Citation: | Li Xian, Chen Sisi, Xie Jianbo. Transcriptome analysis of poplar leaves infected with Colletotrichum gloeosporioides[J]. Journal of Beijing Forestry University, 2024, 46(4): 91-102. DOI: 10.12171/j.1000-1522.20210481 |
Our objective was to explore the key genes and the molecular mechanism during the infection of Colletotrichum gloeosporioides, which could provide new insights into the genetic basis on poplar defense pathways.
The healthy poplar (Populus tomentosa LM50) leaves were inoculated with C. gloeosporioides. The dynamic changes of antioxidase activities of poplar leaves and key genes in the plant-interaction pathway were investigated by physiological and biochemical assays and high-throughput transcriptome sequencing.
Malondialdehyde content, polyphenol oxidase activity, superoxide dismutase activity and catalase activity in poplar leaves were increased at 6 d after inoculation. A total of 4 547 differential genes were screened between healthy and infected leaves, among which 2 262 were up-regulated and 2 285 were down-regulated. Differential expression genes were distributed in many functional categories, including sugar, lipid, secondary metabolite, glutathione, phenylpropanoid, amino acid, unsaturated fatty acids metabolites and so on. A large number of transcription factors were detected to be activated during the infection, such as 27 WRKY, 23 ERF, suggesting that transcription factors play important roles in response to pathogen stress. During the infection, the reactive oxygen species may act as signals that modulate the activating of plant stress responses and disease resistance pathways. The results were further confirmed by real-time quantitative PCR of six differential expressed genes detected by RNA-seq, despite differences in magnitude.
The above results uncover several essential genes that may play crucial roles in response to biotic stress. Pathways of glutathione, phenylpropanoid and flavonoid biosynthesis may also be activated during the infection.
[1] |
徐梅卿, 周旭东, 朴春根, 等. 中国不同栽培区杨树品系及其病害种类[J]. 林业科学研究, 2009, 22(5): 705−714.
Xu M Q, Zhou X D, Pu C G, et al. Populus cultivation-clones in different cultivated area and its diseases in china[J]. Forest Research, 2009, 22(5): 705−714.
|
[2] |
贺伟, 杨旺, 沈瑞祥. 北京杨炭疽病的初步研究[J]. 森林病虫通讯, 1991(4): 7−9.
He W, Yang W, Shen R X. Primary research of Populus × beijingensis[J]. Forest Pest and Disease, 1991(4): 7−9.
|
[3] |
Perfect S E, O’Connell R J, Green E F, et al. Expression cloning of a fungal proline-rich glycoprotein specific to the biotrophic interface formed in the Colletotrichum-bean interaction[J]. Plant Journal, 2010, 15(2): 273−279.
|
[4] |
Bailey J A, O’Connell R J, Pring R J. Infection strategies of Colletotrichum species[J]. Colletotrichum Biology Pathology & Control, 1992, 7: 88−120.
|
[5] |
张晓林, 张俊娥, 贺璞慧中, 等. 胶孢炭疽菌侵染杨树叶片的组织病理学研究[J]. 北京林业大学学报, 2018, 40(3): 101−109.
Zhang X L , Zhang J E, He-pu H Z, et al. Histopathology study of poplar leaves infected by Colletotrichum gloeosporioides[J]. Journal of Beijing Forestry University, 2018, 40(3): 101−109.
|
[6] |
Liu N, Meng F, Tian C. Transcriptional network in Colletotrichum gloeosporioides mutants lacking Msb2 or Msb2 and Sho1[J]. Journal of Fungi, 2022, 8(2): 207. doi: 10.3390/jof8020207
|
[7] |
Nesher I, Minz A, Kokkelink L, et al. Regulation of pathogenic spore germination by CgRac1 in the fungal plant pathogen Colletotrichum gloeosporioides[J]. Eukaryotic Cell, 2011, 10(8): 1122−1130. doi: 10.1128/EC.00321-10
|
[8] |
Choub V, Maung C E H, Won S J, et al. Antifungal activity of cyclic tetrapeptide from Bacillus velezensis CE 100 against plant pathogen Colletotrichum gloeosporioides[J]. Pathogens, 2021, 10(2): 209. doi: 10.3390/pathogens10020209
|
[9] |
Zhang L, Ahammed G J, Li X, et al. Exogenous brassinosteroid enhances plant defense against Colletotrichum gloeosporioides by activating phenylpropanoid pathway in Camellia sinensis L[J]. Journal of Plant Growth Regulation, 2018, 37(4): 1235−1243. doi: 10.1007/s00344-018-9857-0
|
[10] |
陈哲, 黄静, 赵佳, 等. 草莓应答炭疽菌侵染的转录组分析[J]. 植物保护, 2020, 46(3): 138−146.
