with sorbitol and citric acid[J]. Wood Science and Technology, 2020, 54: 479−502. doi: 10.1007/s00226-020-01172-7
|
[15] |
Choowang R, Suklueng M. Influence of pre-treatment in citric acid solution on physical and mechanical properties of thermally compressed oil palm board[J]. Journal of Forestry Research, 2019, 30(5): 429−434.
|
[16] |
Yang C Q. FT-IR spectroscopy study of the ester crosslinking mechanism of cotton cellulose[J]. Textile Research Journal, 1991, 61(8): 433−440. doi: 10.1177/004051759106100801
|
[17] |
Yan L, Cao J Z, Zhou X Y, et al. Interaction between glycerin and wood at various temperatures from stress relaxation approach[J]. Wood Science and Technology, 2011, 45(2): 215−222. doi: 10.1007/s00226-010-0322-x
|
[18] |
Marchessault R H. Application of infra-red spectroscopy to cellulose and wood polysaccharides[J]. Pure and Applied Chemistry, 1962, 5(1−2): 107−130. doi: 10.1351/pac196205010107
|
[19] |
Boonstra M J, Tjeerdsma B. Chemical analysis of heat treated softwoods[J]. Holzals Rohund Werkstoff, 2006, 64(3): 204−211. doi: 10.1007/s00107-005-0078-4
|
[20] |
Dwianto W, Morooka T, Norimoto M. The compressive stress relaxation of albizia (Paraserienthes falcata Becker) wood during heat treatment[J]. Mokuzai Gakkaishi, 1998, 44(6): 403−409.
|
[21] |
Kuerová V, Lagaňa R, Hroová T. Changes in chemical and optical properties of silver fir (Abiesalba L.) wood due to thermal treatment[J]. Journal of Wood Science, 2019, 65(1): 21−31. doi: 10.1186/s10086-019-1800-x
|
[22] |
Dong Y M, Liu X Y, Liu J J, et al. Evaluation of anti-mold, termite resistance and physical-mechanical properties of bamboo cross-linking modified by polycarboxylic acids[J]. Construction and Building Materials, 2021, 272(3): 121953.
|
[23] |
Bao M Z, Huang X N, Jiang M L, et al. Effect of thermo-hydro-mechanical densification on microstructure and properties of poplar wood (Populus tomentosa)[J]. Journal of Wood Science, 2017, 63(6): 591−605. doi: 10.1007/s10086-017-1661-0
|
[1] | Jin Zhi, Chen Qian, Dai Linxin, Ma Jianfeng. Research progress in macromolecular orientation of lignocellulosic cell wall[J]. Journal of Beijing Forestry University, 2022, 44(12): 153-160. DOI: 10.12171/j.1000-1522.20220215 |
[2] | Li Yunke, Li Zhenxin, Zhang Yutong, Yi Qirui, Ma Erni. Water-induced effects of matrix in wood cell wall on cellulose crystalline structure[J]. Journal of Beijing Forestry University, 2022, 44(12): 121-131. DOI: 10.12171/j.1000-1522.20220150 |
[3] | Lin Shiwei, Zhou Yangyan, Zhang Yue, Li Zheng, Liu Chao, Yin Weilun, Xia Xinli. Function of PdKNAT7 gene in poplar regulating the thickness of secondary cell wall in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2022, 44(11): 1-9. DOI: 10.12171/j.1000-1522.20210083 |
[4] | Liu Wenjuan, Wang Tao, Zhao Fuze, Lin Jian. Variability of cell composition, morphology and cell wall structure in Chimonobambusa utilis[J]. Journal of Beijing Forestry University, 2022, 44(9): 146-157. DOI: 10.12171/j.1000-1522.20220197 |
[5] | Li Jianlong, Chen Sheng, Li Haichao, Zhang Xun, Xu Duxin, Shi Menghua, Xu Feng. Relationship between cell wall ultrastructure and mechanical properties of balsa wood[J]. Journal of Beijing Forestry University, 2022, 44(2): 115-122. DOI: 10.12171/j.1000-1522.20210410 |
[6] | LIN Lan-ying, FU Feng. Nanoindentation test and analysis of cell wall of strengthened composite wood.[J]. Journal of Beijing Forestry University, 2012, 34(5): 139-143. |
[7] | CHENG Xiao-qiao, LI Ke, CHEN Xue-mei, JIANG Xiang-ning, GAI Ying. Comparison of pectin structural monosaccharides in cell wall of dicotyledon and monocotyledon.[J]. Journal of Beijing Forestry University, 2012, 34(5): 44-49. |
[8] | WANG Chuan-gui, JIANG Ze-hui, FEI Ben-hua, YU Yan, ZHANG Shuang-yan. Effects of chemical components on longitudinal MOE and hardness of wood cell wall[J]. Journal of Beijing Forestry University, 2012, 34(3): 107-110. |
[9] | Lv Wei-jun, XUE Chong-yun, CAO Chun-yu, ZHANG Yong. Lignin distribution in wood cell wall and its testing methods[J]. Journal of Beijing Forestry University, 2010, 32(1): 136-141. |
[10] | YU Yan, FEI Ben-hua, ZHANG Bo, WANG Ge. Longitudinal MOE and hardness of different cell wall layers of softwood tracheids[J]. Journal of Beijing Forestry University, 2006, 28(5): 114-118. |