Chen Z, Huang J, Zhao J, et al. Transcriptomics analysis of strawberry response to Collectotrichun theobromicola infection[J]. Plant Protection, 2020, 46(3): 138−146.
|
[11] |
Wang Y, Hao X, Lu Q, et al. Transcriptional analysis and histochemistry reveal that hypersensitive cell death and H2O2 have crucial roles in the resistance of tea plant (Camellia sinensis (L.) O. Kuntze) to anthracnose[J]. Horticulture Research, 2018, 5(1): 18. doi: 10.1038/s41438-018-0025-2
|
[12] |
Jiang L, Wu P, Yang L, et al. Transcriptomics and metabolomics reveal the induction of flavonoid biosynthesis pathway in the interaction of Stylosanthes-Colletotrichum gloeosporioides[J]. Genomics, 2021, 113(4): 2702−2716. doi: 10.1016/j.ygeno.2021.06.004
|
[13] |
Luis A X O, Esther A C T, Sandra G M, et al. Transcriptomic analysis of avocado Hass (Persea americana Mill.) in the interaction system fruit-chitosan-Colletotrichum[J]. Frontiers in Plant Science, 2017, 8: 956. doi: 10.3389/fpls.2017.00956
|
[14] |
Fang X, Chai W, Li S, et al. HSP17.4 mediates salicylic acid and jasmonic acid pathways in the regulation of resistance to Colletotrichum gloeosporioides in strawberry[J]. Molecular Plant Pathology, 2021, 22: 817−828. doi: 10.1111/mpp.13065
|
[15] |
Mehmood N, Yuan Y, Ali M, et al. Early transcriptional response of terpenoid metabolism to Colletotrichum gloeosporioides in a resistant wild strawberry Fragaria nilgerrensis[J]. Phytochemistry, 2021, 181: 112590. doi: 10.1016/j.phytochem.2020.112590
|
[16] |
王杰, 沈雪梅, 刘丹,等. 四川省红叶石楠炭疽病病原菌鉴定及其潜在侵染源测定[J]. 植物保护学报, 2020, 47(3): 637−646.
Wang J, Shen X M, Liu D, et al. Identification of the pathogens causing anthracnose and determination of the potential infection source of Photinia × fraseri in Sichuan Province[J]. Journal of Plant Protection, 2020, 47(3): 637−646.
|
[17] |
费莉玢. Botryosphaeria dothidea侵染后山核桃酚类物质合成相关酶活及关键基因的表达特性[D]. 杭州: 浙江农林大学, 2020.
Fei L F. Enzyme activity and expression of key genes related to phenolic synthesis in pecans after Botryosphaeria dothidea infection[D]. Hangzhou: Zhejiang A&F University, 2020.
|
[18] |
宋润先, 李翔, 毛秀红,等. 镉胁迫下美洲黑杨无性系‘中菏1号’转录组分析[J]. 北京林业大学学报, 2021, 43(7): 12−21.
Song R X, Li X, Mao X H, et al. Transcriptome analysis of clone Populus deltoides ‘Zhonghe 1’ under cadmium stress[J]. Journal of Beijing Forestry University, 2021, 43(7): 12−21.
|
[19] |
Tuskan G, Difazio S, Jansson S, et al. The Genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray)[J]. Science, 2006, 313: 1596−1604. doi: 10.1126/science.1128691
|
[20] |
Trapnell C, Hendrickson D G, Sauvageau M, et al. Differential analysis of gene regulation at transcript resolution with RNA-seq[J]. Nature Biotechnology, 2013, 31(1): 46−53. doi: 10.1038/nbt.2450
|
[21] |
Kim D, Langmead B, Salzberg S L. HISAT: a fast spliced aligner with low memory requirements[J]. Nature Methods, 2015, 12(4): 357−360. doi: 10.1038/nmeth.3317
|
[22] |
Tian T , Liu Y , Yan H , et al. AgriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update[J]. Nucleic Acids Research, 2017, 45(W1): W122−W129.
|
[23] |
Chen C, Chen H, Zhang Y, et al. TBtools, an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194−1202. doi: 10.1016/j.molp.2020.06.009
|
[24] |
Thimm O, Bläsing O, Gibon Y, et al. Mapman: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes[J]. The Plant Journal, 2004, 37(6): 914−939. doi: 10.1111/j.1365-313X.2004.02016.x
|
[25] |
Chen S S, Zhang Y, Zhao Y, et al. Key genes and genetic interactions of plant-pathogen functional modules in poplar infected by Marssonina brunnea[J]. Molecular Plant-Microbe Interactions, 2020, 33(8): 1080−1090. doi: 10.1094/MPMI-11-19-0325-R
|
[26] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method[J]. Methods, 2001, 25(4): 402−408. doi: 10.1006/meth.2001.1262
|
[27] |
廖天悦, 申铁. 基于转录组的福鼎大白茶叶片两种发育阶段的苯丙烷代谢合成途径分析比较[J]. 贵州师范大学学报 (自然科学版), 2021, 39(3): 15−22.
Liao T Y, Shen T. Analysis and comparison of phenylpropane metabolic pathways in two developmental stages of Fuding Dabai tea leaves based on transcriptome[J]. Journal of Guizhou Normal University (Natural Sciences), 2021, 39(3): 15−22.
|
[28] |
Hwang I S, Choi D S, Kim N H, et al. Pathogenesis-related protein 4b interacts with leucine-rich repeat protein 1 to suppress PR4b-triggered cell death and defense response in pepper[J]. The Plant Journal, 2014, 77(4): 521−533. doi: 10.1111/tpj.12400
|
[29] |
汪丽君. 杨树转录因子MYB6调控类黄酮和木质素生物合成的机制研究[D]. 重庆: 西南大学, 2018.
Wang L J. The transcriptional regulatory mechanism of the poplar transcription factor MYB6 involved in flavonoid and lignin biosynthesis[D].Chongqing: Southwest University, 2018.
|
[30] |
赵金玲, 姚文静, 王升级, 等. 杨树AP2/ERF转录因子家族生物信息学分析[J]. 东北林业大学学报, 2015, 43(10): 21−29.
Zhao J L, Yao W J, Wang S J, et al. Bioinformatics analysis of poplar AP2/ERF gene family function[J]. Journal of Northeast Forestry University, 2015, 43(10): 21−29.
|
[31] |
张计育, 王庆菊, 郭忠仁. 植物AP2/ERF类转录因子研究进展[J]. 遗传, 2012, 34(7): 835−847. doi: 10.3724/SP.J.1005.2012.00835
Zhang J Y, Wang Q J, Guo Z R. Progresses on plant AP2/ERF transcription factors[J]. Hereditas (Beijing), 2012, 34(7): 835−847. doi: 10.3724/SP.J.1005.2012.00835
|
[32] |
Pandey S P, Somssich I E. The role of WRKY transcription factors in plant immunity[J]. Plant Physiology, 2009, 150(4): 1648−1655. doi: 10.1104/pp.109.138990
|
[33] |
Zhu Z, Shi J, Xu W, et al. Three ERF transcription factors from Chinese wild grapevine Vitis pseudoreticulata participate in different biotic and abiotic stress-responsive pathways[J]. Journal of Plant Physiology, 2013, 170(10): 923−933. doi: 10.1016/j.jplph.2013.01.017
|
[34] |
Liu D, Chen X, Liu J, et al. The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance[J]. Journal of Experimental Botany, 2012, 63(10): 3899−3911. doi: 10.1093/jxb/ers079
|
[35] |
王媛, 梁军, 张星耀. 抗、感病杨树与溃疡病菌互作中活性氧及相关酶的动态[J]. 南京林业大学学报 (自然科学版), 2008, 32(5): 41−46.
Wang Y, Liang J, Zhang X Y. Changes of active oxygenandrelated enzymes during the interaction of poplar and canker disease pathogen[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2008, 32(5): 41−46.
|
[36] |
Bowler C, Montagu M V, Inze D, et al. Superoxide dismutase and stress tolerance[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1992, 43: 83−116. doi: 10.1146/annurev.pp.43.060192.000503
|
[37] |
吴美艳. 木薯抗细菌性枯萎病的生理特性及转录组学研究[D]. 南宁: 广西大学, 2020.
Wu M Y. Study on physiological characteristics and transcriptomics of cassava resistance to bacterial wilt[D]. Nanning: Guangxi University, 2020.
|
[38] |
赖建东. 炭疽菌侵染后茶树cDNA-AFLP体系构建和基因差异表达研究[D]. 福州: 福建农林大学, 2016.
Lai J D. Gene expression analysis of tea leaves in response to Colletotrichum kahawae infection revealed by cDNA-AFLP[D]. Fuzhou: Fujian Agriculture & Forestry University, 2016.
|
[39] |
Nicholson R L, Hammerschmidt R E. Phenolic compounds and their role in disease resistance[J]. Annual Review of Phytopathology, 2003, 30(1): 369−389.
|
[40] |
Macdonald M J, D’Cunha G B. Erratum: A modern view of phenylalanine ammonia lyase[J]. Biochemistry and Cell Biology, 2007, 85(6): 759−759. doi: 10.1139/o07-147
|
[41] |
王斌, 白小东, 张静荣, 等. 乙酰水杨酸采前处理诱导哈密瓜果实的采后抗病性[J]. 果树学报, 2018, 35(2): 222−230.
Wang B, Bai X D, Zhang J R, et al. The induction of pre-harvest acetylsalicylic acid treatment on postharvest resistance of Hami melon fruit[J]. Journal of Fruit Science, 2018, 35(2): 222−230.
|
[42] |
李佳林. CsMYB60调控黄瓜类黄酮生物合成的分子机制[D]. 泰安: 山东农业大学, 2020.
Li J L. Molecular mechanism of the flavonoid biosynthesis regulated by CsMYB60 in cucumber[D]. Taian: Shandong Agricultural University, 2020.
|
[43] |
Wang L, Ran L, Hou Y, et al. The transcription factor MYB115 contributes to the regulation of proanthocyanidin biosynthesis and enhances fungal resistance in poplar[J]. New Phytologist, 2017, 215: 351−367. doi: 10.1111/nph.14569
|
[44] |
Lu W, Wang Y, Ca O H, et al. Transcriptome analysis of an anthracnose-resistant tea plant cultivar reveals genes associated with resistance to Colletotrichum camelliae[J]. PLoS One, 2016, 11(2): e0148535. doi: 10.1371/journal.pone.0148535
|
[45] |
Gayoso C, Pomar F, Novo-Uzal E, et al. The Ve-mediated resistance response of the tomato to Verticillium dahliae involves H2O2, peroxidase and lignins and drives PALgene expression[J]. BMC Plant Biology, 2010, 10(1): 232. doi: 10.1186/1471-2229-10-232
|
[46] |
Hoen P A, Ariyurek Y, Thygesen H H, et al. Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms[J]. Nucleic Acids Research, 2008, 36(21): e141−e141. doi: 10.1093/nar/gkn705
|
[47] |
Marioni J C, Mason C E, Mane S M, et al. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays[J]. Genome Research, 2008, 18(9): 1509−1517. doi: 10.1101/gr.079558.108
|
[48] |
Kogenaru S, Yan Q, Guo Y, et al. RNA-seq and microarray complement each other in transcriptome profiling[J]. BMC Genomics, 2012, 13(1): 629. doi: 10.1186/1471-2164-13-629
|
[49] |
De G T B, Aldred N, Clare A S, et al. Improvement of phylum-and class-specific primers for real-time PCR quantification of bacterial taxa[J]. Journal of Microbiological Methods, 2011, 86(3): 351−356. doi: 10.1016/j.mimet.2011.06.010
|
[50] |
白静科. 果生炭疽菌Colletotrichum fructicola与苹果不同抗性品种互作研究[D]. 咸阳: 西北农林科技大学, 2016.
Bai J K. Interaction between resistant and susceptible apple cultivars and Collctotrichum fructicola [D]. Xianyang: Northwest A&F University, 2016.
|